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1. Introduction 
 

Thermoelasticity deals with the study of the deformation 

in the body due to both thermal and mechanical sources. It 

deals with the dynamical system whose interactions with 

surroundings are limited to mechanical work, external 

forces and heat exchange. It also comprises the heat 

conduction, stress and strain that arise due to flow of heat. 

Nowadays applications of thermoelasticity are widely 

spread in the areas like in nuclear field, aircrafts, missiles, 

large steam turbines, shipbuilding, jet and rocket engines. 

During the last few decades much interest has been given to 

the thermoelasticity theories which give finite speed of 

propagation of thermal waves. Catteno (1958) and Vernotte 

(1958) proposed a thermal wave with a single phase lag in 

which the temperature gradient after a certain elapsed time 

was given by 𝑞 + 𝜏𝑞  
𝜕𝑞

𝜕𝑡
 = −K∇𝑇, where 𝜏𝑞 denotes the 

relaxation time required for thermal physics to take account 

of a hyperbolic effect within the medium. Here when 𝜏𝑞  > 

0, the thermal wave propagates through the medium with a 

finite speed of √
𝛼

𝜏𝑞
, where α is thermal diffusivity. When 

𝜏𝑞 approaches zero, the thermal wave propagates with 

infinite speed and the single phase lag model reduces to the 

traditional Fourier model. Further Tzou (1995) and 

Chandrasekharaiah (1998) proposed a dual phase lag model 

of generalized thermoelasticity. According to this model, 

the classical Fourier law 𝑞 =  −𝐾∇𝑇 is replaced by q(P,  

t + τq)= −KT(P, t +τq), where the temperature gradient 
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∇T at point P of the material  at time t+𝜏𝑡 is equal to the 

heat flux vector q at the same point P at time 𝑡 + 𝜏𝑞 , 

where K is thermal conductivity. The delay time 𝜏𝑡 is due 

to microstructural interaction which is called phase lag of 

temperature gradient. The other one is due to fast transient 

effect of inertia which is called phase lag of heat flux. For 

𝜏𝑡= 0 and 𝜏𝑞= 𝜏 this model is referred as single phase lag 

model. Further Roychoudhuri (2007) developed a new 

model of generalized thermoelasticity called three phase lag 

model. This modified Fourier law contains phase lag of heat 

flux (𝜏𝑞) , phase lag of temperature gradient (𝜏𝑡 )  and 

phase lag of thermal displacement (𝜏𝑣 ) respectively. 

The generalization of the ordinary differential and 

integration to a non-integer order give rise to the subject 

called fractional theory. Fractional order differential 

equation have been focus of many studies due to their use in 

different applications in fluid mechanics ,biology, physics, 

mechanics of solids, control theory etc. The definition of 

fractional derivatives has been given by Caputo (1967) of 

order ‘α’ where 0<α≤1. Fractional order theory came into 

existence during the second half of the 19th century and has 

been used to model polymer materials. In this study, the 

heat conduction equation with fractional derivative of order 

‘α’ was derived. The most important advantage of using 

differential equation of fractional order is due to their non-

localization property. It was Abel, who first introduced the 

fractional derivatives in the formulation of tautochrone 

problem. Oldham and Spainer (1974) gave some alternate 

definitions of fractional thermoelasticity.  

Lata and Kaur (2019) had studied the thermomechanical 

interactions in transversely isotropic magneto thermoelastic 

solid with two temperature and without energy dissipation. 

Adolfsson et al. (2005) proposed a model on viscoelasticity 

theory by using fractional calculus. Ezzat (2010) proposed a 

model by using Taylor’s series expansion in fractional heat 

conduction equation with fractional order. Lata and Kaur 
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(2019) had studied the effect of rotation and inclined load 

on transversely isotropic magneto thermoelastic solid.   

Marin et al. (2019) had extended the domain of influence of 

initially stressed bodies in thermoelasticity. In many 

generalized thermoelastic problems, the method of finite 

element was used by (Tian et al. (2006), Abbas (2007), 

Abbas and Abdalla (2008), Youssef and Abbas (2007)). 

Rafiq et al. (2019) had analyzed the transmission 

behaviour of plane harmonic waves in an isotropic medium 

in the context of generalized dual phase lag model of 

thermoelasticity under the effect of magnetic field. Lata and 

Kaur (2019) had investigated two dimensional transversely 

isotropic magneto thermoelastic solid without energy 

dissipation with two temperatures due to time harmonic 

sources. Raslan (2015) had investigated the distribution of 

stresses and temperature when a sudden heat changes occur 

on the external  boundary of a spherical  shell in case of 

one dimensional homogeneous isotropic problem in a 

thermoelastic medium by using fractional order theory. 

Abbas and Youssef (2015) had studied the two dimensional 

problem with the help of fractional order theory with one 

relaxation time for porous materials. Marin and Craciun 

(2017) had proved the uniqueness results for a boundary 

value problem in dipolar thermoelasticity to model 

composite materials. Kumar et al. (2016) had investigated 

the disturbances in a homogeneous transversely isotropic 

thermoelastic medium with two temperature with combined 

effect of magnetic field and hall current due to 

thermomechanical sources.  
Abouelregal (2018) had investigated the effect of 

temperature dependent physical properties and fractional 
thermoelasticity on non-local nano beams. Yadav et al. 
(2015) had studied the effect of fractional order strain in a 
one dimensional viscoelastic solid in the presence of 
moving heat source and mechanical load. Bachhar et al. 
(2016) had solved the homogeneous isotropic thermoelastic 
problem by using fractional calculus under the effect of 
magnetic field with one relaxation time. Roychoudhuri 
(2007) had studied thermoelastic wave propagation in one 
dimensional elastic half-space using dual-phase-lag model. 
Abbas (2018) had also studied the effect of fractional 
parameter in a two dimensional problem in the context of 
thermal shock with three types of conductivity weak, 
normal and strong conductivity. Marin (1998) had studied 
the uniqueness in thermoelastodynamics on bodies with 
voids. Alimirzaei et al. (2019) had investigated nonlinear 
analysis of viscoelastic micro-composite beam with 
geometrical imperfection using FEM: MSGT electro-
magneto-elastic bending, buckling and vibration 
solutions.  Medani et al. (2019) had analyzed the Static and 
dynamic behavior of (FG-CNT) reinforced porous sandwich 
plate. Zarga et al. (2019) had studied the thermomechanical 
bending for functionally graded sandwich plates using a 
simple quasi-3D shear deformation theory. Chaabane et al. 
(2019) had studied the bending and free vibration responses 
of functionally graded beams resting on elastic foundation. 
Karami et al. (2019) had analyzed the wave propagation of 
functionally graded anisotropic nanoplates resting on 
winkler-pasternak foundation. Boulefrakh et al. (2019) had 
studied the effect of parameters of visco-pasternak 
foundation on the bending and vibration properties of a 
thick FG plate. Karami et al. (2019) had studied the 

Galerkin’s approach for buckling analysis of functionally 
graded anisotropic nanoplates for different boundary 
conditions. Boukhlif et al. (2019) had investigated a simple 
quasi-3D HSDT for the dynamics analysis of FG thick plate 
on elastic foundation. Boutaleb et al. (2019) had studied the 
dynamic analysis of nanosize FG rectangular plates based 
on simple nonlocal quasi 3D HSDT. Bourada et al. (2019) 
had investigated the porous functionally graded beam using 
a sinusoidal shear deformation theory. 

Zenkour (2018) had studied generalized thermoelastic 
two dimensional problem of a thermomechanical loaded 
beam by using dual phase lag model of heat conduction. 
Kumar et al. (2016) had studied the effect of hall current 
and two temperatures in a transversely isotropic 
magnetothermoelastic with and without energy dissipation 
due to ramp type heat.  Othman and Jahangir (2015) had 
investigated the plane wave propagation in a generalized 
thermoelastic half space rotating with specific angular 
frequency. Marin (1999) had proved the existance and 
uniqueness of solutions for mixed initial-boundary value 
problems in thermoelasticity for dipolar bodies. Lata and 
Kaur (2019) had studied the deformation in a transversely 
isotropic thick circular plate due to thermomechanical 
sources. Othman and Marin (2017) had studied the effect of 
thermal loading due to laser pulse on thermoelastic porous 
medium by using G-N theory. Hassan et al. (2018) had 
studied the exploration of conductive heat transfer and flow 
characteristics synthesis by Cu–Ag/water hybrid-
nanofluids. 

In addition to above work we see that not much work 

has been done using fractional order thermoelasticity in 

orthotropic medium. In this problem we investigate the 

thermomechanical interactions in an orthotropic 

thermoelastic solid by using fractional order heat equation 

with three phase lags. In three-phase lag model the heat 

conduction equation consists of three phase lags namely 

𝜏𝑡 ,𝜏𝑣 𝑎𝑛𝑑  𝜏𝑞  i.e. (phase lag of temperature gradient, 

phase lag of thermal displacement and phase lag of heat 

flux vector. The components of stress, displacement and 

temperature change subjected to uniformly distributed load, 

concentrated load and linearly distributed load are obtained 

with the help of Laplace and Fourier transform techniques. 

The effect of fractional parameter on various components 

has been depicted through graphs. 

 

 

2. Basic equations 
 

Following Chawla and Kumar (2014) the constitutive 

relations and basic governing equations of anisotropic three 

phase lag thermoelastic model in the absence of body forces 

and heat sources are the following. 

𝜎𝑖𝑗= 𝑐𝑖𝑗𝑘𝑚 𝑒𝑘𝑚 − 𝛽𝑖𝑗 T, (1) 

𝜎𝑖𝑗,𝑗= ρ ü𝑖 ,                                                                                                                                                   (2) 

𝐾𝑖𝑗  (1+ 
𝜏𝑡
𝛼

𝛼!
 

𝜕

𝜕𝑡𝛼 )  �̇�,𝑗𝑖 + 𝐾𝑖𝑗
∗  (1+ 

𝜏𝑣
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼 ) 

𝑇,𝑗𝑖 = [( 1 + 
𝜏𝑞 
𝛼

𝛼!
 ) + 

𝜏𝑞
2𝛼!

2𝛼!
 ] [ρ 𝐶𝐸�̈� +  𝛽𝑖𝑗  𝑇0 �̈�𝑖𝑗 ]. 

(3) 

In equation (1)-(3) 𝑐𝑖𝑗𝑘𝑚 (=𝑐𝑘𝑚𝑖𝑗=𝑐𝑗𝑖𝑘𝑚=𝑐𝑖𝑗𝑚𝑘 ) is the 
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tensor of elastic constant, ρ is the density, 𝑇0 is the 

reference temperature such that  |
𝑇

𝑇0
| ≪ 1 ,  𝑢𝑖  are the 

components of displacement vector 𝑢, 𝐶𝐸 is the specific 

heat at constant strain, 𝑢𝑖  are the components of 

displacement vector  𝑢,  𝜎𝑖𝑗 =  (𝜎𝑗𝑖 ) and 𝑒𝑖𝑗 = 
1

2
 (  𝑢𝑖,𝑗 

+ 𝑢𝑗,𝑖  ) are the components of stress and strain tensors 

respectively. T (𝑥, 𝑦, 𝑧, 𝑡) is the temperature distribution 

from the reference temperature 𝑇0. Also 𝜏𝑞  , 𝜏𝑡  𝑎𝑛𝑑 𝜏𝑣 

are respectively, the phase lag of the heat flux, the phase lag 

of the temperature gradient and the phase lag of the thermal 

displacement, 𝛽𝑖𝑗  are tensor of thermal moduli, 𝐾𝑖𝑗 (=  

𝐾𝑗𝑖 ) and  𝐾𝑖𝑗
∗  (= 𝐾𝑗𝑖

∗  ) are the components of thermal 

conductivity and material characteristic constant 

respectively. 

The basis of these symmetries of  𝐶𝑖𝑗𝑘𝑚 is due to 

i. The stress tensor is symmetric, which is only possible 

if (𝐶𝑖𝑗𝑘𝑚 = 𝐶𝑗𝑖𝑘𝑚) 

ii. If a strain energy density exists for the material, the 

elastic stiffness tensor must satisfy 𝐶𝑖𝑗𝑘𝑚 = 𝐶𝑘𝑚𝑖𝑗  

iii. From stress tensor and elastic stiffness tensor 

symmetries infer (𝐶𝑖𝑗𝑘𝑚 = 𝐶𝑖𝑗𝑚𝑘) and 𝐶𝑖𝑗𝑘𝑚 = 𝐶𝑘𝑚𝑖𝑗 =

 𝐶𝑗𝑖𝑘𝑚 = 𝐶𝑖𝑗𝑚𝑘 

In all above equations dot (.) represents the partial 

derivative w.r.t time and (,) denote the partial derivative 

w.r.t spatial coordinate. 

The Eq. (1) for orthotropic media in Cartesian 

coordinate system (𝑥, 𝑦, 𝑧) in component form can be 

written as  

[
 
 
 
 
 
𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

𝜎𝑦𝑧

𝜎𝑥𝑧

𝜎𝑥𝑦]
 
 
 
 
 

 = 

[
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66]

 
 
 
 
 

 

[
 
 
 
 
 
𝑒𝑥𝑥

𝑒𝑦𝑦

𝑒𝑧𝑧

2𝑒𝑦𝑧

2𝑒𝑥𝑧

2𝑒𝑥𝑦]
 
 
 
 
 

 

[
 
 
 
 
 
𝛽1

𝛽2

𝛽3

0
0
0 ]

 
 
 
 
 

T, (4) 

𝜎𝑥𝑥 = 𝐶11 𝑒𝑥𝑥 + 𝐶12 𝑒𝑦𝑦+ 𝐶13 𝑒𝑧𝑧 − 𝛽1 𝑇, 

𝜎𝑦𝑦 = 𝐶12 𝑒𝑥𝑥 + 𝐶22 𝑒𝑦𝑦+ 𝐶23 𝑒𝑧𝑧 − 𝛽2 𝑇, 

𝜎𝑧𝑧 = 𝐶13 𝑒𝑥𝑥 + 𝐶23 𝑒𝑦𝑦+ 𝐶33 𝑒𝑧𝑧 − 𝛽3 𝑇, 

𝜎𝑦𝑧 = 2 𝐶44 𝑒𝑦𝑧, 

𝜎𝑥𝑧 = 2 𝐶55 𝑒𝑥𝑧 , 

𝜎𝑥𝑦 = 2 𝐶66 𝑒𝑥𝑦 , 

𝐶11
𝜕2𝑢

𝜕𝑥2 + 𝐶66
𝜕2𝑢

𝜕𝑦2 + 𝐶55
𝜕2𝑢

𝜕𝑧2 + (𝐶12 + 𝐶66) 
𝜕2𝑣

𝜕𝑥𝜕𝑦
 + (𝐶13 

+𝐶55) 
𝜕2𝑤

𝜕𝑥𝜕𝑧
 − 𝛽1 

𝜕𝑇

𝜕𝑥
 = ρ 

𝜕2𝑢

𝜕𝑡2
,                                                       

(5) 

(𝐶12 + 𝐶66) 
𝜕2𝑢

𝜕𝑥𝜕𝑦
 + 𝐶66 

𝜕2𝑣

𝜕𝑥2 + 𝐶22
𝜕2𝑣

𝜕𝑦2 
 + 𝐶44

𝜕2𝑣

𝜕𝑧2 + 

(𝐶23 + 𝐶44) 
𝜕2𝑤

𝜕𝑦𝜕𝑧
 − 𝛽2 

𝜕𝑇

𝜕𝑦
 = ρ 

𝜕2𝑣

𝜕𝑡2,                                    
(6) 

(𝐶13 +𝐶55) 
𝜕2𝑢

𝜕𝑥𝜕𝑧
 + (𝐶23 + 𝐶44) 

𝜕2𝑣

𝜕𝑦𝜕𝑧
  +  𝐶55

𝜕2𝑤

𝜕𝑥2   + 

𝐶44
𝜕2𝑤

𝜕𝑦2 + 𝐶33
𝜕2𝑤

𝜕𝑧2  − 𝛽3 
𝜕𝑇

𝜕𝑧
 = ρ 

𝜕2𝑤

𝜕𝑡2 , 
(7) 

(𝐾1 (1+ 
𝜏𝑡
𝛼

𝛼!
 

𝜕

𝜕𝑡𝛼
 ) �̇�,11+ 𝐾2 (1+ 

𝜏𝑡
𝛼

𝛼!
 

𝜕

𝜕𝑡𝛼
 ) �̇�,22 + 𝐾3 (1+ 

𝜏𝑡
𝛼

𝛼!
 

𝜕

𝜕𝑡𝛼
 ) �̇�33 + 𝐾1

∗(1+ 
𝜏𝑣
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼
 ) 𝑇,11+  𝐾2

∗(1 +

 
𝜏𝑣
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼
 ) 𝑇,22 +  𝐾3

∗(1+ 
𝜏𝑣
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼
 ) 𝑇,33 = [1 + 

𝜏𝑞
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼
+

𝜏𝑞
2𝛼!

2𝛼!
 

𝜕2𝛼

𝜕𝑡2𝛼 ] [ ρ 𝐶𝐸�̈� + 𝑇0 (𝛽1 �̈�1,1 + 𝛽2 �̈�2,2 + 𝛽3 �̈�3,3 )].                                   

(8) 

 

 

3. Formulation of the problem 
 

We consider a two dimensional homogeneous 

thermoelastic orthotropic body initially at temperature 

𝑇0 with and without energy dissipation in generalized 

thermoelasticity using three phase lag model. We take a 

rectangular coordinate axis (𝑥, 𝑦, 𝑧)with 𝑧-axis as a axis of 

symmetry. The components of displacement vector 

�⃗�  , 𝑣    𝑎𝑛𝑑 �⃗⃗�  and temperature change T for the two 

dimensional problem have the form 

   �⃗�   = u (𝑥, 𝑧, 𝑡), 𝑣 = 0, �⃗⃗� = w (𝑥, 𝑧, 𝑡),and T = 
T(𝑥, 𝑧, 𝑡),  

(9) 

With the help of (9) Eqs (5)-(8) reduce to the form 

𝐶11
𝜕2𝑢

𝜕𝑥2  + 𝐶55
𝜕2𝑢

𝜕𝑧2 + (𝐶13 +𝐶55) 
𝜕2𝑤

𝜕𝑥𝜕𝑧
 – 𝛽1 

𝜕𝑇

𝜕𝑥
 = ρ 

𝜕2𝑢

𝜕𝑡2 , (10) 

(𝐶13 +𝐶55) 
𝜕2𝑢

𝜕𝑥𝜕𝑧
  +  𝐶55

𝜕2𝑤

𝜕𝑥2
  + 𝐶33

𝜕2𝑤

𝜕𝑧2
 − 𝛽3 

𝜕𝑇

𝜕𝑧
 = ρ 

𝜕2𝑤

𝜕𝑡2
, (11) 

𝐾1 (1+ 
𝜏𝑡
𝛼

𝛼!
 

𝜕

𝜕𝑡𝛼
 ) �̇�,11+ 𝐾3 (1+ 

𝜏𝑡
𝛼

𝛼!
 

𝜕

𝜕𝑡𝛼
 ) �̇�33 + 𝐾1

∗(1+ 
𝜏𝑣
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼
 ) 

𝑇,11+ 𝐾3
∗(1+ 

𝜏𝑣
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼
 ) 𝑇,33 = [1 + 

𝜏𝑞
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼
+

𝜏𝑞
2𝛼!

2𝛼!
 

𝜕2𝛼

𝜕𝑡2𝛼
 ] [ρ 𝐶𝐸�̈� + 

𝑇0 ( 𝛽1 �̈�1,1 + 𝛽3 �̈�3,3 )].                                              

(12) 

Also 

  𝜎11 =  𝐶11 𝑒11 + 𝐶13 𝑒33 − 𝛽1T,                                          (13) 

  𝜎33 =  𝐶13 𝑒11 +  𝐶33 𝑒33  − 𝛽3T,                                    (14) 

  𝜎13 = 2 𝐶55 𝑒13 ,                                (15) 

where 𝑒11  =  
𝜕𝑢

𝜕𝑥
 , 𝑒33  = 

𝜕𝑤

𝜕𝑧
, 𝑒13  = 

1

2 
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑥
),  𝛽𝑖𝑗 = 

𝛽𝑖𝛿𝑖𝑗, 𝐾𝑖𝑗= 𝐾𝑖 𝛿𝑖𝑗 , 𝐾𝑖𝑗
∗ =𝐾𝑖

∗𝛿𝑖𝑗 , i is not summed where i=1, 2, 

3 and 𝛿𝑖𝑗 is kronecker delta. 

To facilitate the solution the following dimensionless 

quantities are used 

𝑥 , = 
𝑥

𝐿 
  , 𝑧 , =  

𝑧

𝐿 
  , 𝑢, = 

𝜌𝑐1
2

 𝐿 𝑇0𝛽1
 u,  𝑤 , = 

𝜌𝑐1
2

 𝐿 𝑇0𝛽1
 w, 

𝑡 , = 
𝐶1

𝐿 
 t, 𝜎33 

,
=  

𝜎33

 𝑇0𝛽1 
 , 𝜎31

,  = 
𝜎31

 𝑇0𝛽1 
, 𝑇 , =

𝑇

𝑇0
.                                    

(16) 

where 𝑐1
2 = 

𝑐11

𝜌
 and L is a constant of dimension of length. 

Using dimensionless quantities given by (16) in Eqs. 

(10)-(12) and suppressing the primes for convenience yield 

𝜕2𝑢

𝜕𝑥2 + 𝛿1
𝜕2𝑢

𝜕𝑧2 +𝛿2
𝜕2𝑤

𝜕𝑥𝜕𝑧
 − 

𝜕𝑇

𝜕𝑥
 = 

𝜕2𝑢

𝜕𝑡2 ,                                    (17) 

𝛿3  
𝜕2𝑤

𝜕𝑧2 + 𝛿1
𝜕2𝑤

𝜕𝑥2  + 𝛿2
𝜕2𝑢

𝜕𝑥𝜕𝑧
 −

𝛽3

𝛽1

𝜕𝑇 

𝜕𝑧 
 = 

 𝜕2𝑤

𝜕𝑡2 ,                                 (18) 

𝜖1 𝜏𝑡
, 𝜕

𝜕𝑡
(

𝜕2𝑇

𝜕𝑥2
)+ 𝜖2 𝜏𝑡

, 𝜕

𝜕𝑡
(

𝜕2𝑇

𝜕𝑧2
)+ 𝜖3 𝜏𝑡

, (
𝜕2𝑇

𝜕𝑥2
)+ 𝜖4 𝜏𝑡

, (
𝜕2𝑇

𝜕𝑧2
)=

 𝜏𝑡
" [

 𝜕2𝑇

 𝜕𝑧2
+ 𝛽1

2 𝜖5  
𝜕2

𝜕𝑡2
( 

𝜕𝑢

𝜕𝑥
+ 

𝛽3

𝛽1
 

𝜕𝑤

𝜕𝑧
 )],                                

(19) 
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where  𝛿1 = 
𝑐55

𝑐11
, 𝛿2 = 

𝑐13+𝑐15

𝑐11
 , 𝛿3 = 

𝑐33

𝑐11
 ,  𝜏𝑡

, = (1+ 

𝜏𝑡
𝛼

𝛼!
 

𝜕

𝜕𝑡𝛼  ),  𝜏𝑡
′′  = (1+ 

𝜏𝑣
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼  ) ,  𝜏𝑡
,,, = (1 +

𝜏𝑞
𝛼

𝛼!
 

𝜕𝛼

𝜕𝑡𝛼 +

𝜏𝑞
2𝛼!

2𝛼!
 

𝜕2𝛼

𝜕𝑡2𝛼 )  , 𝜖1 =  
𝐾1

𝜌 𝐿𝑐1
2𝐶𝐸  

 , 𝜖2 = 
𝐾3

𝜌 𝐿𝑐1
2𝐶𝐸  

 , 𝜖3 = 

𝐾1
∗

𝜌 𝑐1
2𝐶𝐸  

 , 𝜖4= 
𝐾3

∗

𝜌 𝑐1
2𝐶𝐸  

 , 𝜖5= 
𝑇0

𝜌2 𝑐1
2𝐶𝐸  

.  

Apply Laplace and Fourier transforms defined by  

 𝑓 ̅̅ ̅(𝑥, 𝑧, 𝑠) = ∫ 𝑓
∞

0
(𝑥, 𝑧, 𝑡)𝑒−𝑠𝑡  𝑑𝑡, (20) 

𝑓(𝜉, 𝑧, 𝑠) = ∫ 𝑓 ̅̅ ̅∞

−∞
(𝑥, 𝑧, 𝑠)𝑒і𝜉𝑥  𝑑𝑥,  (21) 

On Eqs (17)-(19), we obtain a system of three 

homogeneous equations. These resulting equations have 

non- trivial solutions if the determinant of the coefficient 

( �̂� , �̂� , �̂� ) vanishes, which yield to the following 

characteristic equation. 

(P𝐷6 + 𝑄𝐷4 + 𝑅𝐷2 + 𝑆 ) (�̂�, �̂�, �̂�) = 0, (22) 

where  

D= 
𝑑

𝑑𝑧
 ,  P = {𝜏𝑡

,,
 𝛿3 𝛿1  𝜖4 + 𝜏𝑡

,  𝜖2𝑠 𝛿1}, 

Q = 𝜏𝑡
,
 [𝛿3 𝜖2𝑠

3 + 𝑠𝛿3 𝜖2 𝜉
2 – 𝜖1s 𝛿3  𝜉2 𝛿1

2 − 𝜖2𝑠
3 𝛿1

2 − 

𝜖2s 𝜉2 𝛿1
3 + 𝜖2s 𝜉2 𝛿2

2  ] + 𝜏𝑡
,, [− 𝛿3𝜖3𝜉

2 𝑠2 +
𝛿3 𝜖4 𝜉

2 –𝛿3 𝜖4𝑠
2 − 𝜖4𝑠

2 𝛿1
2  − 𝜖4𝜉

2 𝛿1
3 + 𝜖4𝜉

2 𝛿2
2 ] + 

 𝜏𝑡
,,, [−𝛿3𝑠

2 𝛿1
2 − 𝑠2 𝛿1

2𝛽3
2 𝜖5], 

R = 𝜏𝑡
,
 [𝛿3𝜖1𝑠

3𝜉2 − 𝜖2𝑠
5 − 𝛿1 𝜖2 𝜉

2 𝑠3 − 𝛿3 𝜖1s 𝜉
4 − 𝜖2 

𝜉2 𝑠3 −  𝛿1𝜖2s 𝜉
4 + 𝛿1

2 𝜖1 𝜉2 𝑠3 +  𝛿1
3 𝜖1s 𝜉4 − 𝛿2

2 

𝜖1s 𝜉4 ] + 𝜏𝑡
,,
 [− 𝛿3 𝜖3 𝑠

2 𝜉2 −  𝑠2 𝜉2 𝛿1 𝜖4 − 𝜖4 𝑠4 − 

𝜖3𝜉
4 𝛿3 − 𝜖4  𝑠2 𝜉2 − 𝛿1 𝜖4𝜉

4 + 𝑠2 𝜉2 𝛿1
2 𝜖3 + 𝜖3 𝛿1

3 

𝜉4 − 𝜖4𝜉
4  𝛿2

2] + 𝜏𝑡
,,, [ −𝛿3 𝑠

4 +  𝛽3
2 𝜖5 𝑠4  − 

𝛿3 𝑠
2 𝜉2 − 𝛽3

2 𝜖5 𝑠2 𝜉2 +  𝛿1
2 𝑠4 +  𝜉2 𝑠2 𝛿1

3 − 𝛽1 𝛽3  

𝛿2𝜖5𝑠
2𝜉2 −  𝛽1 𝛽3  𝛿2𝜖5𝜉

2 + 𝛽1
3 𝜖5 𝑠2 𝛿3𝜉 − 𝜉2 𝑠2 𝛿2

2 ], 

S =  𝜏𝑡
,   [ 𝛿1  𝜖1 𝜉

4 𝑠3 + 𝜖1 𝜉
4 𝑠3 + 𝜖1 𝜉

2 𝑠5  +    𝜖1𝑠𝛿1 

𝜉6 ] + 𝜏𝑡
" [  𝜉2𝑠4 𝜖3 + 𝜉4 𝑠2 𝛿1 𝜖3 + 𝑠2 𝜉4 𝜖3 + 𝛿1 𝜉

6 𝜖3] 

+ 𝜏𝑡
,,,
 [  𝑠6 + 𝜉2 𝑠4 𝛿1 + 𝑠4  𝜉2 + 𝛿1 𝜉

4 𝑠2  − 𝜉2𝑠4  

𝛽1
2 𝜖5 − 𝛽1

2   𝜉3 𝑠2  𝛿1𝜖5], 

where 𝜏𝑡
,  =  (1+ 

𝜏𝑡
𝛼

𝛼!
 𝑠𝛼  ),  𝜏𝑡

′′  = (1+  
𝜏𝑣
𝛼

𝛼!
 𝑠𝛼 ), 𝜏𝑡

,,, =

 (1 +
𝜏𝑞
𝛼

𝛼!
 𝑠𝛼 +

𝜏𝑞
2𝛼!

2𝛼!
 𝑠2𝛼).   

The roots of the Eq. (22) are ± 𝜆𝑖 ( i= 1,2,3 ); the 

solution of the equation satisfying the radiation conditions 

can be written as 

 �̃� = 𝐴1 𝑒
−𝜆1 𝑧+𝐴2 𝑒

−𝜆2𝑧 + 𝐴3 𝑒
−𝜆3 𝑧, (23) 

 �̃� =  𝑑1 𝐴1𝑒
−𝜆1𝑧 + 𝑑2𝐴2 𝑒

−𝜆2𝑧 + 𝑑3 𝐴3𝑒
−𝜆3𝑧, (24) 

�̃� =  𝑙1 𝐴1 𝑒
−𝜆1𝑧 + 𝑙2 𝐴2 𝑒

−𝜆2𝑧+ 𝑙3 𝐴3 𝑒
−𝜆3𝑧  ,   (25) 

where 

𝑑𝑖 = 
𝜆𝑖
4   𝐴∗+ 𝜆𝑖

2  𝐵∗ +𝐶∗ 

𝜆𝑖
4 𝐴′+  𝜆𝑖

2 𝐵′+ 𝐶′ 
; i = 1, 2, 3   (26) 

𝑙𝑖 = 
𝜆𝑖
4 𝑃′+ 𝜆𝑖

2 𝑄′+ 𝑅′

𝜆𝑖
4 𝐴′+ 𝜆𝑖

2 𝐵′+ 𝐶′  ; i = 1, 2, 3  (27) 

where  

𝐴∗ = 𝜏𝑡
,
 𝛿1  [− 𝜖2 s] − 𝜏𝑡

′′[  𝛿1  𝜖4 ], 

𝐵∗ = − 𝜏𝑡
,
 [𝜖2𝑠

3 + 𝜉2 𝜖2 𝑠 − 𝛿1 𝜖1𝑠 𝜉2] − 𝜏𝑡
′′ [ 𝜖4𝑠

2 + 𝜖4𝜉
2 − 

 𝛿1𝜉
2 𝜖3 ] + 𝜏𝑡

′′′ [ 𝛿1 𝑠2], 

𝐶∗ =  𝜏𝑡
,
 [𝜖1 𝜉2 𝑠3+ 𝜉4 𝜖1 𝑠 ] + 𝜏𝑡

′′ [𝜖3𝜉
2 𝑠2+ 𝜉4 𝜖3] +  𝜏𝑡

′′′ [𝑠4 + 

𝜉2 𝑠2+ 𝛽1
2 𝜖5  𝜉

2 𝑠2], 

𝐴′ =  𝛿3  [ 𝜏𝑡
,
 𝜖2 𝑠 +  𝜏𝑡

′′𝜖4], 

𝐵′ = 𝜏𝑡
,
 [𝜖1 𝑠 𝛿3𝜉

2  − 𝜖2𝑠
3 − 𝛿1 𝜖2𝑠 𝜉2 ] + 𝜏𝑡

′′[ − 𝛿3 𝜖3𝜉
2 − 

𝜖4𝑠
2 − 𝛿1 𝜖4 𝜉2] +  𝜏𝑡

′′′ [− 𝛿3 𝑠2 − 𝛽3
2 𝜖5𝑠

2], 

𝐶′ = 𝜏𝑡
,
 [ 𝜖1 𝑠

3 𝜉2 −  𝛿1 𝜖1𝑠 𝜉4 ] + 𝜏𝑡
′′[ 𝜖3𝑠

2𝜉2 +  𝛿1 𝜖3 𝜉4 ] + 

𝜏𝑡
′′′ [ 𝑠4+ 𝛿1𝜉

2 𝑠2], 

𝑃′ = {− 𝛿1𝛿3}, 

𝑄′ = [− 𝛿3 𝑠2 − 𝜉2 𝛿3 + 𝑠2 𝛿1 + 𝜉2𝛿1
2 +   𝜉2𝛿2

2], 

𝑅′ = [𝑠4 + 𝛿1 𝜉
2 𝑠2+  𝜉2 𝑠2 + 𝛿1 𝜉

4]. 

 

 

4. Boundary conditions 
 

We apply a normal force and thermal source on the 

boundary. The boundary conditions are given by   

𝜎33 = − 𝐹1 𝜓1 (𝑥) 𝛿 (𝑡), (28) 

𝜎31 = 0,  (29) 

𝜕𝑇

𝜕𝑧
=  𝐹2 𝜓2(𝑥) 𝛿 (𝑡) 𝑎𝑡  𝑧 = 0, (30) 

where 𝐹1  𝑖𝑠  the magnitude of force applied, 𝐹2 is the 

constant temperature applied on the boundary,  

𝜓1 (𝑥)  𝑎𝑛𝑑 𝜓2 (𝑥) is the source distribution function 

along 𝑥 -axis. 

By applying Laplace and Fourier transform defined by 

(20)-(21) on the boundary conditions (28)-(30) and with the 

help of equations (1),(16),(20)-(21), we obtain components 

of displacement, normal stress, tangential stress and 

temperature change as  

�̃� =  − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( Δ1 𝑒

−𝜆1𝑧 + Δ2𝑒
−𝜆2𝑧 + Δ3 𝑒

−𝜆3𝑧 ) + 

𝐹2 �̃�2 (𝜉)

𝛥
 ( 𝛥1

∗𝑒−𝜆1𝑧 + 𝛥2
∗  𝑒−𝜆2𝑧 + 𝛥3

∗  𝑒−𝜆3𝑧 ), 
(31) 

�̃� =  − 
𝐹1 �̃�1 (𝜉)

𝛥
 (d1Δ1 𝑒

−𝜆1𝑧 + d2 Δ2𝑒
−𝜆2𝑧 +

 d3Δ3 𝑒
−𝜆3𝑧 ) + 

𝐹2 �̃�2 (𝜉)

𝛥
 (d1𝛥1

∗𝑒−𝜆1𝑧 + d2𝛥2
∗  𝑒−𝜆2𝑧 +

 d3𝛥3
∗  𝑒−𝜆3𝑧 ),  

(32) 

�̃� =  − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( l1Δ1 𝑒

−𝜆1𝑧 + l2 Δ2𝑒
−𝜆2𝑧 +

 l3Δ3 𝑒
−𝜆3𝑧 ) + 

𝐹2 �̃�2 (𝜉)

𝛥
 ( l1𝛥1

∗𝑒−𝜆1𝑧 + l2𝛥2
∗  𝑒−𝜆2𝑧 +

 l3𝛥3
∗  𝑒−𝜆3𝑧 ), 

(33) 

𝜎33̃ =  − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( Δ11  Δ1 𝑒

−𝜆1𝑧+Δ12 Δ2 𝑒
−𝜆2𝑧 +

 Δ13Δ3 𝑒
−𝜆3𝑧 ) + 

𝐹2 �̃�2 (𝜉)

𝛥
 (Δ11𝛥1

∗𝑒−𝜆1𝑧 + Δ12𝛥2
∗  𝑒−𝜆2𝑧 +

 Δ13𝛥3
∗  𝑒−𝜆3𝑧 ), 

(34) 

𝜎13̃ = − 
𝐹1 �̃�1 (𝜉)

𝛥
 ( Δ21 Δ1 𝑒

−𝜆1𝑧 + Δ22 Δ2𝑒
−𝜆2𝑧 +

 Δ23Δ3 𝑒
−𝜆3𝑧 ) + 

𝐹2 �̃�2 (𝜉)

𝛥
 (Δ21𝛥1

∗𝑒−𝜆1𝑧 + Δ22𝛥2
∗  𝑒−𝜆2𝑧 +

 Δ23𝛥3
∗  𝑒−𝜆3𝑧 ), 

(35) 
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where 

Δ = Δ11 (  Δ22 Δ33 − Δ32 Δ23 ) −  Δ12( Δ21 Δ33 − Δ23 Δ31 ) +
 Δ13( Δ21 Δ32 − Δ22 Δ31 ), 

𝛥1
∗  =  (Δ12 Δ23 − Δ13 Δ22) ,  𝛥2

∗  =  (Δ13 Δ21 − Δ11 Δ23) , 𝛥3
∗  =  

(Δ11 Δ22 − Δ12 Δ21), 

Δ1j = 
𝐶13   𝜉і

𝜌𝑐1
2   − 

𝐶33𝑑𝑗𝜆𝑗

𝜌𝑐1
2  − 

𝛽3

𝛽1
 𝑙𝑗  ;   j= 1, 2, 3 

Δ2j = 
𝐶55   

𝜌𝑐1
2  [− 𝜆𝑗 + ᵢ𝜉𝑑𝑗] ;  j= 1, 2, 3. 

 

4.1 Mechanical force on the surface of half–space 
 

Taking 𝐹2 =0 in Eqs. (31)- (35), we obtain the 

components of tangential stress, normal stress, 

displacement, temperature change due to mechanical force. 

 

4.2 Thermal source on the surface of half-space 
 

Taking 𝐹1 =0 in Eqs. (31)- (35), we obtain the 

components of tangential stress, normal stress, displacement 

and temperature change due to thermal source. 

 

 

5. Applications 
 

5.1 Concentrated force 
 

The solution due to concentrated normal force is 

obtained by setting 

  𝜓1(𝑥)= 𝛿(𝑥), 𝜓2 (𝑥)= 𝛿(𝑥),  (36) 

where 𝛿(x) is the Dirac delta function. By applying Laplace 

and Fourier transformations defined in equation (19)-(20) 

on (35), we get 

 𝜓1 ̂ (𝜉) = 1, 𝜓2 ̂ (𝜉) = 1.  (37) 

Using (37) in (31)-(35), we obtain the components of 

tangential stress, normal stress, displacement and 

thermodyanamical temperature. 

 

5.2 Uniformly distributed force 
 
The solution due to uniformly distributed force is 

obtained by setting 

{𝜓1(𝑥),  𝜓2(𝑥)}  =  {
1 𝑖𝑓 |𝑥|  ≤ 𝑚

0 𝑖𝑓  |𝑥| > 𝑚 
} (38) 

The Laplace and Fourier transforms of 𝜓1(𝑥) and 

𝜓2(𝑥)with respect to the pair (x,𝜉) in case of uniformly 

distributed load of non-dimensional width 2m applied at 

origin of co-ordinate system 𝑥 = 𝑧 = 0 is given by 

 { 𝜓1 ̂ (𝜉),   𝜓2 ̂ (𝜉) }  =  [2 𝑠𝑖𝑛(𝜉𝑚)/ 𝜉]  , 𝜉 ≠ 0.   (39) 

Using (39) in (31)-(35), we get the components of 

tangential stress, normal stress, displacement, 

thermodynamical temperature. 
 
 

6. Inversion of transformation 
 

To obtain the solution of the problem in physical 

domain, we must invert the transformations in Eqs (31)-

(35). Here the displacement components, tangential and 

normal stresses and thermodynamical temperature are 

functions of z, the parameters of Laplace and Fourier 

transforms s and 𝜉 respectively and are of the form f (𝜉, z, 

s). To obtain the function f (𝑥, 𝑧, 𝑡) in the physical domain, 

we first invert the Fourier transform using  

𝑓 ̅ (𝑥, 𝑧, 𝑠) = 
1

2𝜋
  ∫ 𝑒𝑖𝜉𝑥1

∞

−∞
 𝑓 (𝜉, z, s) d𝜉 = 

1

2𝜋
  

∫ |cos(𝜉𝑥) 𝑓𝑒 −  𝑖𝑠𝑖𝑛(𝜉𝑥)𝑓0|
∞

−∞
 d𝜉, 

(40) 

where 𝑓0 and 𝑓𝑒 are respectively the odd and even parts of 

𝑓(𝜉 , z, s). Thus the expression (40) gives the Laplace 

transform 𝑓(̅𝑥, 𝑧, 𝑠) of the function f (𝑥, 𝑧, 𝑡)  Following 

Honig and Hirdes (1984), the Laplace transform function 

𝑓(̅𝑥, 𝑧, 𝑠) can be inverted to f (𝑥, 𝑧, 𝑡). 

The last step is to calculate the integral in Eq (40). The 

method of evaluating this integral is described in Press et. 

al. (1986). It involves the use of Romberg’s integration with 

adaptive step size. This also uses the results from successive 

refinements of the extended trapezoidal rule followed by 

extrapolation of the results to the limit when the step size 

tends to zero. 
 

 

7. Numerical results and discussion 
 

For numerical computations, we take the following 

values of the relevant parameter for an orthotropic 

thermoelastic material (Biswas et al. 2017 and Kumar and 

Chawla 2014) 

𝑐11 =18.78 × 1010 Kg𝑚−1𝑠−2,𝑐13  =8.0 × 1010Kg𝑚−1𝑠−2 

, 𝑐33 =10.2 × 1010 Kg𝑚−1𝑠−2 , 𝑐55  = 10.06 × 1010Kg𝑚−1𝑠−2,  

𝑇0=0.293 × 103K, 𝐶𝐸 = 4.27 × 102𝐽/𝐾𝑔𝐾, 𝛽1= 1.96× 10−5𝐾−1, 𝛽3= 

1.4× 10−5𝐾−1, 𝜌𝑐55   = 8.836× 103𝐾𝑔𝑚−3, 𝐾1 =.12× 103W𝑚−1𝐾−1,  

𝐾3=.33× 103W𝑚−1𝐾−1,  𝐾1
∗=1.313×102W/s, 

𝐾3
∗=1.54×102W/s, 𝜏𝑡=1.5×10−7𝑠 ,𝜏𝑣=1.0×10−8s, 𝜏𝑞 =2.0×10−7 s. 

Using above values of  parameters, the graphical 

representation of components of tangential stress, normal 

stress, tangential and normal displacements and temperature 

change T with distance ′𝑥 ′ has been made for an 

orthotropic body by using different values of fractional 

parameter 𝛼=0.5, 𝛼=1.0, 𝛼=1.8 

(1) The black dashed line with centre symbol triangle 

(∆) for an orthotropic material corresponds to 𝛼=0.5 refers 

to weak conductivity. 

(2) The red dashed line with centre symbol plus (+) for 

an orthotropic material corresponds to 𝛼=1.0 refers to 

strong conductivity.  

(3) The purple dashed line with centre symbol circle (o) 

for an orthotropic material corresponds to 𝛼=1.8 describes 

normal conductivity.   
 

 

8. Mechanical forces on the surface of half space 
 

8.1 Concentrated mechanical force  
 

Figs. 1 and 2 shows the variation of tangential and 

normal displacements with distance 𝑥 for different values 

of fractional parameter 𝛼 = 0.5, 1.0 and 1.8. The black  
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Fig. 1 Variation of tangential displacement 𝑢  with 

distance 𝑥 (concentrated force) 

 

 

Fig. 2 Variation of normal displacement 𝑤 with distance 

𝑥 (concentrated force) 

 

 
Fig. 3 Variation of normal stress 𝜎33  with         

distance 𝑥  ( concentrated mechanical force) 
 

 

dashed line refers to weak, red line refers to strong and 

purple line respectively refers to normal conductivity. It can 

be seen that at the boundary 𝑥 = 0 the magnitude of 

tangent ial  s tress f irs t  decreases then increases  

 

Fig. 4 Variation of temperature change 𝑇 with distance x 

(concentrated mechanical force)  

 

 

Fig. 5 Variation of tangential stress  𝜎31 with distance 

𝑥 (concentrated mechanical force) 

 

 

Fig. 6 Variation of tangential displacement 𝑢  with 

distance 𝑥 (uniformly distributed mechanical force) 
 

 

corresponding to 𝛼=0.5, 1.0 and shows an oscillatory 

nature. Also, for 𝛼= 1.8 graph is oscillatory.  It is noticed 

that in Fig. 2 the behavior of normal displacement is just 

opposite i.e., first increases and then decreases with  
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Fig. 7 Variation of normal displacement w                                 

with distance x (uniformly distributed mechanical force) 

 

 

Fig. 8 Variation of normal stress 𝜎33 with distance x 

(uniformly distributed mechanical force) 

 

 
Fig. 9 Variation of temperature change 𝑇 with distance 

𝑥 (uniformly distributed mechanical force) 
 
 

increasing value of 𝑥 and shows an oscillatory behaviour 

for 𝛼= 0.5, 1.0 and 1.8 and there comes a point when all  

 

Fig. 10 Variation of tangential stress 𝜎31 with distance 

𝑥 (uniformly distributed mechanical force) 

 

 
Fig. 11 Variation of tangential displacement 𝑢  with 

distance 𝑥 (concentrated thermal source) 

 

 
Fig. 12 Variation of normal displacement 𝑤  with 

distance 𝑥 (concentrated    thermal source) 

 

 

the three curves intersect each other. Fig. 3 shows the 

variation of normal stress 𝜎33  with distance 𝑥. It is  
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Fig. 13 Variation of normal stress 𝜎33 with distance 𝑥 

(concentrated thermal Source) 

 

 
Fig. 14 Variation of temperature change 𝑇 with distance 

𝑥 (concentrated thermal source) 

 

 
Fig. 15 Variation of tangential stress 𝜎31 with distance 

𝑥 (concentrated thermal source) 

 

 

observe that for 𝛼=0.5 first it varies from the maximum 

value to minimum value then shows an oscillatory 

behaviour. For 𝛼=1.0, 1.8 it is oscillatory. In fig. 4 the 

behaviour of temperature change has shown and it can be 

seen that for 𝛼 =0.5 and 𝛼 =1.0 shows an oscillatory 

behavior while for 𝛼 =1.8 it gradually decreases then 

increases with increase in the value of distance 𝑥 and there 

comes a point where all the three curves meet each other. In 

fig 5 shows the variation of tangential stress 𝜎31  with 

distance 𝑥 which shows an oscillatory behavior for 𝛼=0.5, 

1.0 and 𝛼=1.8 respectively. 
 

8.2 Uniformly distributed force 
 

In uniformly distributed mechanical force Figs. 6 to 10 
as in case of concentrated force shows the variation of 
distance 𝑥  with tangential displacement, normal 
displacement, normal stress, temperature change and 
tangential stress respectively. In Fig. 6 variation of 
tangential displacement first decreases gradually then 
increases and shows an oscillatory behaviour corresponding 
to 𝛼=0.5, 1.0, 1.8 respectively. In Fig. 7 it can be seen that 
the magnitude of normal displacement first increases for 
𝛼=0.5 and then decreases i.e., just opposite to tangential 
displacement and then shows an oscillatory behaviour. For 
𝛼=1.0 and 1.8 we see that it varies from maximum to 
minimum value after that shows an oscillatory behaviour 
with increasing value of distance 𝑥. Fig. 8 describes the 
variation of normal stress it can be seen that for 𝛼 = 0.5 
and 1.8 at the boundary of surface when 𝑥 = 0 magnitude 
of normal stress first decreases and then increases and 
shows an oscillatory behaviour while for 𝛼 =1.0 normal 
stress curve is oscillatory and after attaining a peak value it 
decreases and there comes a point when all three curves for 
different fractional parameters value meet each other. Fig. 9 
gives the variation of temperature change. It can be seen 
that all the three curves shows same behaviour i.e., 
oscillatory with increasing value of distance 𝑥. Also in Fig 
10 variation of tangential stress  𝜎31  with distance 𝑥  is 
oscillatory in nature and all the three curves intersect each 
other.  
 

 

9. Deformation due to thermal source 
 

9.1 Concentrated thermal source 
 

Fig. 16 shows the variation of tangential displacement 
𝑢 with distance 𝑥. Here we noticed that the variation of 
both the displacements tangential and normal in Fig 16 and 
Fig 17 with distance 𝑥 are almost identical when heat is 
supplied to an orthotropic body. Fig 18 displays the 
variation of normal stress  𝜎33  with distance 𝑥  and we 
noticed that the behaviour is oscillatory in nature for all the 
three cases weak, strong and normal conductivity. Also Fig 
19 shows the variation of   temperature change with 
distance 𝑥 which gradually increases for α=0.5, 1.0, 1.8 
respectively and then shows oscillatory behaviour for all. 
Fig 20 describes the variation of tangential stress with 
distance 𝑥 and it can be seen that it is also oscillatory and 
all the three curves meet each other.  
 

   9.2 Uniformly distributed thermal source   
 

As in the above two cases for uniformly distributed 
thermal source it can be seen that in both Figs. 16 and 17  
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Fig. 16 Variation of tangential displacement 𝑢  with 

distance 𝑥 (uniformly distributed thermal force) 
 

 
Fig. 17 Variation of normal displacement 𝑤 with 

distance 𝑥 (uniformly distributed thermal force) 
 

 

Fig. 18 Variation of normal stress 𝜎33 with distance 𝑥 

uniformly distributed thermal source) 
 

 

variation of tangential and normal displacement is same i.e., 
both starts from minimum to maximum value for α=0.5,  

 

Fig. 19 Variation of Temperature change 𝑇 with distance 

𝑥 (uniformly distributed thermal source) 
 

 
Fig. 20 Variation of tangential stress 𝜎33 with distance 

𝑥 (uniformly distributed thermal source)) 
 

 

1.0, 1.8 respectively and shows an oscillatory behavior for 
all three cases weak, strong and normal conductivity and 
meet each other at some point. In Fig. 18 magnitude of 
normal stress first decreases then increases for α=1.8 and 
1.0 also for α=0.5 at the boundary where 𝑦 = 0 it varies 
from maximum to minimum and there comes a point where 
all the three curves intersect. Fig. 19 shows the variation of 
temperature change with distance𝑥.  

It is clear from the graph that it shows an oscillatory 

nature. Like in all cases Fig. 20 shows the variation of 

tangential stress with distance 𝑥. It can be seen that for 

α=0.5 it varies from maximum to minimum value and for 

α=1.0 it is just opposite i.e., from minimum to maximum 

value and shows an oscillatory nature for both. For α=1.8 

behaviour is same as for α=1.0 and all the three curves 

intersect each other at some point. 
 
 

10. Conclusions 
 

From the above discussion, we find that change in the 

value of fractional parameter produces significant effect on 
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the various components in orthotropic thermoelastic 

medium with and without energy dissipation in generalized 

thermoelasticity with three phase lag model. The problem is 

useful as an improvement in the field of generalized 

thermoelasticity. According to this theory, we have given a 

classification to all the materials according to its fractional 

parameter where this parameter becomes new indicator of 

its ability to conduct the thermal energy. Fractional order 

thermoelasticity has great importance in dynamical 

problems of solid mechanics and structural mechanics.  
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