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1. Introduction 
 

The accurate prediction of stresses and displacements 

around a circular opening is important for ensuring the 

stability of tunnel excavations (Wang et al. 2019). The 

study of the face stability of circular tunnels has been 

investigated by several scholars in the previous work using 

different methods: (a) analytical methods on the basis of the 

limit analysis method (e.g., Chen et al. 2019a, b, Mollon et 

al. 2011, 2013, Oreste and Dias 2012, Zhang et al. 2015, 

Zou et al. 2019a, b, Pan and Dias 2017, 2018, Daraei and 

Zare 2018, Huang et al. 2018, Han et al. 2016, Li and Yang 

2019, Zhang et al. 2018), (b) numerical analysis (e.g., 

Fahimifar et al. 2015, Zou et al. 2016, Xiao et al. 2017a, b, 

Zou et al. 2019c, d), and (c) experimental investigations 

(Broere and Van 2000, Zou et al. 2018). Some scholars 

(Brown et al. 1983, Alonso et al. 2003) have illustrated that 

compared to the cavity expansion theory (Li et al. 2019a, 

b), it is more reliable to study the developments of the 

stresses and strains of rock masses surrounding tunnels by 

using the cavity contraction theory. Farmer and Glossop 

(1979) obtained observations in planes normal to the tunnel 
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center axis during tunnel constructions, removing the 

stabilizing air pressure 25 days after construction in the 

infinite space. Yu and Houlsby (1995) adopted the non-

associated Mohr-Coulomb yield criterion to derive the 

solution of the cylindrical and spherical cavity contraction 

in an infinite space. Brown et al. (1983) presented methods 

of response curve calculations for a circular tunnel 

excavated in an infinite space subjected to a hydrostatic in 

situ stress field. Lee and Pietruszczak (2008) studied the 

excavation of a circular tunnel in strain-softening materials 

by a finite difference method. Wang et al. (2010) presented 

an approach for analyzing circular tunnel excavations in an 

infinite space. 

As mentioned above, many researchers have been 

devoted to tunnel stability analysis and prediction of 

stresses and displacements for a tunnel excavated in an 

infinite space. In addition, the problem of a semi-infinite 

space has also been investigated by several scholars. For 

example, Peck (1969) proposed a prediction approach for 

the transverse settlement curve of a tunnel. Wood (1975) 

established the loading on a circular tunnel in the elliptical 

mode of deformation near the ground surface. Sagataseta 

(1987) proposed closed-form solutions for obtaining the 

strain field in an initially isotropic and homogeneous 

incompressible soil due to near-surface ground loss. 

Considering ground loss and the oval deformation of a  
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tunnel, Verejijt and Booker (1996) provided an approximate 

solution for isotropic and compressible soil masses in an 

elastic half space on the basis of Sagataseta’s solution. 

Verruijt (1997) presented an analytical solution for an 

elastic half-plane of a circular tunnel by using complex 

variables and a conformal mapping onto a circular ring. 

Verruijt (1998) developed an analytical solution for solving 

the problems of an elastic half plane of a circular cavity by 

adopting a complex function method. Loganathan and 

Poulos (1998) incorporated an equivalent ground loss 

parameter with respect to the gap parameters to obtain 

analytical solutions for predicting the ground movements 

around a tunnel in clay soils. Yu and Rowe (1999) derived 

analytical and semianalytical solutions of unloading 

cylindrical and spherical cavities for in situ state of stress 

under both drained and undrained conditions. Boet (2001) 

presented complete analytical solutions for a shallow tunnel 

in the saturated ground of a semi-infinite space. Park (2004) 

presented elastic solutions for the prediction of the 

tunneling-induced ground deformations for shallow and 

deep tunnels in soft ground. However, none of the above 

studies considered the boundary effects of a vertical surface 

on the displacement and stresses around the surrounding 

rock of shallow tunnels. 

In contrast with the above research findings in the 

symmetric infinite and semi-infinite spaces, only a limited 

number of literature reports have been presented for the 

cavity expansion problem under non-axisymmetric 

displacement boundary conditions. For example, Li et al. 

(2013) presented an analytical solution of cavity expansion 

near sloping ground by the introduction of a virtual image 

technique, the harmonic function and the Boussinesq 

solution. Zou and Zuo (2017) proposed similar solutions for 

the synchronous grouting of shielded tunnels by considering 

the boundary effects of the non-axisymmetric displacement 

boundary on vertical surfaces. However, no literature 

reports and solutions have been presented for the 

surrounding rock stability analysis problem of shallow 

tunnels that are excavated under non-axisymmetric 

displacement boundary conditions on a vertical surface. 

Bias tunneling is an indispensable and common part of  

 

 

tunnel engineering practice. Currently, most of the 

theoretical research on tunnel stability is based on the 

symmetric infinite space or semi-infinite space, which is 

widely used in ordinary tunnel stability analysis. However, 

in regard to bias tunnel, all of the presented approaches lose 

their applicability. Thus, this paper proposes a new 

approach for the stability analysis of shallow tunnels 

excavated under non-axisymmetric displacement boundary 

conditions on a vertical surface. In this study, displacements 

and stresses of the surrounding rock masses, the ground 

settlement and lateral horizontal displacements of the 

horizontal and vertical surfaces can be obtained by adopting 

the virtual image technique, the harmonic function and the 

corresponding stress function solutions, Boussinesq’s 

solutions and the linear superposition principle. In addition, 

the proposed approach is useful in various situations that 

include the stability assessments of circular openings such 

as excavated bias tunnels, the verification of numerical 

codes, etc. It can be applied to the prediction of the ground 

settlement and lateral displacement of the horizontal and 

vertical ground surfaces for bias tunnel engineering. In 

brief, the proposed approach can provide some practical 

suggestions for site selections of bias tunnels and 

deformation monitoring of the surrounding rock of shallow 

tunnels that are excavated under non-axisymmetric 

displacement boundary conditions. 

 

 

2. Problem statement 
 

As Fig. 1 shows, a shallow tunnel, o1, with an 

excavation radius, ro, limb distance, t, and the tunnel buried 

depth, h, is excavated under the non-axisymmetric 

displacement boundary conditions on a vertical surface. 

Because the excavation process of the shallow tunnel, o1, is 

finished under non-axisymmetric displacement boundary 

conditions on a vertical surface (see Fig. 1), a radial 

contracting displacement, u0, is produced around the 

shallow tunnel wall. Taking the intersection point of the 

horizontal ground surface and the inclined surface as the 

origin point o, a rectangular xyz space coordinate system is 

 Horizontal ground surface

(Free displacement boundary)
t

h

z

q(x,0,z)

xo

The shallow tunnel

R

r0

o1

Vertical ground surface

(Free displacement boundary)

u0

Uniform radial displacement

of the shallow tunnel wall

The contracting cylindrical cavity

y

 

Fig. 1 Mechanical model of a shallow tunnel excavated under non-axisymmetric displacement boundary conditions on a 

vertical surface 
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established. Moreover, the non-axisymmetric displacement 

boundary conditions on a vertical surface mean that there 

are no normal stresses and no shear stresses in the 

horizontal ground surface (i.e., at z=0) and the vertical 

ground surface (i.e., at x=0). 
 
 

3. Assumptions 
 

To reduce the difficulties of the theoretical analysis and 

solve this problem more conveniently, the following 

assumptions were made for computing the displacements 

and stresses around shallow tunnels, the displacements of 

the horizontal ground surface and the displacements of the 

vertical ground surface. 

(1) The surrounding rock is assumed to be 

homogeneous, incompressible and isotropic, which satisfies 

the small deformation hypothesis and Hooke's law. 

(2) The deformation of the surrounding rock of the 

shallow tunnel is assumed to be a displacement-

displacement problem. 

(3) The gravity effect on the surrounding rock is 

neglected. 

(4) The excavation process of shallow tunnels can be 

assumed to be a cylindrical cavity contraction problem 

under the plane-strain condition. 

(5) The geometric shape of shallow tunnels is assumed 

to be circular, and the location of the shallow tunnel center 

is assumed to not change. 

(6) The radial contracting displacement, u0, is assumed 

to be the maximum value of the vault settlement, which is 

induced by the tunnel excavation process. 

(7) The positive directions of the displacement and the 

stress are in agreement with the positive directions of the x, 

y and z axes in the space rectangular coordinate system. 
 

 

4. Methodology 
 

4.1 Research scheme 
 

A new approach for determining the displacements and 

stress is being proposed in terms of the virtual image 

technique, the harmonic function, the stress function 

solution and Boussinesq’s solution for the cylindrical cavity 

contraction problem under non-axisymmetric displacement 

boundary conditions on a vertical surface. The specific 

research thoughts are clearly shown as follows. 

(1) Based on the elastic mechanics theory and the virtual 

image technique, the first part of the displacements and 

stress of the surrounding rock are obtained before stress 

revision. The virtual image technique includes a negative 

virtual image and a positive virtual image. The latter is 

adopted in the solving process, so the virtual image 

technique presented in this paper refers to the positive 

virtual image technique. 

(2) To obtain the second part of the displacements and 

stress of the surrounding rock, which is generated by the 

vertical normal stress revision on the horizontal ground 

surface, the harmonic function and corresponding stress 

function solutions in spatial rectangular coordinate system 

are adopted. 

 

Fig. 2 Mechanical model of the cylindrical cavity 

contraction problem before stress revision under non-

axisymmetric displacement boundary conditions on a 

vertical surface 
 

 

(3) In the same way, the harmonic function and 

corresponding stress function solutions in spatial 

rectangular coordinate system are adopted to calculate the 

third part of the displacements and stress of the surrounding 

rock, which are generated by the shear stress revision on the 

horizontal ground surface. 

(4) The fourth part of the displacements and stress of the 

surrounding rock, which are induced by the horizontal 

normal stress revision of the vertical ground surface, are 

obtained through the coordinate conversion formula, 

Boussinesq’s solution and integrating method. 

(5) The final displacements and stress of the 

surrounding rock for shallow tunnels under the 

nonsymmetric displacement boundary condition on vertical 

surface are proposed by the linear superposition principle 

from step (1) to step (4). 

(6) By substituting z=0 into the horizontal and vertical 

displacement formula of point q(x,0,z), the ground 

settlements and lateral displacements of horizontal ground 

surface can be derived. 

(7) The ground settlements and lateral displacements of 

vertical ground surface can be derived by substituting x=0 

into the horizontal and vertical displacement formula of 

point q(x,0,z). 
 

4.2 Elastic solutions of the surrounding rocks 
 

4.2.1 Elastic solutions of the surrounding rock before 
stress correction 

Fig. 2 is a mechanical model of the cylindrical cavity 

contraction problem under non-axisymmetric displacement 

boundary conditions on a vertical surface. Under the 

combined influence of the actual sink, o1, and the image 

sink, o2, the nonuniform vertical normal stress, 1 0z z


= , and 

the shear stress, 1 0xz z


= , is produced on the horizontal 

ground surface, and only the nonuniform vertical normal 

stress, 1 0x x


= , is produced on the vertical ground surface. 

Based on the geometric relationships shown in Fig. 2, R1 

and R2 can be given by 

o3

R1

R2

Horizontal ground surface

t
h

o4

Vertical ground surface

o2

r0

o1

r0

τxz1|z=0

σz1|z=0

Uniform radial displacement

 of the shallow tunnel wall

The actual sink

(The shallow tunnel)

u0

σx1|x=0

y

z

q(x,0,z)

x

The image sink

o
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2 2

1 ( ) ( )R x t z h= + + −
 

(1) 

2 2

2 ( ) ( )R x t z h= − + −
 

(2) 

where R1 is the distance between the center of the actual 

sink, o1, and the calculation point q(x,0,z), and R2 is the 

distance between the center of the image sink, o2, and the 

calculation point q(x,0,z). 

When the boundary influences of the horizontal and 

vertical ground surface are not considered, the first part of 

the displacements of the calculation point q(x,0,z), which is 

based on the well-known solutions originating from the 

elasticity theory (Timoshenko and Goodier 1970). These 

can be expressed as follows 

1 0 0 2 2

1 2

-x

x t x t
U u r

R R

 + −
= + 

   

(3) 

1 0 0 2 2

1 2

-z

z h z h
U u r

R R

 − −
= + 

   

(4) 

where Ux1, Uz1 are the first parts of the horizontal and 

vertical displacements of the calculation point q(x,0,z), 

respectively. 

Based on the geometric equation and physical equation 

of the plane strain problem in the elastic mechanics 

(Timoshenko and Goodier 1970), the stress solutions of the 

calculation point q(x,0,z) can be derived without any stress 

revision as follows 

( )
2 2

1 0 0 2 4 2 4

1 1 2 2

21 1 2( )
2x

x t x t
Gu r

R R R R


 + −
= − − + − 

    

(5) 

2 2

1 0 0 2 4 2 4

1 1 2 2

1 2( ) 1 2( )
2z

z h z h
Gu r

R R R R


 − −
= − − + − 

   

(6) 

1 0y =
 

(7) 

( )
1 1 0 0 4 4

1 2

( ) ( )( )
4xz zx

x t z h x t z h
Gu r

R R
 

+ − − −
= = + 

   

(8) 

where σx1, σz1 and τxz1 are the first part of the horizontal and 

vertical, axial normal stresses and the shear stress of 

calculation point q(x,0,z), respectively. E is elastic modulus 

of the soil mass, v is Poisson’s ratio of soil mass, and G is 

the shear modulus of the soil mass (i.e., 
2(1 )

E
G

v
=

+
). 

From Eqs. (6) and (8), the vertical normal stress and 

shear stress on the horizontal ground surface, which is 

induced by the combined action of the actual sink and the 

image sink, can be expressed as follows 

( )

( )( )
( )

( )( )

2 22 2

1 0 0 2 20 2 22 2

2 0z z

x t h x t h
Gu r

x t h x t h


=

 
+ − − − 

= − +  
+ + − +    

(9) 

( )

( ) ( )
1 0 0 2 20 2 22 2

( )
4 0xz z

x t h x t h
Gu r

x t h x t h


=

 
+ − 

= − +  
    + + − +
      

(10) 

Similarly, under the combined effect of the actual sink 

and image sink, the nonzero horizontal normal stress on the 

vertical ground surface can be obtained by substituting x=0 

into Eq. (5) as follows 

( )

( )( )

2 2

1 0 0 20 22

4 0x x

z h t
Gu r

t z h


=

 
− − 

= −  
+ −    

(11) 

 

4.2.2 Vertical normal stress correction on horizontal 
ground surface 

To eliminate the vertical normal stress, 1 0z z


=
, on the 

horizontal ground surface, the stress function solutions 

(Kassir and Sih 1975) that are helpful solving the elasticity 

problem that satisfies the above boundary condition (i.e., 

2 10 0
=z zz z

 
= =

−  and 
2 0

0xz z


=
= ) are expressed as 

follows 

2

2 (1 2 )x

f f
U v z

x x z

 
= − +

    
(12) 

2

2 2
2(1 )z

f f
U v z

z z

 
= − − +

   
(13) 

2 3

2 2 2
2x

f f
G z

x x z


  
= + 

     

(14) 

2

2 2
4y

f
Gv

x



=

  
(15) 

2 3

2 2 3
2z

f f
G z

z z


  
= − + 

    

(16) 

3

2 2 2
2zx xz

f
Gz

x z
 


= =

   
(17) 

Based on the harmonic function condition of 2f=0, the 

harmonic function f can be defined as follows 

3 4ln ln )f A R R= +（
 

(18) 

where A is an undetermined constant that can be solved by 

the free displacement boundary condition that there is null 

vertical normal stress on the ground surface. 

In addition, R3 and R4 can be expressed as follows, 

respectively 

2 2

3 ( ) ( )R x t z h= + + +
 

(19) 

2 2

4 ( ) ( )R x t z h= − + +
 

(20) 
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where R3 is the distance between the calculation point and 
the center location of the actual sink with respect to the 
horizontal ground surface, and R4 is the distance between 
the calculation point and the center location of the image 
sink with respect to the horizontal ground surface. 

By substituting Eq. (18) and z=0 into the stress function 
solution (Kassir and Sih, 1975), the vertical normal stress 
on the horizontal ground surface, induced by the vertical 
normal stress correction on the horizontal ground surface, 
can be obtained as follows 

( )

2 2 2 2

2 0 2 2 2 22 2

( ) ( )
2

(( ) )( )
z z

x t h x t h
GA

x t hx t h
 =

 
+ − − − = − +

 − ++ +
   

(21) 

As a consequence, the vertical normal stress on the 

horizontal ground surface can be eliminated by the 

harmonic function f with a suitable value of the constant A. 

Combining Eq. (9), Eq. (21) and 2 10 0
=z zz z

 
= =

− , it 

leads to 

( )

( )

( )( )
( )

( )( )

2 22 22 2 2 2

0 02 2 22 2 22 2 2 22 2

( ) ( )
2 2

(( ) )( )

x t h x t hx t h x t h
GA Gu r

x t hx t h x t h x t h

   + − − −+ − − −   − + = +  − ++ + + + − +      

(22) 

Solving Eq. (16) results in 

0 0A u r= −
 

(23) 

By substituting Eq. (23) into the stress function solution 
(Kassir and Sih 1975), the second part of the displacements 
and stress of the calculation point q(x,0,z) induced by the 
vertical normal stress correction on the horizontal ground 
surface, are obtained as follows 

( ) ( )

( ) ( )

2 4

3 3

2 0 0

2 4

4 4

1 2 ( ) 2 ( )

1 2 ( ) 2 ( )
x

v x t z x t z h

R R
U u r

v x t z x t z h

R R

 − + + + 
− 

 = −
 − − − +
+ − 
    

(24) 

( ) ( )

( ) ( )

2

2 2 4

3 3 3

2 0 0 2

2 2 4

4 4 4

2 1 ( ) 2

2 1 ( ) 2
z

v z h z z hz

R R R
U u r

v z h z z hz

R R R

 − + +
− + − 
 

= −  
− + + − + −

 
   

(25) 

( ) ( )

( ) ( )

2

2 4 6

3 3 3

2 0 0 2

2 4 6

4 4 4

2 8( )1 4

2
2 8( )1 4

x

z z h x t z z hv

R R R
Gu r

z z h x t z z hv

R R R



 + + +−
− + 

 = −
 + − +−
 + − +
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(26) 

( ) ( )

( ) ( )

2

2 2 4 4

3 3 3 3

2 0 0 2

2 2 4 4

4 4 4 4

4 2( )2

2
4 2( )2

y

v x t x t z z hx t v

xR R R R
Gu r

v x t x t z z hx t v

xR R R R



 + + ++
+ − − 

 
= −  

− − +− + + − −
 
   

(27) 

( ) ( ) ( )

( ) ( ) ( )

2 3

2 4 6

3 3 3

2 0 0 2 3

2 4 6

4 4 4

2 6 81

2
2 6 81

z

z h z z h z z h

R R R
Gu r

z h z z h z z h

R R R



 + − + +
− + + 
 

= −  
+ − + + − + +

 
   

(28) 

2

4 6

3 3

2 0 0 2

4 6

4 4

2( ) 8( )( )

2
2( ) 8( )( )

xz

x t z x t z h z

R R
Gu r

x t z x t z h z

R R



 + + +
− + 
 = −
 − − +
− + 
   

(29) 

 

4.2.3 Shear stress correction on the horizontal 
ground surface 

To eliminate the shear stress on the horizontal ground 

surface, the series of functions (Kassir and Sih 1975) that 

can help solve the elasticity problem under the following 

boundary conditions (i.e., 3 10 0
=xz xzz z

 
= =

−  and 

3 0
0z z


=
= ) are given as follows 

2

3 2(1 )x

g g
U v z

x x z

 
= − +

    
(30) 

2

3 2
(1 2 )z

g g
U v z

z z

 
= − − +

   
(31) 

2 3

3 2 2
2 2x

g g
G z

x x z


  
= + 

     

(32) 

2

3 2
4y

g
Gv

x



=

  
(33) 

3

3 3
2z

g
Gz

z



=

  
(34) 

2 3

3 3 2
2xz zx

g g
G z

x z x z
 

  
= = + 

      

(35) 

In the same way, to satisfy the harmonic function 

condition of 2g=0, the harmonic function g can also be 

determined by 

( )3 4ln lng B R R= +
 

(36) 

where B is an undetermined constant, which could be 

solved by the condition of a null shear stress on the 

horizontal ground surface. 

Likewise, the shear stress on the horizontal ground 

surface 3 0xz z


=
, applied to eliminate the shear stress 

1 0xz z


=
, can be calculated by substituting Eq. (36) and z=0 

into the stress function solution (Kassir and Sih 1975) as 

follows 

( ) ( )
3 0 2 2

2 22 2

( ) ( )
4xz z

x t h x t h
GB

x t h x t h

 =

 
+ − 

= − + 
    + + − +
      

(37) 

Consequently, the shear stress, which is caused by the 

combined influence of the actual sink and image sink, can 

be balanced by obtaining a suitable value for the constant B. 

Combining Eq. (10), Eq. (37) and 3 10 0
=xz xzz z

 
= =

− , 
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results in 

( ) ( )

( )

( ) ( )

2 2
2 22 2

0 0 2 2
2 22 2

( ) ( )
4

( )
4

x t h x t h
GB

x t h x t h

x t h x t h
Gu r

x t h x t h

 
+ − 

− + 
    + + − +
    

 
+ − 

= + 
    + + − +
      

(38) 

The undetermined constant B can be obtained by solving 

Eq. (38) as follows 

0 0B u r= −
 

(39) 

By substituting Eq.(39) into the stress function solution 

(Kassir and Sih 1975), the third part of the displacements 

and stress of the calculation point q(x,0,z)  generated from 

the shear stress revision of the horizontal ground surface, 

are obtained as follows 

( ) ( )( )

( ) ( )( )

2 4

3 3

3 0 0

2 4

4 4

2 1 ( ) 2

2 1 ( ) 2
x

v x t z x t z h

R R
U u r

v x t z x t z h

R R

 − + + + 
− 

 = −
 − − − +
+ − 
    

(40) 

( ) ( )

( ) ( )

2

2 2 4

3 3 3

3 0 0 2

2 2 4

4 4 4

1 2 ( ) 2

1 2 ( ) 2
z

v z h z z hz

R R R
U u r

v z h z z hz

R R R

 − + +
− + − 
 

= −  
− + + − + −

 
   

(41) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 4 2 4 6

3 3 3 3 3

3 0 0 2 2

2 4 2 4 6

4 4 4 4 4

4 2 2 8( )2

2
4 2 2 8( )2

x

x t v x t z z h x t z z h

R R xR R R
Gu r

x t v x t z z h x t z z h

R R xR R R



 + + + + +
− − − + + 

 
= −  

− − + − + − − − +
 
   

(42) 

( ) ( )

( ) ( )

2

2 2 4 4

3 3 3 3

3 0 0 2

2 2 4 4

4 4 4 4

4 2( )2

2
4 2( )2

y

v x t x t z z hx t v

xR R R R
Gu r

v x t x t z z hx t v

xR R R R



 + + ++
+ − − 

 
= −  

− − +− + + − −
 
   

(43) 

( )

( )

3 2

6 2

3 3

3 0 0 3 2

6 2

4 4

8 6 ( )

2
8 6 ( )

z

z z h z z h

R R
Gu r

z z h z z h

R R



 + +
− 

 
= −  

+ + + −
 
   

(44) 

2

4 4 6

3 3 3

3 0 0 2

4 4 6

4 4 4

2( )( ) 2( ) 8( )( )

2
2( )( ) 2( ) 8( )( )

xz

x t z h x t z x t z h z

R R R
Gu r

x t z h x t z x t z h z

R R R



 + + + + +
− − + 
 = −
 − + − − +
− − + 
   

(45) 

 

4.2.4 Horizontal normal stress revision on the vertical 
ground surface 

As shown in Fig. 3, it can be known that an equivalent 

distribution of the horizontal force, 
0 (0,0, )x  , are applied 

to balance the horizontal normal stress, 1 0x x


=
, induced by  

y

z

q(x,0,z)

x

The image sink

o

o3

R1

R2

Horizontal ground surface

t
h

o4

Vertical ground surface

o1

r0

o2

r0

Uniform radial displacement

 of the shallow tunnel wall

The actual sink

(The shallow tunnel)

u0

┮x0(0,0,┭)

 

Fig. 3 Horizontal normal stress correction on the vertical 

ground surface 
 

 

Fig. 4 Horizontal normal stress calculation of the vertical 

ground surface 
 

 

the combined action of the actual sink and the image sink. 

The following solutions are adopted to correct the 

horizontal normal stress 1 0x x


=
 of the vertical ground 

surface. 

To eliminate the horizontal normal stress on the vertical 

ground surface, an equivalent horizontal distribution stress 

with the opposite direction of the horizontal normal stress is 

applied to the vertical ground surface. In addition, the 

expression of the applied horizontal distribution stress can 

be obtained by the combined derivation of Eq. (11) and  

00 1(0,0, )= xx x
z 

   =
=

− , as follows 

( )

( )( )

2 2

0 0

0 2
22

4
(0,0, )x

Gu r h t

t h


 



 − −
 =

+ −
 

(46) 

where ρ is the vertical coordinate of the nonuniform 

distributed stress, the range of ρ values is (0,10h), and 

0 (0,0, )x   is the applied horizontal distribution stress at 

point q(0,0,ρ) of the vertical ground surface. 

The stress and displacement at point q(x,0,z), affected by 

nonuniform horizontal distributed force, will be obtained by 

the means of the integral method and the Boussinesq’s 

solution (see Eqs. (47)-(52)). 

dρ

t

ρ

dq=σx0(0,0,ρ)d ρ

h
r
0

Vertical ground surface

Horizontal ground surface

o1

x

z

o

q(x,0,z)

R5
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2

(1 ) (1 2 )

2
x

P xz x
U

ER R R z

 



+ − 
= − +   

(47) 

2

2

(1 )
2(1 )

2
z

P z
U

ER R






 +
= − + 

   

(48) 

2

2 3

(1 2 ) 3

2
x

P R x z

R R z R






 −
= − 

+   
(49) 

2

(1 2 )

2
y

P z R

R R R z






−  
= − 

+   
(50) 

3

5

3

2
z

Pz

R



= −

 
(51) 

2

5

3

2
xz zx

Pxz

R
 


= = −

 
(52) 

As shown in Fig. 4, the area micro unit is determined in 

the range of the horizontal distribution force and is equal to 

be the line micro unit (i.e., dA=dρ). Therefore, the 

horizontal concentrated force of the area micro unit dq, 

which is applied to the vertical ground surface, can be 

expressed as 
0(0,0, )xdq d  = . In addition, R5 is the 

distance between the calculation point q(x,0,z) and the 

loading position of the horizontal concentrated force (i.e., 
2 2

5 ( )R x z = + − ). 

Based on the Boussinesq’s solution (Boussinesq 1885) 

and the coordinated transformation formulas of 

displacements and stress, the fourth part of the 

displacements and stress at point q(x,0,z), which are 

generated by the all horizontal concentrated forces dq from 

0 to 10h, can be solved by the integral method as follows 

2
10

4 020
5 5

(1 )
2(1 ) (0,0, )

2

h

x x

v x
U v d

ER R
  



 +
= − − + 

 


 

(53) 

10

4 020
5 5 5

(1 ) (1 2 )
(0,0, )

2

h

z x

v zx v z
U d

ER R R x
  



 + −
= − − 

− 


 

(54) 

3
10

4 050
5

3
(0,0, )

2

h

x x

x
d

R
   


= 

 
(55) 

10
5

4 020
5 5 5

(1 2 )
(0,0, )

2

h

y x

Rv x
d

R R R x
   



 −
= − − 

− 


 

(56) 

2
10

5
4 02 30

5 5 5

(1 2 )1 3
(0,0, )

2

h

z x

v R xz
d

R R x R
   



 −
= + 

− 


 

(57) 

2
10

4 050
5

3
(0,0, )

2

h

xz x

zx
d

R
   


= 

 

(58) 

where Ux4, and Uz4 are the fourth parts of the horizontal and 

vertical displacements of calculation point q(x,0,z), 

respectively; and σx4, σy4, σz4 and τxz4 are the fourth parts of 

the horizontal, axial, vertical normal stress and shear stress 

at the calculation point q(x,0,z), respectively. 
 

4.2.5 Elastic solutions of the surrounding rock after 
stress correction 

Based on the linear superposition principle (Timoshenko 

and Goodier 1970), the final displacements and stress of the 

calculation point q(x,0,z) of the surrounding rock can be 

derived by the superposition of Eqs. (3) to (8), (24) to (28), 

(40) to (45) and (53) to (58) as follows, respectively 

1 2 3 4x x x x xU U U U U= + + +
 (59) 

1 2 3 4z z z z zU U U U U= + + +
 (60) 

1 2 3 4x x x x x    = + + +
 

(61) 

1 2 3 4y y y y y    = + + +
 

(62) 

1 2 3 4z z z z z    = + + +
 

(63) 

1 2 3 4xz xz xz xz xz    = + + +
 

(64) 

 

4.3 Displacements of the horizontal ground surface 
 

According to the Eqs. (59) and (60), the full solutions of 

the ground settlement and the lateral displacement of the 

horizontal ground surface can be expressed as follows 

( ) ( ) ( ) ( ) ( )1 2 3 4,0,0 ,0,0 ,0,0 ,0,0 ,0,0x x x x xU x U x U x U x U x= + + +
 (65) 

( ) ( ) ( ) ( ) ( )1 2 3 4,0,0 ,0,0 ,0,0 ,0,0 ,0,0z z z z zU x U x U x U x U x= + + +
 (66) 

By substituting z=0 into the Eqs. (3) and (4), the first 

part of the ground settlement and lateral displacement at 

point q(x,0,0), induced by the combined action of the actual 

and image sinks, can be obtained as follows 

( )
( ) ( )

1 0 0 2 22 2
,0,0 -x

x t x t
U x u r

x t h x t h

 + −
= + 

+ + − +    

(67) 

( )
( ) ( )

1 0 0 2 22 2
,0,0z

h h
U x u r

x t h x t h

 
= + 

+ + − +    

(68) 

And the second part of the ground settlement and lateral 

displacement at point q(x,0,0), which is induced by the 

vertical normal stress revision on the horizontal ground 

surface, can be derived by substituting z=0 into the Eqs. 

(24)-(25) 

( ) ( )
2 0 0 2 2 2 2

1 2 ( ) 1 2 ( )
( ,0,0)

( ) ( )
x

v x t v x t
U x u r

x t h x t h

− + − − 
= − + 

+ + − +   
(69) 

( ) ( )
2 0 0 2 2 2 2

1 1
( ,0,0) 2

( ) ( )
z

v h v h
U x u r

x t h x t h

− − 
= + 

+ + − +   
(70) 

In the shear stress revision process of the horizontal 
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ground surface, the third part of the ground settlement and 

lateral displacement at point q(x,0,0) can be determined by 

substituting z=0 into Eqs. (40) and (41) as follows 

( ) ( )
3 0 0 2 2 2 2

1 ( ) 1 ( )
( ,0,0) 2

( ) ( )
x

v x t v x t
U x u r

x t h x t h

− + − − 
= − + 

+ + − +   
(71) 

( ) ( )
3 0 0 2 2 2 2

1 2 1 2
( ,0,0)

( ) ( )
z

v h v h
U x u r

x t h x t h

− − 
= + 

+ + − +   
(72) 

Under the horizontal normal stress revision of the 

vertical ground surface, the fourth part of the ground 

settlement and lateral displacement at point q(x,0,0) can be 

obtained by substituting z=0 into Eqs. (53) and (54) as 

follows 

2
10

4 02 22 20

(1 )
( ,0,0) 2(1 ) (0,0, )

2

h

x x

v x
U x v d

xE x
  

 

 +
= − − + 

++  


 
(73) 

4( ,0,0) 0zU x =
 (74) 

By substituting Eqs. (67), (69), (71) and (73) into the 

Eq. (65), the final solution of lateral displacement at point 

q(x,0,0) can be expressed as follows 

( ) 0 0 2 2 2 2

2
10

02 22 20

( ) ( )
( ,0,0) 4 1

( ) ( )

(1 )
2(1 ) (0,0, )

2

x

h

x

x t x t
U x v u r

x t h x t h

v x
v d

xE x
  

 

 + −
= − − + 

+ + − + 

 +
− − + 

++  


 

(75) 

Likewise, the final solution of ground settlement at 

point q(x,0,0) can be expressed by substituting Eqs. (68), 

(71), (72) and (74) into the Eq. (66) as follows 

( ) 0 0 2 2 2 2
( ,0,0) 4 1

( ) ( )
z

h h
U x v u r

x t h x t h

 
= − + 

+ + − +   
(76) 

Eqs. (75) and (76) can be well applied in the prediction 

of the lateral displacement and ground settlement on the 

horizontal ground surface induced by shallow tunnel 

excavations under non-axisymmetric displacement 

boundary on vertical surface. 
 

4.4 Displacements on the vertical ground surface 
 

Initially, the first part of the ground settlement and 

lateral displacement at point q(0,0,z), which is induced by 

the combined influence of the actual and image sinks, can 

be expressed by substituting x=0 into Eqs. (3) and (4), as 

follows 

( )1 0,0, 0xU z =
 (77) 

( )
( )

1 0 0 2 2
0,0, -2

( )
z

z h
U z u r

t z h

−
=

+ −  
(78) 

In the vertical normal stress revision process on the 

horizontal ground surface, the second part of the ground 

settlement and lateral displacement at point q(0,0,z), can be 

obtained by substituting x=0 into Eqs. (24) and (25) as 

follows 

( )2 0,0, 0xU z =
 (79) 

( )
( ) ( )

( )

2

2 0 0 22 2 2 2 2 2

2 1 ( ) 2
0,0, 2

( ) ( ) ( )
z

v z h z z hz
U z u r

t z h t z h t z h

 − + +
 = − +
 + + + + + +
   

(80) 

By substituting x=0 into the Eqs. (40) and (41), the third 

part of the ground settlement and lateral displacement of 

point q(0,0,z), which is induced by the shear stress revision 

of the horizontal ground surface, can be derived as shown in 

Eqs. (81) and (82). 

( )3 0,0, 0xU z =
 (81) 

( )
( ) ( )

( )

2

3 0 0 22 2 2 2 2 2

1 2 ( ) 2
0,0, 2

( ) ( ) ( )
z

v z h z z hz
U z u r

t z h t z h t z h

 − + +
 = − +
 + + + + + +
   

(82) 

Likewise, the fourth part of the ground settlement and 

lateral displacement at point q(0,0,z), produced by the 

horizontal normal stress revision process of the vertical 

ground surface, can be calculated by substituting x=0 into 

the Eqs. (53) and (54) as follows 

2
10

4 0
0

(1 )
(0,0, ) (0,0, )

h

x x

v
U z d

E z
  

 

−
= −

−
 

(83) 

( )

10

4 020

(1 )(1 2 )
(0,0, ) (0,0, )

2

h

z x

v v z
U z d

E z
  

 

+ −
= −

−


 
(84) 

Based on Eqs. (59) and (60), the final solutions of the 

ground settlement and lateral displacement on the vertical 

ground surface can be obtained as follows 

( ) ( ) ( ) ( ) ( )1 2 3 40,0, 0,0, 0,0, 0,0, 0,0,x x x x xU z U z U z U z U z= + + +
 
(85) 

( ) ( ) ( ) ( ) ( )1 2 3 40,0, 0,0, 0,0, 0,0, 0,0,z z z z zU z U z U z U z U z= + + +
 
(86) 

By substituting Eqs. (77), (79), (81) and (83) into Eq. 

(85), the final horizontal displacement at point q(x,0,0) can 

be derived as follows 

( )
2

10

0
0

(1 )
0,0, (0,0, )

h

x x

v
U z d

E z
  

 

−
= −

−
 

(87) 

Likewise, the final vertical displacement at point 

q(x,0,0) can be obtained by substituting Eqs. (78), (80), (82) 

and (84) into the Eq. (86) as follows 

( )
( ) ( ) ( )

( )

( )

2

0 0 0 0 22 2 2 2 2 2 2 2

10

020

3 4 ( ) 42
0,0, 2 2

( ) ( ) ( ) ( )

(1 )(1 2 )
(0,0, )

2

z

h

x

z h v z h z z hz
U z u r u r

t z h t z h t z h t z h

v v z
d

E z
  

 

 − − + +
 = − + − +
 + − + + + + + +
 

+ −
−

−


 

(88) 

The Eqs. (87) and (88) can be well applied in the 

prediction of the ground settlement and lateral displacement 

of the vertical ground surface when shallow tunnels are 

excavated under non-axisymmetric displacement boundary 

conditions on a vertical surface. 
 

 

5. Validation 
 

Local test results are used to validate the effectiveness 

of the proposed approach. The results calculated by the  
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Fig. 5 Topographic map of the Dong-shang-he tunnel 
 

 

Fig. 6 Cross sectional (K25+360) diagram of the Dong-

shang-he tunnel 
 

 

proposed approach are used to predict the horizontal ground 

settlement and the horizontal displacement on vertical 

surface, and compared with the numerical result of the finite 

element method as well as the field measurement data in 

Dong-shang-he tunnel. 
 

5.1 Validation with the local test results 
 

5.1.1 Engineering conditions 
Since the field measured data of the horizontal 

displacement of the vertical surface were taken from the 

Dong-shang-he tunnel, some basic engineering conditions 

of the Dong-shang-he tunnel are introduced here as follows. 

The Dong-shang-he tunnel is located in the northern 

mountainous area of Guzhang County that is in the Xiangxi 

autonomous prefecture of the Hunan Province of China. 

The total length of the Dong-shang-he tunnel is 205.0 m; 

the maximum buried depth of the Dong-shang-he tunnel is 

24.0 m; and the rock surrounding the tunnel is grade Ⅴ. A 

topographic map and cross-sectional diagram of the Dong-

shang-he tunnel are shown in Fig. 5 and Fig. 6, respectively. 
 

5.1.2 Arranging conditions of measuring point 
To obtain the field measured data of the horizontal  

 

Fig. 7 The field measuring points of the Dong-shang-he 

tunnel 

 

 

Fig. 8 The simplified measuring point arrangement 

diagram of the Dong-shang-he tunnel 

 

 

ground settlement induced by the tunnel excavation, five 

measuring points (the 1st to 5th) were arranged on the 

horizontal ground surface of cross section (K25+360) of the 

Dong-shang-he tunnel. Likewise, to obtain the field 

measured data of the horizontal displacement of the vertical 

surface induced by the tunnel excavation, five measuring 

points (the 6th to the 10th) were arranged on the vertical 

surface of cross section (K25+360) of the Dong-shang-he 

tunnel. The specific measuring point arranging condition of 

the measuring points and the geometric information of the 

Dong-shang-he tunnel are shown in Fig. 7 and Fig. 8, 

respectively. 
 

5.1.3 Calculation parameters 
As shown in Fig. 8 of Section 5.1, some of the 

geometric parameters are as follows: r0=6.25 m, h=24 m 

and t=20.6 m.  

Based on the measured crown settlement field data of 

cross section (K25+360) of the Dong-shang-he tunnel, the 

value of the uniform radial contracting displacement is 

u0=0.036 m. 

Because the surrounding rock of the Dong-shang-he is 

grade Ⅴ, the value of the elastic modulus and Poisson’s  

1
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Fig. 9 Comparisons of the horizontal ground settlement 

 

 

ratio of the Dong-shang-he tunnel are as follows: E=1.5 

GPa, and v=0.45, respectively. 

 

5.1.4 Horizontal ground settlement 
The results calculated by the proposed approach, the 

numerical method and the field test data of the horizontal 

ground settlements are shown in Fig. 9. 

As seen Fig. 9, with the increase of “D” from -35 m to 0 

m, the variation trends of the three methods (i.e., the 

proposed approach, the numerical method and the field 

measuring method) are consistent. The horizontal ground 

settlement first increases gradually and then decreases. On 

the one hand, the maximum difference of the horizontal 

ground settlement does not exceed 9.72% between the 

prediction result and the field measurement data. On the 

other hand, the maximum difference of the horizontal 

ground settlement does not exceed 9.85% between the 

theoretical solution and the numerical result. For example, 

the values of the theoretical solution of the horizontal 

ground settlement are larger than those of the field 

measured data by 6.55%, 9.60%, 9.72%, 9.14% and 5.50% 

from the 1st measuring point to the 5th measuring point, 

respectively. In addition, the values of the ground settlement 

predicted by the proposed method are larger than those of 

the numerical result by 7.51%, 9.09%, 9.85%, 8.67% and 

7.88% from the 1st measuring point to the 5th measuring 

point, respectively. The two comparisons show that the 

prediction approach of the horizontal ground settlement can 

be used to ensure more safety for shallow tunnels 

excavation. Therefore, the rationality and validity of the 

proposed approach for predicting displacements on 

horizontal ground surface are well verified by the filed 

measuring data. 

 

5.1.5 Horizontal displacement of the inclined surface 
The prediction results calculated by the proposed 

approach, the numerical result of the numerical method as 

well as the field measured data of Dong-shang-he tunnel for 

horizontal displacement of the vertical surface are shown in 

Fig. 10. 

It can be inferred from Fig. 10 that with the increase of 

“H” from 5 m to 45 m. the variation trends of the three 

methods (i.e., the proposed approach, the numerical method  
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Fig. 10 Comparison of the horizontal displacement 

results of vertical surface 
 

 

and the field measuring method) are consistent. In addition, 

the differences of the horizontal displacements of the 

vertical surface are small between the prediction results and 

the measured field data. For example, the horizontal 

displacement values of the inclined surface by the proposed 

approach are larger than those of the field measured data by 

7.68%, 9.63%, 8.66%, 9.33% and 9.32% from the 6th to 9th 

measuring points, respectively. Since the abnormality of the 

10th measuring point value is zero, we do not compare it in 

this article. Moreover, the differences of the horizontal 

displacement values of the vertical surface do not exceed 

9.23% between the prediction results and the numerical 

results. For instance, the horizontal displacement values of 

the vertical surface of the proposed approach are larger than 

those of the numerical result by 6.16%, 9.23%, 7.89%, 

6.76% and 5.12% from the 6th to the 10th measuring points, 

respectively. The two comparisons show that the prediction 

approach of the horizontal displacements of the vertical 

surface can be used to ensure more safety for shallow 

tunnels excavation. Therefore, the rationality and validity of 

the proposed approach for predicting displacements on 

vertical surface are well verified by the measured field data. 
 

5.2 Validation with the numerical method 
 

To validate the rationality and suitability of the proposed 

approach, a finite-element model of a shallow tunnel that is 

excavated under the non-axisymmetric displacement 

boundary conditions on a vertical surface was established 

using the ABAQUS finite element software with a uniform 

radial contraction displacement, u0, as shown in Fig. 11. To 

investigate the effect of gravity, two simulations of this 

finite element model, with and without considering gravity, 

respectively, were carried out to calculate the stress and 

displacements. The left and bottom boundaries are fixed 

where the horizontal and vertical displacements are zero. 

Moreover, the lengths of the left, right, bottom, and top 

boundaries are all set equal to 150 m. The plane-strain 

condition is adopted in the grid unit division of the FEM 

model. In addition, the calculation parameters, which 

originate from the Heathrow tunnel (Loganathan and Poulos 

1998), are shown as follows: h=19 m, t=15 m, r0=4.25 m, 

u0=0.058 m, E=35 MPa, and v=0.5. 
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Fig. 11 FEM model of a shallow tunnel excavation under 

non-axisymmetric displacement boundary conditions 
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Fig. 12 Displacements calculated by two methods on the 

right of the shallow tunnel 
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Fig. 13 Stress obtained by two methods on the right side 

of the shallow tunnel 
 

 

5.2.1 Displacements and stress on the right side of 
the shallow tunnel 

Fig. 12 and Fig. 13 show that displacements and stress 

of the surrounding rock solved by the proposed approach 

and the numerical method at calculation point   on the 

right side of the shallow tunnel, respectively, where H is the 

vertical coordinate on the right side of the shallow tunnel. 

As shown in Fig. 12, the variation trends of the 

horizontal and vertical displacements at point q (-10, 0, H) 

calculated by the proposed approach agree well with those 

calculated by the numerical method. In addition, the 

differences of the horizontal and vertical displacements 

between the proposed approach and the numerical method 

are small. For example, the maximum differences of the 

horizontal and vertical displacements calculated by the two 

methods are 7.86% and 7.76%, respectively. Therefore, the 

rationality and validity of the proposed approach for 

calculating displacements on the right side of shallow 

tunnels are well verified by the numerical simulation 

results. As shown in Fig. 12, gravity has a slight effect on 

the displacements, and its influence on the vertical 

displacement is larger than its influence on the horizontal 

displacement. The average differences of the horizontal and 

vertical displacements calculated by the numerical method 

(considering gravity and ignoring gravity) are 3.61% and 

6.52%, respectively. 

As Fig. 13 shows, the variation trend of the vertical 

normal stresses (σz) and the shear stresses (τxz) calculated 

by the proposed approach agree well with those calculated 

by the numerical method. In addition, the differences are 

negligible. For example, the maximum difference of the 

vertical normal stress between the two methods is 0.45%, 

while this figure for the shear stress is 1.71%. In addition, 

the variation trend of the horizontal normal stresses (σx) 

calculated by the proposed approach is consistent with the 

numerical simulation results. When the depth is less than 6 

m, the differences of the horizontal normal stresses are 

negligible between the proposed approach and the 

numerical results. However, when the depth exceeds 6 m 

(H>6 m), the corresponding differences are relatively large, 

reaching 8.51%. In brief, the proposed approach is more 

conservative as H<6 m and more suited to deal with tunnel 

engineering problems when lacking engineering experience. 

Since the variation trend of the stresses calculated by the 

proposed approach are consistent with the numerical results, 

and because the differences are less than 8.51%, we can 

conclude that the rationality and validity of the proposed 

approach for calculating stresses on the right side of 

shallow tunnels are well verified by the numerical results. 

As shown in Fig. 13, gravity has a slight effect on the 

stresses, and its influence on the vertical normal stresses is 

larger than that on the horizontal normal stresses (σx) and 

shear stresses (τxz). The average differences of vertical 

normal stress, horizontal normal stresses and shear stresses 

calculated by numerical methods (considering gravity and 

ignoring gravity) are 6.67%, 3.21% and 3.56%, 

respectively. 
 

5.2.2 Displacements and stress on the horizontal 
ground surface 

Displacements and stress of the surrounding rock at 

calculation point q(D,0,0) on the horizontal ground surface 

calculated by the proposed approach and the numerical 

methods under non-axisymmetric displacement boundary 

conditions on a vertical surface are shown in Fig. 14 and 

Fig. 15, respectively, where D is the horizontal coordinate 

of the horizontal ground surface. 

As shown in Fig. 14, the variation trends of horizontal 

and vertical displacements calculated by the proposed 

approach agree well with those by the numerical method. In 
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Fig. 14 Displacements of the horizontal ground surface 

calculated by the two methods 
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Fig. 15 Stresses on the horizontal ground surface solved 

by the two methods 

 

 

addition, the differences of the horizontal and vertical 

displacements between the proposed approach and the 

numerical method are small. For example, the maximum 

differences of the horizontal and vertical displacements 

calculated by the two methods are 6.59% and 7.61%, 

respectively. Therefore, the rationality and validity of the 

proposed approach for calculating the displacements of the 

horizontal ground surface are well verified by the numerical 

results. As shown in Fig. 14, gravity has a slight effect on 

the displacements of the horizontal ground surface at 

calculation point q (D, 0, 0), and its influence on the vertical 

displacement is larger than that on the horizontal 

displacement. The average differences of horizontal and 

vertical displacements calculated by numerical simulations 

with and without considering gravity are 4.05% and 7.63%, 

respectively. 

By substituting q(D,0,0) into the Eqs. (9), (28), (44) and 

(57), the vertical normal stresses (σz1, σz2, σz3, σz4) can be 

obtained. Then, the values of the vertical normal stresses 

(σz) can be calculated by substituting the values of σz1, σz2, 

σz3, σz4 into Eq. (63). In addition, by substituting q(D,0,0) 

into the Eqs. (10), (29), (45) and (58), the shear stresses 

(τxz1, τxz2, τxz3, τxz4) can be obtained. Then, the values of the 

shear stresses (τz) can be calculated by substituting the 

values of τxz1, τxz2, τxz3, τxz4 into Eq. (64). The results of the 

stresses on the horizontal ground surface solved by two 

methods are shown in Fig. 15. 

As shown in Fig. 15 the vertical normal stress and shear 

stress on the horizontal ground surface calculated by the 

proposed approach and numerical methods are both zero. 

Thus, the rationality and validity of the proposed approach 

for calculating stresses on the horizontal ground surface are 

well verified by the numerical simulation results. In 

addition, gravity has a slight effect on the stresses on the 

horizontal ground surface, and its influence on the vertical 

normal stresses is larger than that on vertical ground surface 

at calculation point q (D,0,0). The average differences of 

vertical normal stresses provided by the numerical 

simulations between considering gravity and ignoring 

gravity are 6.56%, and 3.12% for the shear stresses, 

respectively. 
 

 

6. Discussion 
 

Generally, the horizontal ground settlement, which is 

defined as the ground settlement of the horizontal ground 

surface and caused by the shallow tunnel excavation, is an 

important engineering indicator to control the safety of 

shallow tunnels under the non-axisymmetric displacement 

boundary condition of a vertical surface. Therefore, the 

discussion will mainly focus on the effects of different 

tunnel buried depths, and limb distances on the unrevised 

and revised horizontal ground settlement shown in Fig. 16 

and Fig. 17. 
 

6.1 Effects of the tunnel buried depths on the 
horizontal ground settlement 
 

To investigate the effects of different tunnel buried 

depths on the unrevised and revised horizontal ground 

settlements of the proposed approach, the horizontal ground 

settlements with different tunnel buried depths (i.e., h=10 

m, 13 m, 16 m and 19 m) at point q(D,0,0) are shown in 

Fig. 16. The calculation parameters are t=15 m, r0=4.25 m, 

u0=0.058 m, E=35 MPa, and v=0.5, where Uz(D,0,0) is the 

horizontal ground settlement at point q(D,0,0). 
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and revised horizontal ground settlement 
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Fig. 18 Effects of limb distances on the unrevised and 

revised horizontal ground settlement 
 
 

In Fig. 16, with increases of the tunnel buried depth, the 

unrevised and revised results of the horizontal ground 

settlement decreases gradually. For example, when the 

tunnel buried depth increases from 10 m to 19 m, the 

revised result of the maximum horizontal ground settlement 

falls from 54.2 mm to 33.4 mm. Therefore, the reduction 

percentage of the revised results of horizontal ground 

settlement is 38.4% when h increases from 10 m to 19 m. In 

addition, the differences between the unrevised and revised 

horizontal ground settlement remains constant with the 

increase of the tunnel buried depth. For example, when the 

tunnel buried depths are 10 m, 13 m, 16 m and 19 m, the 

revised results of the maximum horizontal ground 

settlement are larger than those of the unrevised results by 

50%. 
 

6.2 Effects of the limb distances on the horizontal 
ground settlement 
 

To study the effects of different limb distances on the 

unrevised and revised horizontal ground settlement values 

of the proposed approach, the horizontal ground settlements 

with different limb distances (i.e., t=9 m, 12 m, 15 m and 18 

m) at point q(D,0,0) are shown in Fig. 17. And the 

calculation parameters are t=15 m, r0=4.25 m, u0=0.058 m, 

E=35 MPa, and v=0.5. 

It can be seen in Fig. 17 that the unrevised and revised 

results of the horizontal ground settlement first decreases 

and then increases with increasing values of the limb 

distance. For example, when the limb distance increases 

from 9 m to 18 m, the revised horizontal ground settlements 

increase from 16.66 mm to 22.06 mm in the case that D is 

equal to -30 m, and the revised horizontal ground 

settlements fall from 42.38 mm to 27.35 mm in the case that 

D is equal to 0 m. In addition, the differences of the 

unrevised and revised horizontal ground settlements also 

remain constant with increases of the limb distance. For 

example, when the limb distances are 8 m, 11 m, 14 m and 

17 m, the revised results of the maximum horizontal ground 

settlement are larger than those of the unrevised results by 

50%. 

 

6.3 Effects of the stress correction of the horizontal 
ground surface on the vertical surface 
 

To investigate the stress distributions on the vertical 

surface after stress correction of the horizontal ground 

surface, three cases are taken into consideration to solve the 

normal stresses of vertical surface by the proposed 

approach. In Case 1, the horizontal normal stress of the 

vertical surface is obtained without considering the effect of 

the vertical normal and shear stresses correction on the 

horizontal ground surface. In Case 2, the horizontal normal 

stress of the vertical surface is obtained by only considering 

the effect of the vertical normal stress correction on the 

horizontal ground surface. In Case 3, the horizontal normal 

stress of the vertical surface is obtained by incorporating the 

effects of the vertical normal and shear stress correction on 

the horizontal ground surface. The calculation parameters 

are as follows: t=15 m, r0=4.25 m, u0=0.058 m, E=35 MPa 

and v=0.5. Where σx (0,0,L) is the horizontal normal stress 

of vertical surface at point q(0,0,L), the calculation results 

are shown in Fig. 18. 

The calculation results show that there are no new shear 

stresses, but horizontal normal stresses are generated on the 

vertical surface after the correction of the stress on 

horizontal ground surface. Fig. 18 shows that the new 

horizontal normal stresses for Case 3 and Case 2 are smaller 

than those of Case 1. The difference between Case 1 and 

Case 2 is 8.80%, while it is 19.2% between Case1 and Case 

3. Therefore, ignoring stresses correction results in an 

overestimate and is more suited to deal with tunnel 

engineering problems when lacking engineering experience. 
 

 

7. Conclusions 
 

Based on the virtual image technique, the stress 

harmonic function, the stress function solution, the 

Boussinesq’s solution and the linear superposition principle, 

this study presents a new approach to calculate the 

displacements and stresses of the surrounding rock, the 

ground settlements and lateral displacements of the 
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horizontal and vertical ground surfaces when a shallow 

tunnel is excavated under non-axisymmetric displacement 

boundary conditions. Compared with previous approaches, 

the following improvements have been achieved. 

(1) The proposed approach extends the cavity 

contraction theory of the non-axisymmetric displacement 

boundary condition, which could reflect the ‘boundary 

effect’ of the horizontal and vertical ground surfaces. 

(2) The proposed approach could provide a theoretical 

basis for the surrounding rock stability of the shallow tunnel 

excavation under non-axisymmetric displacement boundary 

conditions on a vertical surface. 

(3) The proposed approach can be used to predict the 

ground settlements and lateral displacements of the 

horizontal and vertical ground surfaces induced by shallow 

tunnel excavations under non-axisymmetric displacement 

boundary conditions on a vertical surface. 

In comparison with unrevised cases, the revised 

horizontal ground settlement is more conservative, which is 

suitable for engineering practice. The proposed approach 

effectively addresses bias tunnel engineering problems 

when construction experience is not sufficient. 

 

 

8. Limitations 
 

Although the proposed approach is presented based on 

some assumptions for shallow tunnels excavated under non-

axisymmetric displacement boundary conditions on a 

vertical surface, there are still some limitations that are 

described as follows. 

(1) The effects of the stress correction on the tunnel wall 

boundary are ignored. 

(2) The cylindrical cavity contraction problem is 

considered to be a plane-strain problem and the effect of the 

axial displacement is neglected. 

(3) The interaction influence between the horizontal 

ground surface and the vertical ground surface is not 

considered in the proposed approach. 

(4) The proposed approach only takes the elasticity of 

the soil mass into consideration, ignoring the plastic and 

viscous properties of the soil mass. 

(5) This paper mainly focuses on the case where the 

ground surface is perpendicular to the slope surface. 
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