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1. Introduction 
 

Over the last seven decades, a large amount of papers 

has been published for cavity expansion problem in 

geomechanic and geotechnical engineering. Cavity 

expansion method (CEM) can be used to piling, in-situ 

testing, grouting and tunneling, and so on. A large amount 

of model can be used to investigate the cavity expansion 

problem for different rock and soil materials, and consider 

the loading condition, hardening/softening condition and 

drained condition. Some CEM can be written as follows: 

theoretical research (Hill et al. 1944, Bishop et al. 1945, 

Vesic 1977, Teh and Houlsby 1991, Yu and Carter 2002, 

Randolph 2003, Park et al. 2008, Tolooiyan and Gavin 

2011, Chen and Abousleiman 2012, Wang et al. 2012a, b, 

Pournaghiazar et al. 2013, Lukic et al. 2014, Zhou et al. 

2014, Zou et al. 2017, Zhou et al. 2018, Sivasithamparam 

and Castro 2018, Li et al. 2019a, b); engineering 

applications (Frikha and Bouassida 2014, Frikha et al. 

2015, Keawsawasvong and Ukritchon 2016, Kwon et al. 

2018, Chen et al. 2019, Zou et al. 2019a, b); numerical 

simulations and experiments (Salgado and Randolph 2001, 

Seo et al. 2012, Marchi et al. 2014, Diao et al. 2014, Xiao 

and Desai 2016); and others. 

Nevertheless, a large amount of papers for cavity 

expansion problem basically focus on isotropic 

geomaterials, undrained condition and finite sized initial 

cavity problem in both region (elastic and plastic regions).  

Less research has been carried out on the created cavity  
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expansion problem based on Cam-Clay model and 

considers the effect of initial anisotropic in-situ stress and 

drained conditions. The initial stress state of soil mass is 

anisotropy by soil deposition history (Anderson 1980, Zhou 

et al. 2014). The solutions of the created cavity expansion 

problem based on Cam-Clay model were produced for 

cylindrical cavities which model the action of the 

pressuremeter, and for spherical cavities that may be used to 

estimate cone tip resistance and bearing capacity of 

displacement piles (Collins and Yu 1996). In addition, the 

works for cylindrical and spherical cavities expanding in 

drainage condition from zero initial radius are investigated. 

Most of the conventional solutions were based on the 

undrained condition for the low permeable soils. However, 

the drained cavity expansion calculation is presented in 

order to the study of cavity expansion problem in permeable 

soil mass. Only very recently, a few papers presented 

theoretical analysis investigating initial anisotropic in-situ 

stress and drained conditions in saturated soil mass. Hill 

(1950) and Yu and Carter (2002) presented the incremental 

velocity solutions to analyze CEM in the Tresca soil mass 

for the created cavity expansion problem. Zhou et al. (2014) 

presented the elastic-plastic theoretical solutions to analyze 

CEM in the Tresca soil mass under anisotropic initial stress 

and undrained condition. Then, some works were presented 

for investigate the effect of stress anisotropy in undrained 

condition (Li et al. 2016, Sivasithamparam and Castro 

2018). Russell and Khalili (2002) presented the similarity 

solutions to analyze CEM in the Mohr-Coulomb soil mass 

for the drained cavity expansion problem. 

Comparing with other elasto-plastic models, the Cam-

Clay model (Roscoe et al. 1958, 1963) is one of the most 

widely used models in the field of soil mechanics at present. 

Its main characteristics are: the clear basic concept, better 

suited for normal consolidated and weak over-consolidated 
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soil mass, as well as only three parameters (it can be 

obtained by conventional triaxial test), which is easy to 

popularization in geotechnical engineering practice. The 

yield characteristics of hydrostatic pressure, shear shrinkage 

and compressive hardening of geotechnical materials are 

considered. At present, although the ideas of various model 

for geomaterials are emerging, and various forms of soil 

constitutive models have emerged, but the Cam-Clay model 

is one of the few recognized elasto-plastic models. The 

Cam-Clay elasto-plastic constitutive model is regarded as 

the beginning of modern soil mechanics and also is one of 

the most widely used models in the field of soil mechanics. 

The critical state theory developed by based on this model 

has more explicit geometric and physical meanings, which 

is unmatched by many other elasto-plastic models. In 

addition, the improvement and correction of its limitations 

based on the Cam-Clay model is still an important direction 

for geotechnical material model, which needs further study 

(Li 2004). 
In a word, a large amount of papers for cavity expansion 

problem basically focus on isotropic geomaterials, 
undrained condition and finite sized initial cavity problem. 
Less research has been carried out on the created cavity 
expansion problem based on Cam-Clay model and 
considers the effect of initial anisotropic in-situ stress and 
drained conditions. The main objective of this study is to 
develop a theoretical solution, on the basis of Cam-Clay 
model and initial anisotropic in-situ stress. Eventually, the 
parametric study is presented in order to the engineering 
significance of this work. 
 
 

2. Theory and methodology 
 

2.1 Problem definition and assumptions 
 

2.1.1 Problem definition 
 

Fig. 1 shows a quasi-static cavity expansion in soil mass 

subjected to an initial in-situ horizontal stress σh0 (i.e., the 

hydrostatic stress), an initial vertical stress σv0, as well as 

an initial pore water pressure u0, the initial anisotropic stress 

factor (k0) represents the ratio of the effective horizontal 

stress to the effective vertical stress. The cavity expands 

from zero initial radius to the current radius a when the 

increase of the internal pressure from 0 to p, the cavity first 

experience elastic deformation and then plastic deformation 

when the inner cavity is loaded. A plastic region around the 

cavity will then be formed from the current radius a to the 

elastic-plastic boundary rb, as well as the intermediate state 

is shown as in Fig. 1. The radial displacement of rb is urb. 
 

2.1.2 Assumptions 
Some assumptions can be written: 

(1) The Cam-Clay model was originally proposed by 

Roscoe et al. (1958), it has a simple unified mathematical 

expression (Roscoe et al. 1963, Schofield and Wroth, 1968). 

For soil mass around the cavity, the yield failure criterion 

based on the Cam-Clay model can be expressed, 

q Mp=
 (1) 

 

Fig. 1 The intermediate state for created cavity expansion 

problem 

 
 

where, the magnitude of M for cylindrical cavity can be 

determined using M=6sinφ/(3-sinφ), the magnitude of M 

for spherical cavity can be determined using M=2sinφ, and 

φ is the internal friction angle. 

The p’ is the mean effective stress, and the q is the 

deviator stress, respectively, as follows (Collins and Yu 

1996), 

1

r k
p

k

  +
 =

+  
(2) 

r rq      = − = −
 

(3) 

where, k is a variable representing the type of cavity (k=1, 

spherical cavity; k=2, cylindrical cavity). σr and σθ are the 

radial and tangential stresses, σ’
r and σ’

θ are the effective 

radial and tangential stresses, respectively. 

Combining Eqs. (1), (2) and (3), 
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1
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(4) 

 (2) In the small-strain theory, the radial strain can be 

determined using εr= - (du)/ r, the tangential strain can 

be determined using εθ=u/r. 

(3) In the large-strain theory, the radial natural strain can 

be determined using dεr=du/r, the tangential natural strain 

can be determined using dεθ=-du/r. 

(4) Based on the stress-strain theory of Yu and Carter 

(2002), the stress-strain relation in elastic region is 

expressed in differential form by Young’s modulus E, 

Poisson's ratio v and the type variable of cavity k. 
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2.2 Elastic region 
 

In both region, the equilibrium equation can be 

expressed, 

0rrd
k

dr r

  −
+ =

 
(6) 

The boundary condition are expressed as, σr(r=∞)=σh0, 

σr(r=rb)=σrb. 

The stresses and displacement around the cavity in 

elastic region, 

( )

( )

1

0 0

1

0

0

k

b
r h rb h

k

rb h b
h

r

r

r

k r


   

 
 

+

+

  
= + −  

  


−  
= −  

   

(7) 
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(8) 

The displacement around the cavity at the position of rb, 

( )0

2

rb h b
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r
u

kG

 −
=

 

(9) 

 

2.3 EP boundary analysis 
 

Based on the paper of Yu and Carter (2002), the plastic 

radius (rb) in drained condition is investigated. For drained 

case, the pore water pressure remains constant and thus can 

be subtracted out of the analysis (Chen and Abousleiman 

2017). 

According to Eq. (4) and the aforementioned drained 

condition, 

=

1

1

rd Rd

k Mk
R
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(10) 

In plastic region, the non-associated flow law can be 

expressed, 

( ) ( )
( ) ( )1 sin 1 sin

p p e e
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
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(11) 

where ψ is the dilation angle. εrp and εθp the radial and 

tangential strains in plastic region. εp
rp and εp

θp are the 

radial and tangential plastic strains in plastic region. εe
rp 

and εe
θp are the radial and tangential elastic strains in 

plastic region. 

Combining Eqs. (5) and (11), 

 
(12) 

 

(12) 

Combining the Eq. (10), dσθ=(1/R)dσr can be obtained, 

the yield Eq. (12) can be derived, 
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(13) 

Based on Yu’s definition, the continuous deformation 

around the cavity is geometrically self-similar. The symbol 

V is defined as the relative velocity. A little incrementation 

of the plastic radius is drb, the corresponding displacement 

of a particle around the cavity is du, du=dr=Vdrb, u is a 

function of the current radius r and rb. Namely, rb and r are 

two independent variables. The total differential of u is 

expressed, 
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The particle velocity, 

( ) ( )1bV u r u r=   − 
 

(15) 

For a given particle around the cavity, 
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So, the Eq. (13) can also be expressed, 
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Therefore, 

( )

( )

( )

1

1

( ) ( )

( )
( )

1

( )

1

Mk M
k

k Mk
rb b

Mk M
k

k Mk
b

b

rb

V
P r V Q r

r

k Mk M rk
P r

r k Mk r r

rs
Q r

r r

k Mk M
s

k Mk



 





+

+ +

+

+ +


+ = 


 +  
 = −  

+ +  

  

= −  
 

 +
=

+ +  

(18) 

143



 

Chao Li and Jin-Feng Zou 

According to Eq. (8), 
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(19) 

The Eq. (18) can also be written, 
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where, 
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According to V=da/drb at the cavity wall (r=a), 
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(22) 

The geometrically self-similar around the cavity can be 

expressed, 

b b

da a
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(23) 

The ratio of the radius of cavity (a) to the plastic radius 

(rb ) can be written, 
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(24) 

The plastic radius rb can be easily derived if the radius 

of cavity a is determined. 

 

2.4 Plastic region 
 

2.4.1 The total stresses 
Combining Eqs. (7) and (10), 
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Combining Eqs. (6) and (10), 
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Combining Eqs. (25), (26) and the boundary conditions, 
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Combining Eqs. (26) and (27), the total radial stress is 

derived, 
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Combining Eq. (28) and (10), the tangential stress is 

derived, 
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2.4.1 Limit expanded pressure 
According to the Eq. (28), the limit expanded pressure is 

expressed, 

( )r u ur a p = =
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3. Validation and discussions 
 

To confirm the validity of this solution, the calculation 

parameters are selected (Yu and Carter 2002), σh0=100 kPa, 

the Poisson’s ratio v=0.3, G/p0=10, 100 and 1000, 

φ=200~500,ψ=00~φ, u0=0. As shown in Table 1 and Table 

2, the presented results is very close to Yu’s theoretical 

results, which confirms the validity of this presented 

solution. 

To analyze the effect of the initial anisotropic in-situ 

stress by introducing the initial anisotropic stress factor (k0) 

into the theoretical solution in drained cavity expansion 

condition, the calculation parameters are selected (Yu and 

Carter, 2002), σh0=100kPa(k0=1), the Poisson’s ratio v=0.3, 

E=2600, φ=200~500,ψ=00~φ. 

As shown in Tables 3-6, the effect of initial anisotropic 

stress factor k0 on the radius ratio (rb/a) and the normalized 

internal pressure (p/σh0) are investigated. It is noted that the 

effect of the initial value of k0 on the rb/a of cavity 

expansion problem is investigated, and five cases with the 

same other parameters but different values of k0 are studied,  
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Table 1 The results (rb/a) of this presented solution and Yu and Carter (2002) 

φ0 ψ0 2G0/σh0 

rb/a, k=1,  

(Yu and Carter 

2002) 

rb/a, k=1, the presented 
solution 

Error (%) 

rb/a, k=2, 

 (Yu and Carter, 

2002) 

rb/a, k=2, the presented 
solution 

Error (%) 

20 

0 

20 4.74 4.7411 0.02% 2.63 2.6316 0.06% 

200 14.57 14.5712 0.01% 5.49 5.494 0.07% 

2000 45.77 45.7762 0.01% 11.74 11.7362 -0.03% 

10 

20 6.06 6.0621 0.03% 3.23 3.2321 0.07% 

200 22.46 22.4629 0.01% 7.97 7.9701 0.00% 

2000 85.86 85.8644 0.01% 20.39 20.3898 0.00% 

20 

20 7.64 7.6379 -0.03% 3.99 3.9872 -0.07% 

200 33.82 33.8176 -0.01% 11.68 11.6759 -0.04% 

2000 156.10 156.1276 0.02% 36.15 36.1476 -0.01% 

30 

0 

20 3.98 3.9783 -0.04% 2.32 2.3153 -0.20% 

200 12.11 12.1129 0.02% 4.78 4.7834 0.07% 

2000 37.92 37.9156 -0.01% 10.16 10.1637 0.04% 

10 

20 4.90 4.9022 0.04% 2.73 2.7344 0.16% 

200 17.85 17.854 0.02% 6.58 6.5797 0.00% 

2000 67.76 67.7577 0.00% 16.59 16.5916 0.01% 

20 

20 5.95 5.9489 -0.02% 3.22 3.2237 0.11% 

200 25.62 25.6202 0.00% 9.00 9.0034 0.04% 

2000 116.80 116.7952 0.00% 26.96 26.9619 0.01% 

30 

20 7.08 7.0766 -0.05% 3.77 3.7669 -0.08% 

200 35.45 35.4497 0.00% 12.05 12.0497 0.00% 

2000 191.00 191.1786 0.09% 42.25 42.2522 0.01% 

40 

0 

20 3.55 3.5502 0.01% 2.12 2.1215 0.07% 

200 10.74 10.7365 -0.03% 4.35 4.3529 0.07% 

2000 33.50 33.4974 -0.01% 9.20 9.2038 0.04% 

10 

20 4.27 4.2713 0.03% 2.44 2.4422 0.09% 

200 15.34 15.3395 0.00% 5.76 5.7624 0.04% 

2000 57.79 57.7945 0.01% 14.31 14.3133 0.02% 

20 

20 5.06 5.0597 -0.01% 2.80 2.7977 -0.08% 

200 21.28 21.2828 0.01% 7.51 7.5141 0.05% 

2000 95.67 95.7303 0.06% 21.72 21.7211 0.01% 

30 

20 5.88 5.8801 0.00% 3.17 3.1719 0.06% 

200 28.44 28.444 0.01% 9.51 9.514 0.04% 

2000 150.03 150.0607 0.02% 31.21 31.2058 -0.01% 

40 

20 6.69 6.6881 -0.03% 3.54 3.5428 0.08% 

200 36.42 36.4292 0.03% 11.59 11.5902 0.00% 

2000 220.42 220.3937 -0.01% 41.69 41.6925 0.01% 

50 

0 

20 3.28 3.2819 0.06% 1.99 1.9904 0.02% 

200 9.88 9.8788 -0.01% 4.07 4.0672 -0.07% 

2000 30.74 30.7374 -0.01% 8.57 8.566 -0.05% 

10 

20 3.89 3.8851 -0.13% 2.25 2.2516 0.07% 

200 13.80 13.8024 0.02% 5.24 5.2357 -0.08% 

2000 51.66 51.6641 0.01% 12.83 12.8291 -0.01% 

20 
20 4.53 4.5284 -0.04% 2.53 2.5313 0.05% 

200 18.69 18.693 0.02% 6.60 6.5995 -0.01% 
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Table 1 Continued 

φ0 ψ0 2G0/σh0 
rb/a, k=1, (Yu and 

Carter, 2002) 

rb/a, k=1, the presented 

solution 
Error (%) 

rb/a, k=2, (Yu and 

Carter, 2002) 

rb/a, k=2, the presented 

solution 
Error (%) 

50 

20 2000 83.02 83.0343 0.02% 18.49 18.4886 -0.01% 

30 

20 5.18 5.1818 0.03% 2.82 2.8156 -0.16% 

200 24.37 24.3716 0.01% 8.05 8.0536 0.04% 

2000 125.93 125.9393 0.01% 25.00 25.0001 0.00% 

40 

20 5.81 5.8112 0.02% 3.09 3.0884 -0.05% 

200 30.47 30.4757 0.02% 9.47 9.4684 -0.02% 

2000 178.64 178.8595 0.12% 31.48 31.4822 0.01% 

50 

20 6.38 6.3819 0.03% 3.33 3.3344 0.13% 

200 36.51 36.508 -0.01% 10.73 10.7315 0.01% 

2000 237.19 237.0757 -0.05% 37.21 37.2075 -0.01% 

Table 2 The results (p/σh0) of this presented solution and Yu and Carter (2002) 

φ0 ψ0 2G0/σh0 
rb/a, k=1, (Yu and 

Carter, 2002) 
rb/a, k=1, the 

presented solution 
Error (%) 

rb/a, k=2, (Yu and 
Carter, 2002) 

rb/a, k=2, the presented 
solution 

Error (%) 

20 

0 

20 2.97 2.9665 -0.12% 4.06 4.0614 0.03% 

200 5.26 5.2575 -0.05% 8.60 8.601 0.01% 

2000 9.42 9.4225 0.03% 18.65 18.6458 -0.02% 

10 

20 3.36 3.3624 0.07% 5.01 5.0082 -0.04% 

200 6.55 6.5552 0.08% 12.57 12.5677 -0.02% 

2000 12.98 12.9838 0.03% 32.74 32.7426 0.01% 

20 

20 3.78 3.7827 0.07% 6.20 6.2034 0.05% 

200 8.08 8.075 -0.06% 18.55 18.548 -0.01% 

2000 17.61 17.6097 0.00% 58.70 58.6948 -0.01% 

30 

0 

20 3.77 3.766 -0.11% 5.51 5.513 0.05% 

200 7.91 7.9111 0.01% 14.51 14.5067 -0.02% 

2000 16.93 16.9282 -0.01% 39.63 39.6253 -0.01% 

10 

20 4.33 4.3285 -0.03% 6.88 6.8824 0.03% 

200 10.25 10.2461 -0.04% 22.19 22.1912 0.01% 

2000 24.93 24.9288 0.00% 76.16 76.164 0.01% 

20 

20 4.92 4.9246 0.09% 8.57 8.5714 0.02% 

200 13.04 13.0354 -0.04% 33.71 33.7116 0.00% 

2000 35.84 35.8379 -0.01% 145.51 145.5106 0.00% 

30 

20 5.53 5.5287 -0.02% 10.55 10.5495 0.00% 

200 16.18 16.1861 0.04% 49.72 49.7207 0.00% 

2000 49.74 49.7755 0.07% 264.82 264.8632 0.02% 

40 

0 

20 4.43 4.4276 -0.05% 6.78 6.7845 0.07% 

200 10.53 10.5263 -0.04% 20.90 20.8951 -0.02% 

2000 25.64 25.6431 0.01% 67.45 67.4523 0.00% 

10 

20 5.12 5.117 -0.06% 8.46 8.4567 -0.04% 

200 13.92 13.9165 -0.03% 32.41 32.4125 0.01% 

2000 39.29 39.295 0.01% 134.62 134.6293 0.01% 

20 

20 5.84 5.8424 0.04% 10.46 10.4615 0.01% 

200 17.98 17.9814 0.01% 49.10 49.1057 0.01% 

2000 58.30 58.3234 0.04% 258.59 258.6089 0.01% 
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Table 2 Continued 

φ0 ψ0 2G0/σh0 
rb/a, k=1, (Yu and 

Carter, 2002) 

rb/a, k=1, the presented 

solution 
Error (%) 

rb/a, k=2, (Yu and 

Carter 2002) 

rb/a, k=2, the presented 

solution 
Error (%) 

40 

30 

20 6.57 6.5714 0.02% 12.73 12.7324 0.02% 

200 22.56 22.5629 0.01% 71.04 71.0443 0.01% 

2000 82.90 82.9105 0.01% 455.92 455.9501 0.01% 

40 

20 7.27 7.268 -0.03% 15.14 15.1386 -0.01% 

200 27.38 27.3833 0.01% 96.76 96.7614 0.00% 

2000 112.02 112.0062 -0.01% 717.50 717.5328 0.00% 

50 

0 

20 4.95 4.9517 0.03% 7.83 7.8295 -0.01% 

200 12.88 12.8803 0.00% 27.05 27.0522 0.01% 

2000 34.48 34.4809 0.00% 98.50 98.5026 0.00% 

10 

20 5.73 5.7321 0.04% 9.70 9.697 -0.03% 

200 17.22 17.2159 -0.02% 41.93 41.9261 -0.01% 

2000 54.10 54.1031 0.01% 198.51 198.5201 0.01% 

20 

20 6.55 6.547 -0.05% 11.88 11.8814 0.01% 

200 22.40 22.3978 -0.01% 62.65 62.6499 0.00% 

2000 81.64 81.6564 0.02% 374.23 374.2545 0.01% 

30 

20 7.36 7.3591 -0.01% 14.29 14.2908 0.01% 

200 28.19 28.1934 0.01% 88.50 88.505 0.01% 

2000 117.19 117.2000 0.01% 631.69 631.7188 0.00% 

40 

20 8.13 8.1286 -0.02% 16.78 16.7787 -0.01% 

200 34.22 34.2260 0.02% 117.19 117.1981 0.01% 

2000 158.71 158.8893 0.11% 942.33 942.4156 0.01% 

50 

20 8.82 8.8168 -0.04% 19.16 19.1646 0.02% 

200 40.03 40.0312 0.00% 145.63 145.6395 0.01% 

2000 202.97 202.8884 -0.04% 1259.29 1259.3472 0.00% 

Table 3 The results (rb/a) of the presented solution for different k0=1 and k=1 

φ0 ψ0 k0=0.2 k0=0.4 k0=0.6 k0=0.8 k0=1.0 Difference (%) 

20 

0 10.3538 7.3766 6.0598 5.2758 4.7411 118.38% 

10 15.0659 10.1424 8.0655 6.8641 6.0621 148.53% 

20 21.4629 13.6895 10.5553 8.7919 7.6379 181.01% 

30 

0 8.6249 6.1615 5.0712 4.4216 3.9783 116.80% 

10 12.0217 8.1337 6.4905 5.5386 4.9022 145.23% 

20 16.366 10.5233 8.1586 6.8243 5.9489 175.11% 

30 21.5889 13.2582 10.0161 8.2292 7.0766 205.07% 

40 

0 7.6576 5.4816 4.5176 3.9427 3.5502 115.69% 

10 10.3648 7.042 5.6347 4.8181 4.2713 142.66% 

20 13.6779 8.8569 6.8978 5.789 5.0597 170.33% 

30 17.4835 10.85 8.2511 6.8119 5.8801 197.33% 

40 21.5577 12.9041 9.6169 7.83 6.6881 222.33% 

50 

0 7.0548 5.0574 4.1717 3.6432 3.2819 114.96% 

10 9.3531 6.3755 5.1119 4.3774 3.8851 140.74% 

20 12.0753 7.8638 6.1459 5.171 4.5284 166.66% 

30 15.0992 9.4505 7.224 5.986 5.1818 191.39% 

40 18.2329 11.0403 8.2846 6.7781 5.8112 213.75% 

50 21.2419 12.5269 9.2624 7.5014 6.3819 232.85% 
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Table 4 The results (rb/a) of the presented solution for different k0 and k=2 

φ0 ψ0 k0=0.2 k0=0.4 k0=0.6 k0=0.8 k0=1.0 Difference (%) 

20 

0 4.3858 3.5107 3.0873 2.8208 2.6316 66.66% 

10 6.0395 4.5961 3.9274 3.5176 3.2321 86.86% 

20 8.3803 6.0529 5.022 4.4071 3.9872 110.18% 

30 

0 3.8286 3.0743 2.709 2.4788 2.3153 65.36% 

10 5.0177 3.8466 3.3024 2.9679 2.7344 83.50% 

20 6.5467 4.7964 4.0146 3.5455 3.2237 103.08% 

30 8.3898 5.8984 4.8243 4.1934 3.7669 122.72% 

40 

0 3.491 2.8093 2.4786 2.27 2.1215 64.55% 

10 4.4195 3.4084 2.9366 2.6457 2.4422 80.96% 

20 5.5285 4.0992 3.4549 3.066 2.7977 97.61% 

30 6.7588 4.8462 4.0082 3.5108 3.1719 113.08% 

40 8.0155 5.5982 4.561 3.9532 3.5428 126.25% 

50 

0 3.2665 2.6322 2.324 2.1293 1.9904 64.11% 

10 4.0339 3.1253 2.6996 2.4363 2.2516 79.16% 

20 4.9018 3.6681 3.1074 2.7671 2.5313 93.65% 

30 5.8104 4.2276 3.5248 3.1041 2.8156 106.36% 

40 6.6893 4.7663 3.9259 3.4277 3.0884 116.59% 

50 7.4759 5.2496 4.2863 3.7189 3.3344 124.21% 

Table 5 The results (p/σh0) of the presented solution for different k0 and k=1 

φ0 ψ0 k0=0.2 k0=0.4 k0=0.6 k0=0.8 k0=1.0 Difference (%) 

20 

0 4.4171 3.7161 3.3618 3.1325 2.9665 48.90% 

10 5.3477 4.3709 3.8892 3.5822 3.3624 59.04% 

20 6.4048 5.0928 4.4608 4.0639 3.7827 69.32% 

30 

0 6.3083 5.0412 4.4274 4.0408 3.766 67.51% 

10 7.8714 6.0664 5.2191 4.6955 4.3285 81.85% 

20 9.6686 7.2029 6.0788 5.3965 4.9246 96.33% 

30 11.6294 8.4022 6.9695 6.1138 5.5287 110.35% 

40 

0 8.0802 6.2202 5.3466 4.8064 4.4276 82.50% 

10 10.24 7.5673 6.3558 5.6229 5.117 100.12% 

20 12.7223 9.0547 7.4458 6.4916 5.8424 117.76% 

30 15.4168 10.6133 8.5662 7.3731 6.5714 134.60% 

40 18.1629 12.1555 9.6572 8.2222 7.268 149.90% 

50 

0 9.6178 7.2056 6.0973 5.4211 4.9517 94.23% 

10 12.2834 8.8091 7.2728 6.3573 5.7321 114.29% 

20 15.3308 10.5677 8.5332 7.3458 6.547 134.17% 

30 18.6107 12.3944 9.8176 8.3403 7.3591 152.89% 

40 21.9187 14.1841 11.0565 9.2897 8.1286 169.65% 

50 25.0244 15.827 12.1801 10.1438 8.8168 183.83% 

Table 6 The results (p/σh0) of the presented solution for different k0 and k=2 

φ0 ψ0 k0=0.2 k0=0.4 k0=0.6 k0=0.8 k0=1.0 Difference (%) 

20 

0 6.8362 5.4486 4.7796 4.3593 4.0614 68.32% 

10 9.4724 7.1705 6.1086 5.4595 5.0082 89.14% 

20 13.2274 9.4938 7.8484 6.8701 6.2034 113.23% 
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the five different values of k0, i.e., 0.2, 0.4, 0.6, 0.8, and 1.0 

are considered, and the other calculation parameters are 

selected by based on Yu (2002) and Tables 3 and 4. Table 3 

show the evolution of the rb/a against φ and ψ. The ratio of 

the rb/a is 10.3538 when k0=0.2, φ=200and ψ=00, which 

becomes 4.7411 when k0=1.0, φ=200 and ψ=00. 

Comparing with k0=1.0, the value of the rb/a with k0=0.2 

decreases by 118.38% as shown in Table 3. In Table 4, the 

rb/a also shows the same tendency with k0 varying from 0.2 

to 1.0. Comparing with k0=1.0, the value of the rb/a with 

k0=0.2 decreases by 66.66% as shown in Table 4. Therefore, 

the results show that the ratio decreases with the increase in 

0.2<k0<1.0. This observation suggests that it also is indicate 

that ignoring the effect of initial anisotropic stress factor k0 

on the rb/a will be miscalculated results, and an appropriate 

estimation of the k0 value is essential for the cavity pressure 

because it is usually calculated from σv in engineering 

practice. As shown in tables 3 and 4, with the factor k0 

varying from 0.2 to 1.0, the rb/a decreases with the increase 

of initial anisotropic stress factor k0 for k=1 and k=2. 

The kind of displacement solution of the created cavity 

expansion problem based on Cam-Clay model is produced 

for cylindrical cavities which model the action of the 

pressuremeter, and for spherical cavities that may be used to 

estimate cone tip resistance and bearing capacity of 

displacement piles (Collins and Yu 1996), as well as that 

may be used to estimate lateral displacement of 

displacement piles (Chai et al. 2005). This observation 

suggests that the presented solution is a useful tool for the 

design of soft subsoil improvement resulting from the pile 

installation. 

It is interesting to note here that, to investigate the effect 

of the initial value of k0 on the normalized internal pressure 

(p/σh0) of cavity expansion problem, five cases with the 

same other parameters but different values of k0 are also  

 
 

studied, the five different values of k0, i.e., 0.2, 0.4, 0.6, 0.8, 

and 1.0 are considered, and the other calculation parameters 

are selected by based on Yu (2002) and Tables 5 and 6. 

Table 5 show the evolution of the ratio of the cavity 

pressure to σh0 against φ and ψ. The ratio of the limiting 

pressure to the initial pressure (σh0) is 4.4171 when k0= 0.2, 

φ=200 and ψ=00, which becomes 2.9665 when k0= 1.0, 

φ=200 and ψ=00. Comparing with k0=1.0, the value of the 

ratio of the cavity pressure to σh0 with k0=0.2 decreases by 

48.90% as shown in Table 5. In Table 6, the ratio of the 

cavity pressure to σh0 also shows the same tendency with k0 

varying from 0.2 to 1.0. Comparing with k0=1.0, the value 

of the ratio of the cavity pressure to σh0 with k0=0.2 

decreases by 68.32% as shown in Table 6. Therefore, the 

results show that the ratio decreases with the increase in 

0.2<k0<1.0. This observation suggests that it also is indicate 

that ignoring the effect of initial anisotropic stress factor k0 

on the p/σh0 will also be miscalculated results, as well as the 

same tendency of the ratio of the cavity pressure to σh0 

with k0 varying from 0.4 to 1.0 in paper of Su and Yang 

(2019). As shown in tables 5 and 6, With the factor k0 

varying from 0.2 to 1.0, the p/σh0 decreases with the 

increase of initial anisotropic stress factor k0 for k=1 and 

k=2. 

In addition, with the internal friction angle (φ) varying 

from 200 to 500 degrees, the rb/a increases with the increase 

of the φ for k=1 and k=2, and the p/σh0 increases with the 

increase of the φ for k=1 and k=2. Similarly, With the 

dilation angle (ψ) varying from 00 to φ degrees, the rb/a 

increases with the increase of the dilation angle (ψ) for k=1 

Table 6 Continued 

φ0 ψ0 k0=0.2 k0=0.4 k0=0.6 k0=0.8 k0=1.0 Difference (%) 

30 

0 10.7805 8.0459 6.7972 6.0384 5.513 95.55% 

10 15.4616 10.8482 8.8515 7.6769 6.8824 124.65% 

20 22.0431 14.559 11.4843 9.7311 8.5714 157.17% 

30 30.6841 19.1818 14.6721 12.1713 10.5495 190.86% 

40 

0 14.7935 10.5292 8.6551 7.5423 6.7845 118.05% 

10 21.3975 14.2493 11.2854 9.5857 8.4567 153.02% 

20 30.3777 19.0209 14.5548 12.0733 10.4615 190.38% 

30 41.603 24.7181 18.3638 14.9246 12.7324 226.75% 

40 54.329 30.979 22.4795 17.971 15.1386 258.88% 

50 

0 18.4929 12.7151 10.2443 8.801 7.8295 136.20% 

10 26.6687 17.128 13.2849 11.1186 9.697 175.02% 

20 37.3971 22.6134 16.958 13.8664 11.8814 214.75% 

30 50.231 28.9295 21.1026 16.9263 14.2908 251.49% 

40 64.1379 35.6218 25.4414 20.104 16.7787 282.26% 

50 77.7824 42.1203 29.6299 23.1599 19.1646 305.86% 
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and k=2, and the p/σh0 increases with the increase of theψ 

for k=1 and k=2. Finally, The relative difference of k0=0.2 

and k0=1.0 increases with the increase of the φ and the ψ 

for k=1 and k=2. The solution in this study also provides a 

new idea and method for solving the cavity expansion 

problem by using critical state model. It can be applied to 

the study of geotechnical problems such as static 

penetration test and jacked piles in dilatant soils. It has 

certain theoretical significance for perfecting and enriching 

the theory of elasto-plastic cavity expansion (Li et al., 

2017). 
 

 

4. Conclusions 
 

On the basis of the Cam-Clay model and considering the 

effect of initial anisotropic stress and drained conditions, a 

novel theoretical solution for created cavity expansion 

problem are investigated in this study for the first time. 

Compared with the previous solutions, the following 

improvements have been achieved: 

(1) The proposed solution eliminates the limitation of 

the condition of initial isotropic stress which is usually 

required by existing results, so it can be applied to more 

general cases. 

(2) A general drained solution is proposed in this study, 

which is rather different from the existing results that are 

usually based on the isotropic and undrained conditions. 

(3) The parametric study is presented in order to the 

engineering significance of this work, the initial stress state 

of natural soil mass is anisotropy by soil deposition and 

consolidation. With the factor k0 varying from 0.2 to 1.0, 

the rb/a decreases with the increase of initial anisotropic 

stress factor k0 for k=1 and k=2, and the p/σh0 decreases 

with the increase of initial anisotropic stress factor k0 for 

k=1 and k=2, it is indicate that ignoring the effect of initial 

anisotropic stress factor k0 on the rb/a and the p/σh0 will be 

miscalculated results. 
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