
Geomechanics and Engineering, Vol. 19, No. 2 (2019) 127-139 

DOI: https://doi.org/10.12989/gae.2019.19.2.127                                                                  127 

Copyright © 2019 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7                                                             ISSN: 2005-307X (Print), 2092-6219 (Online) 

 
1. Introduction 
 

One of the most important issues that civil engineers 

usually encounter in various projects is the design of the 

foundations of the structures, which is affected by two 

factors including ultimate bearing capacity and settlement. 

The maximum stress from the foundation, which the soil 

withstands without shear failure is defined as the ultimate 

bearing capacity. Foundations are normally categorized into 

two groups including shallow and deep foundations, 

according to their depth and application. In shallow 

foundations, the ratio of depth to width is smaller than or 

equal to four (Das, 2015). Different researchers have 

investigated the problem of the estimation of the ultimate 

bearing capacity of shallow foundations. The most well-

known studies are those conducted by Terzaghi (1943), 

Meyerhof (1963), Hansen (1970) and Vesic (1973). These 

researches are based on classic methods which tried to 

simplify the issue by considering some assumptions. Using 

the results of laboratory model tests on the shallow 

foundations is very useful for improving the weaknesses of 

the prediction of ultimate bearing capacity by traditional 

formulae derived considering some simplifying 

assumptions. 

Model tests of different scales have been conducted to  
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investigate the behavior of the shallow foundations. 

Because performing large scale experiments is costly and 

time consuming, small-scale experiments were also done in 

addition to large-scale ones.  

In addition to laboratory tests, many other researches 

focused on the numerical modeling of shallow foundations 

through various methods such as finite element, finite 

difference, etc. In recent years, soft computational 

approaches which are able to find hidden complex relations 

in various phenomena are used to model the ultimate 

bearing capacity of the foundation. Some investigations 

conducted on predicting the foundation bearing capacity by 

these methods include the studies by Padmini et al.  (2008) 

using the neuro-fuzzy model, Kalinli et al. (2011) using the 

artificial neural network (ANN), Shahnazari and Tutunchian 

(2012) using multi-gene genetic programming (GP) and 

multiple linear regression (MLR), Tsai et al. (2013) using 

the three types of genetic programming (GP), Sadrossadat 

et al. (2013) using the linear genetic programming (LGP), 

etc. The equations derived from the application of these 

methods as well as the classic relationships are listed in 

Table 1.  

Parameters including the width of the foundation (B), the 

embedment depth of the foundation (D), the length of the 

foundation (L), the effective unit weight of the soil (γ) and 

the internal friction angle of the soil (φ)  are effective in 

determining the ultimate bearing capacity of the shallow 

foundations on cohesionless soils (Foye et al. 2006). Thus, 

these parameters are used as the inputs to create models by 

means of artificial intelligence.  

In this research, a new hybrid approach called “M5’- 
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analysis of the proposed model indicates the significance of various predictors. Additionally, it is inferred that the new model 
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Table 1 Classic and artificial intelligence-based equations 

Classic 

approaches 
 

Reference Relationship 

Terzaghi (1943) 𝑞𝑢 = 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾 

 𝑁𝑞 = 𝐾𝑞 𝑡𝑎𝑛 𝜑΄ , 𝑁𝛾 =
1

2
𝑡𝑎𝑛 𝜑΄ (𝐾𝛾 𝑡𝑎𝑛 𝜑΄ − 1) 

Meyerhof (1963) 𝑞𝑢 = 𝑞𝑁𝑞𝐹𝑞𝑠𝐹𝑞𝑑𝐹𝑞𝑖 +
1

2
𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑑𝐹𝛾𝑖 

 𝑁𝑞 = 𝑡𝑎𝑛 (45 +
𝜑

2
)

2

𝑒𝜋 𝑡𝑎𝑛 𝜑 , 𝑁𝛾 = (𝑁𝑞 − 1) tan 1.4𝜑 

Hansen (1970) 𝑞𝑢 = 𝑞𝑁𝑞𝐹𝑞𝑠𝐹𝑞𝑑𝐹𝑞𝑖 +
1

2
𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑑𝐹𝛾𝑖 

  𝑁𝑞 = 𝑡𝑎𝑛 (45 +
𝜑

2
)

2

𝑒𝜋 𝑡𝑎𝑛 𝜑 , 𝑁𝛾 = 1.5(𝑁𝑞 − 1) tan 𝜑 

Vesic (1973) 𝑞𝑢 = 𝑞𝑁𝑞𝐹𝑞𝑠𝐹𝑞𝑑𝐹𝑞𝑖 +
1

2
𝛾𝐵𝑁𝛾𝐹𝛾𝑠𝐹𝛾𝑑𝐹𝛾𝑖 

 𝑁𝑞 = 𝑡𝑎𝑛 (45 +
𝜑

2
)

2

𝑒𝜋 𝑡𝑎𝑛 𝜑 , 𝑁𝛾 = 2(𝑁𝑞 − 1) tan 𝜑 

Artificial intelligence approaches 

Reference Relationship 

Shahnazari-MLR 
(2012) 

𝑞𝑢 = 103(−2.6264 + 0.0592𝐵 + 1.9714𝐷

− 0.0135
𝐿

𝐵
− 0.0305𝛾

+ 0.0827𝜑) 

Shahnazari- 

Multigene GP 
(2012) 

𝑞𝑢 = 2 × 10−12𝜑7(𝐵 + 𝐷) (
𝐿

𝐵
+ 𝜑)

2

+
10−8𝐷2𝜑6(𝐵 − 𝛾)2

𝐿
𝐵

 

Tsai-GP (2013) 𝑞𝑢 = 𝑒0.134𝜑 + (
2.88 − 𝜑

𝐷𝛾
) + (𝑙𝑜𝑔 𝐷 + 𝐵𝜑)𝑙𝑜𝑔 6.77+𝛾 

Sadrossadat-LGP  

(2013) 

𝑞𝑢 = 𝜑((𝛾 + 𝜑 +
3.95(𝜑 − 35)2

𝐿
𝐵

)𝐷2

+ 2.5(𝐵(𝜑 − 35) + 1)) 

 

 

GP” was employed to predict the ultimate bearing capacity 

of the shallow foundation on granular soil. The basis of the 

method is classification of the input data using M5’ model 

tree followed by creating the relationships using genetic 

programming. Certain ranges of parameters involved in the 

shallow foundation bearing capacity problem were 

considered and it was assumed that the soil is granular, the 

ground is horizontal and the load is vertically applied to the 

center of the foundation. The rest of this paper is outlined as 

follows. The second section gives an explanation about 

model tree, genetic programming, and the hybrid model. 

Details of the collected data are shown in the third section. 

The fourth section explains about building the model, 

obtained results, and discussion. The model sensitivity 

relative to input parameters is discussed in the fifth section. 

A comparison based on a ranking system is given in the 

sixth section and finally, the conclusions are provided in the 

seventh section. 

 

 

2. Hybrid modeling approach 
 

2.1 Model tree 
 

The model tree is a strong method highly capable of 

analyzing the data and presenting predictive models. This 

capability is based upon the formation of the various 

relationships in the appropriate branches of the data created 

by the algorithm according to the output values. Model tree 

is a special form of regression trees. Also, regression tree is 

a specific type of the decision tree. A decision tree which 

predicts the numerical variables is called the regression tree. 

Moreover, a regression tree, which presents linear 

regression equations on its leaves, is defined as the model 

tree. The M5’ is a kind of model tree algorithms primarily 

introduced by (Wang 1997). In order to build a model tree, a 

tree is first created by the M5’ algorithm. The data 

branching is performed based on the expected standard 

deviation reduction (SDR) for each attribute (input data). 

The process of dividing the data continues until the sum of 

the square deviations from the mean of the data reaches 

almost zero or  a few number of samples remain  

(Quinlan 1992). After creating the tree, a linear regression 

relationship will be formed for each leaf of the tree. If the 

model’s standard deviation reduction in the first node (root) 

of sub-tree is less than or equal to the expected error of sub-

tree, the sub-tree will be pruned (Avval and Derakhshani 

2018, Etemad-Shahidi and Ghaemi 2011, Jafariavval and 

Derakhshani 2019). The optimal tree is selected based on 

minimizing the prediction error. Finally, in order to 

compensate the discontinuity which is unavoidably 

appeared between the linear models in leaves of the pruned 

tree, smoothing will be performed (Bhattacharya and 

Solomatine 2005). In this operation, by integrating the 

available model in each leaf into available models in the 

root-to-leaf path, the ultimate model is given in each leaf 

(Kaveh 2018, Wang, 1997). 
 

2.2 Genetic programming 
 

Genetic programming is a robust method developed for 

automatic programming. Genetic programming is a special 

form of the genetic algorithm that uses its operators such as 

crossover, mutation and reproduction, with the chromosome 

sizes changing by the modified genetic operators. This 

symbolic optimization technique based on Darwin’s theory 

was introduced by Koza (1992) and Banzhaf et al. (1998). 

The equation trees generated by this method will be used as 

a model or a computer program. Each of these models or 

computer programs is a member of the population. New 

generation will be generated by applying genetic operators 

such as the crossover, mutation and reproduction to the 

previous population. In the crossover, a random gene is 
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selected from both parents that exchange their genes to 

produce new children. In the mutation, a random gene is 

selected from the parent. Then, the gene is either deleted or 

replaced by a new random gene. In reproduction, suitable 

individuals are copied to new population. Chromosomes 

representation is in the form of tree and graph. The 

individuals of the population in genetic programming, are 

the computer-generated trees (graphs) which are the 

hierarchical constructs having different sizes and shapes. 

These are made of sets of functions and terminals which are 

determined by the user. Functions are mathematical 

operators and terminals or leaves are the variables or 

constants. Afterward, the genetic programming will perform 

a revolutionary search in an enormous space of equations 

that can be expressed by these initial values. Genetic 

programming includes the following steps: 

1. Generating a primary population from the random 

combination of functions and terminals which produces N 

programs (solutions) with different size and shape. 

2. Running each program of the population and 

evaluating it via obtaining the solution fitness. 

3. Generating a new population of the individuals 

(programs) based on the selection of the genetic operators 

randomly. 

- If the selected operator is reproduction, the best 

individuals of the current population will be selected and 

copied to the new one. 

- If the selected operator is crossover, two parent 

individuals will be selected. Then, genes of individuals are 

selected and they are replaced by each other. The two 

generated children are put in the new population. Crossover 

plays a vital role in the evolutionary process. 

- If the selected operator is mutation, an individual will 

be chosen from the current population. Then, a gene of this 

individual is selected and mutation process is performed by 

either deleting or replacing the gene. Mutation helps 

keeping diversity. 

4. The third stage continues until the new population 

reaches the N members. Performing stages 2 to 4 continue 

until a proper solution is obtained and if it does not get any 

proper solution, it will end after a certain number of 

iterations. Proper solution assessment is accomplished by an 

index that is the sum of the absolute difference values 

between the obtained results and observed results which is 

originally called Euclidean distance. The lower index is an 

indication of the superiority of the individual. It is worth  

 

 

Fig. 2 An example of the M5’-GP method application 
 

 

noting that different variations of genetic programming 

have been successfully used to solve prediction problems in 

geotechnical engineering e.g., (Alavi et al. 2010, Javadi and 

Rezania 2009, Li et al. 2016, Talebi and Derakhshani 2019). 

 

2.3. M5’-GP hybrid approach 
 

M5’-GP hybrid method is based on using the 

capabilities and strong points of the M5’ and GP methods 

for solving the prediction problems. The hybrid use of these 

two methods overcomes the incapability of M5’ model tree 

to present the non-linear prediction models by using the GP. 

On the other hand, the capability of M5’ in categorizing the 

data space in conjunction with the ability of the GP for non- 

 

Fig. 1 Outline of the M5’-GP hybrid method 
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linear modelling can provide better prediction results 

(Bonakdar et al. 2015, Derakhshani 2017, 2018). In the 

hybrid method, input data is first divided into different 

groups with the help of branching feature of the model tree 

algorithm. Then, the GP is applied to each of the branches  

so that a predictive model with higher degree of accuracy is 

obtained. The procedures of the hybrid M5’-GP method are  

 

 

 

 

displayed in Fig. 1 and described in details as follows. 

 

2.3.1 Categorizing the data by M5’ model tree 
In this stage, by introducing the input data to M5’ 

algorithm, data is divided into various branches based on 
the criteria proposed by the model tree algorithm. The data 
is divided into branches based on the independent variables. 

Table 2 Parameters used to develop the prediction model 

Input Parameters 𝐵, 𝐷, 𝐿, 𝜑, 𝛾 

Output parameter 𝑞𝑢 

  
(a) B (m) (b) D(m) 

  
(c) L (m) (d) φ (rad) 

  
(e) γ (kN/m3) (f) qu (kPa) 

Fig. 3 Distribution of the data 

Table 3 Statistical description of the input data 

Parameters  B (m) D (m) L (m) γ (kN/m3) ϕ (rad) 

Maximum 
Train 3.02 0.89 3.02 20.80 0.80 

Test 3.00 0.76 3.00 20.80 0.80 

Minimum 
Train 0.03 0.00 0.03 9.85 0.56 

Test 0.04 0.00 0.04 10.2 0.56 

Mean 
Train 0.52 0.12 0.78 15.58 0.68 

Test 0.59 0.10 0.87 15.88 0.68 

Standard deviation 
Train 0.52 0.21 0.65 2.94 0.06 

Test 0.71 0.20 0.87 2.93 0.06 
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Hence, based on the defined condition in each node, data is 
divided into two groups in that node. If suitable subsets are 
not obtained, branching will be continued in each of the 
branches, otherwise branching will be stopped. 

 

2.3.2 Deriving prediction equations by GP 
In the second stage, the input data of each branch is 

separately introduced to the model.  
These groups of data are divided into training and 

testing datasets. After introducing the data to the model, the 
required settings of the genetic programming are also 
adjusted. Then, the genetic programming is applied to 
different subsets and their prediction equations will be 
obtained. 

 

2.3.3 Evaluating the developed model 
To assess the model performance, the predicted values 

on each branch using the corresponding equations and 
measured values are taken into consideration and their error 
values are calculated. An example of the application of the 
M5’-GP hybrid method is shown in Fig. 2. 
 
 

3. The database for model development 
 

To develop the M5’-GP hybrid model, 169 data were 
collected from the 12 publications by Golder et al. (1941), 
Eastwood (1951), Subrahmanyam (1967) , Muhs et al. 
(1969), Weiß (1970), Muhs and Weiß (1971), Muhs and 
Weiß (1973), Briaud and Gibbens (1997) Briaud and 
Gibbens (1999), Gandhi (2003), Cerato and Lutenegger 
(2007), and Akbas and Kulhawy (2009). These data are the 
observed values of ultimate bearing capacity of the shallow 
foundations on the granular soils corresponding to different 
values of input parameters. Such experimental results can 
reflect the physical behavior of the system well, although 
the model tests have their own limitations. Input and output 
parameters introduced to the model, are presented in Table 
2. The reference experiments were performed with different 
scales, where, 65 and 104 data out of 169 data are related to 
the small and large scale experiments, respectively. Hence, 
suitable ranges of predictors were considered for modeling. 

Fig. 3 depicts the distribution of the values of various 
parameters in the database. It can be seen that the 
distributions of different variables are not uniform and the 
densities of the samples differ for various intervals. For 
example, Fig. 3(b) and 3(e) regarding D and γ, illustrate that  
the samples are mainly weighted in the intervals of [0, 0.1] 
m and [14, 17] kN/m3, respectively. Better prediction 
performance is probably achieved in case of greater 
densities of variables. 

The statistical specifications of the data are given in 
Table 3. In order to create the model and assess its 
performance, the data is divided into two parts including 
training (80%) and evaluation (20%). These classified parts 
of the data should have close statistical indices (Shahin et 
al., 2004) 
 

 

4. Creating the M5’-GP model and discussion on the 
results 
 

4.1 Building the model 
 

In order to construct the prediction model of the ultimate 

Table 4 Statistical performance of M5΄-GP 

 

 

bearing capacity, the data of different input parameters and 
the output were introduced to the M5’ algorithm. By using 
the model tree method in WEKA (Witten et al., 2016), the 
data was divided into two branches by selecting the 
foundation width as the split criterion. This means 
that objects in the same group are more similar to each 
other than to those in other group. The splitting value was 
selected to be (B =) 0.275m (determined using the 
classification procedure in model tree) upon which the two 
branches were formed and separately considered for 
modeling by genetic programming (Searson, 2015). The 
initial settings that should be adjusted for genetic 
programming was changed many times for both subsets.  
Then, the best cases were selected among the results 
achieved based on the various settings used for the 
implementation of genetic programming. Finally, the 
prediction model of the ultimate bearing capacity was 
yielded by the following equations: 

For 𝐵 ≤ 0.275 

𝑞𝑢 = 4.83𝜑2(𝐵 + 𝐷) + 298(𝐵 + 𝐷)(𝛾 − 𝜑)

−
1.08 𝛾 (𝐵 − 𝐷)

𝐿
 + 63.35 

(1-a) 

For 𝐵 > 0.275 

𝑞𝑢 = 58.2 𝐵 − 447𝜑 + 505 𝐷(1 − 𝜑) − 752𝐷(𝐿 + 𝛾)
+ 6.35𝜑(𝐵 + 𝜑) + 11.9𝐷𝜑(𝜑 − 𝛾)
+ 7666 

(1-b) 

The new M5’-GP model is a structured representation 

(with explicit form) of the phenomena being investigated. 

This transparent configuration is the important advantage of 

the proposed model over black-box approaches like ANN, 

DNN, etc. used for various prediction purposes in civil 

engineering (Derakhshani and Foruzan 2019).  
 

4.2 Assessment of the model performance  
 

In order to evaluate the accuracy of the proposed "M5’-

GP" model, three statistical indicators, namely, correlation 

coefficients (CC), root mean square error (RMSE) and 

mean absolute error (MAE) were used. The equations of the 

three evaluation indices are as follows 

𝐶𝐶 =
∑(𝑥𝑖 − 𝑥̅) (𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2 ∑(𝑦𝑖 − 𝑦̅)2
 (2) 

𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑖 − 𝑦𝑖)2

𝑁
  (3) 

𝑀𝐴𝐸 =
∑(𝑥𝑖 − 𝑦𝑖)

𝑁
 (4) 

Data Error measure 

 CC (%) RMSE MAE 

Train 93.61 168.23 99.87 

Test 97.1 111.61 67.83 

All 94.2 158.48 93.42 
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In equations, xi is the measured value, yi is the predicted 

value, N is the number of measured values and x̅ and y̅ are 

the measured and predicted mean values. The correlation 

coefficient greater than 0.8 (CC> 0.8) shows a strong 

correlation between the model and experimental data 

(Smith, 1986). Also, the lower RMSE and MAE errors 

indicate better performance of a prediction model. The 

results of the evaluation of the new model by the statistical 

indices considering the train, test and all data are presented 

in Table 4. 

The results of Table 4 illustrate the ability of the 

proposed hybrid computational approach to predict the  

 

 

 

ultimate bearing capacity of shallow foundations. Various 

measures obtained for different sets of data show that the 

new approach is capable of presenting accurate estimates of 

the ultimate bearing capacity. 

 

4.3 Comparison with other approaches 
  

The new model for prediction of the ultimate bearing 

capacity of the shallow foundation on cohesionless soil was 

assessed using the statistical measures. These indices can be 

also considered to compare the new hybrid model with the 

classical methods suggested by Terzaghi (1943), Meyerhof  

Table 5 Comparison of the accuracy of the results by the M5’- GP and other models 

Approach Error measure 

 CC (%) RMSE MAE 

Classic 

Terzaghi (1943) 84.90 264.49 160.36 

Meyerhof (1963) 94.50 147.04 106.95 

Hansen (1970) 94.48 191.98 137.80 

Vesic (1973) 94.51 148.54 109.69 

Artificial intelligence 

Shahnazari-MLR (2012) 72.00 349.86 292.20 

Shahnazari-MGP (2012) 93.70 256.72 132.83 

Tsai-GP (2013) 73.27 522.19 242.30 

Sadrossadat-LGP (2013) 95.90 177.99 120.11 

M5΄ - GP (Current study) 97.10 111.61 67.83 

  
(a) (b) 

 
(c) 

Fig. 4 Observed and estimated ultimate bearing capacity by M5’-GP: (a) train (b) test (c) all 
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(1963), Hansen (1970) and Vesic (1973), as well as the 

methods based on artificial intelligence presented by 

Shahnazari and Tutunchian (2012) (MLR), Shahnazari and 

Tutunchian (2012) (MGP), Tsai et al. (2013) and 

Sadrossadat et al. (2013). Table 5 compares the evaluation 

indices of new hybrid model with those of various classical 

methods and artificial intelligence-based methods available 

for predicting the ultimate bearing capacity. 

   As shown in Table 5 the performance of the 

proposed model is better and it is more accurate than the 

classical and artificial intelligence-based methods for 

predicting the ultimate bearing capacity. Fig. 4 depicts the 

correlation between the measured and predicted values of 

the hybrid model regarding the training, test, and total data. 

In Fig. 4, the closeness of points to the ideal line (predicted 

= measured) indicates the ability of the model to predict the 

ultimate bearing capacity. According to the plots of Fig. 4, it 

can be found that the model’s accuracy at lower values of 

ultimate bearing capacity is higher than that of greater 

values. In Fig. 5, the results of the proposed prediction 

model are compared with classical and artificial 

intelligence-based methods in separate graphs regarding the 

test data. Fig. 5 displays that the predicted values by the 

hybrid model are closer to those observed in the 

experiments comparing with classical and computational 

intelligence-based methods. The conformity between the 

predicted and the measured values can be determined via  

 

 
 

calculation of DRi as follows 

𝐷𝑅𝑖 =
𝑦𝑖

𝑥𝑖

  (5) 

In Eq. (5), xi  is the measured value and yi  is the 

predicted value. The closer the average DRi of the model 

results to one, the more accurate is the model in predicting 

the bearing capacity. Fig. 6, illustrates the histograms of the 

DRi  values of different methods. The models that have 

greater number of predicted-to-measured ratios in the range 

of 0.75 to 1.25 are more reliable to predict the ultimate 

bearing capacity. As shown in fig. 6, for the hybrid model, 

about 80% of the data is in this range, which is the best 

value among different models. 
 

4.4 Parametric study 
 

The response of the prediction models to their 

independent variables can be investigated via conducting a 

parametric analysis (Rostami et al. 2018, Sadrossadat et al. 

2018). This investigation is performed by evaluating the 

response of the predictive model to the variations of a 

desired predictor while other predictors are kept constant at 

their mean values in the whole dataset. The values of every 

input parameter being studied were introduced to the model 

equations and the qu was computed. Fig. 7 illustrates the 

tendency of the qu estimations to the changes of different  

 
 

(a) Classic (b) Artificial Intelligence 

Fig. 5 Comparison of the prediction ability of different models 

 

Fig. 6 DR values of various models for prediction of the ultimate bearing capacity 
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governing parameters. These charts demonstrate that qu 

increases with increasing B, D, γ, and f. Also, it is shown 

that qu decreases with increase in L/B. In general, it is 

found that the trends are consistent with those of 

experimental data in accordance with the results reported by 

Sadrossadat et al. (2013). 

 

 

5. Sensitivity analysis 
 

To investigate the effects of different predictors on the 

prediction of the ultimate bearing capacity of the shallow 

foundation provided by the hybrid method, a set of 

sensitivity analyses are performed. The significance of an 

input parameter on the prediction results can be determined 

by changing its value and keeping other parameters 

constant. Initially, the average and the standard deviation 

values of the data for all parameters were calculated. Then, 

the influences of the addition and subtraction of the 

standard deviation of a certain parameter with respect to its 

average value were considered. To this aim, the values 

of SAi
1 and SAi

2  were computed as follows 

 

Table 6 Sensitivity analysis of the input parameters 

Parameter B D L φ γ 

Equation (1-a) 58 64 72 95 74 

Ra 5 4 3 1 2 

Equation (1-b) 330 1271 155 726 324 

Rb 3 1 5 2 4 

Ra+Rb 8 5 8 3 6 

R 4 2 4 1 3 

 

 

𝑆𝐴𝑖
1 = 𝑄𝑢(𝑀 + 𝜎𝑖) − 𝑄𝑢(𝑀) (6) 

𝑆𝐴𝑖
2 = 𝑄𝑢(𝑀 − 𝜎𝑖) − 𝑄𝑢(𝑀) (7) 

where Qu is the predictive model for determining the 
ultimate bearing capacity, M denotes the mean values of all 
data for each parameter and σi is the standard deviation of 
the ith input which its significance is evaluated. 
Accordingly, the SA value for each parameter is calculated 
by the following equation 

𝑆𝐴𝑖 = |𝑆𝐴𝑖
1 − 𝑆𝐴𝑖

2| (8) 

  
(a) (b) 

  

(c) (d) 

 
(e) 

Fig. 7 Parametric study on the developed M5’-GP model 
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The greater  SAi value for a parameter indicates the greater 

effect of that parameter on the estimation of the ultimate 

bearing capacity. The value of SAi  was calculated for each 

parameter in each branch of the model separately and the 

importance of the parameters on the predictions of each 

branch were obtained. Table 6 summarizes the values 

of  SAi  for different governing parameters. As can be seen, 

the effectiveness of the parameters in the first branch is 

ranked by the parameter Ra and that of the second branch is 

ranked by the parameter Rb. Then, the significance of the 

parameters on the estimations of both branches is obtained 

by the summation of Ra and Rb. The lower the value of this 

summation for a certain parameter, the greater the effect of 

that parameter. The final ranking of the importance of the 

parameters is specified by the parameter R. As shown in 

Table6, the most significant parameter is the internal 

friction angle of the soil (φ) followed by the embedment 

depth of the foundation (D). The next important input 

parameters are respectively the effective unit weight of the 

soil (γ) and, width and length of the foundation (B and L).  

 

 

6. Ranking 
 

In order to compare different methods of predicting the 

bearing capacity of the shallow foundations on granular 

soils comprehensively, a ranking system was created (Abu-

Farsakh and Titi 2004). The ranking presented in Table 7, is 

conducted for the classical and the computational 

intelligence-based methods in addition to the new hybrid 

model. Three scoring indices of this system are: 

 R1 is the scoring based on the correlation rate of the 

predicted and measured values using the correlation 

coefficient (CC). As shown in Table 7, the correlation 

coefficient of the hybrid model is better than other models, 

hence the value of R1 for the hybrid model is considered to 

be 1. The other models are also scored based on their 

correlation coefficient. 

R2 is the scoring based on the mean (μ) and the standard 

deviation (σ) of the predicted to the measured values, 
qup

qum
. 

The ranking of models were determined based on the  

 

 

closeness of the mean values of  
qup

qum
  to one and their 

standard deviation to zero. According to the R2 index, the 

hybrid model ranks first due to its proper performance 

regarding both criteria. 

R3 is the scoring based on P50 and P90 that are the 

cumulative probabilities of 50% and 90% of the 
qup

qum
 values. In other words, 50% of the ratios of the 

predicted to measured values are smaller than P50; and P90 

is the upper bound value of 90% of the ratios of the 

predictions to observations. The less the difference between 

the two values of P50 and P90, the better the performance 

of the model. 

The final ranking is determined by the index RI which 

equals to summation of R1, R2 and R3. The lower RI 

exhibits the greater ability of a method in predicting the 

ultimate bearing capacity.  Table 7 shows that the proposed  

model has the best performance with regard to all indices as 

it obtained the best rank compared to other methods. This 

reveals the superiority of the hybrid model from different 

viewpoints, in contrast to the other approaches considered. 
 
 

7. Conclusions 
 

In this research, a new hybrid model was developed for 

predicting the ultimate bearing capacity of shallow 

foundations on granular soils. The model was built based on 

M5’ model tree and genetic programming methods with 

consideration of strong points and ignoring the weak points 

of each method. To create this model, 169 laboratory data 

was collected from the experimental studies of the previous 

researchers. The data is initially split by the model tree. 

Then, the GP model was applied on each branch of data and 

the prediction equations for the ultimate bearing capacity 

were presented. The results of the novel hybrid method 

were evaluated by several statistical indices. The model was 

also compared with classic and artificial intelligence 

techniques, previously suggested to determine the ultimate 

bearing capacity of shallow foundations. The following 

conclusions can be drawn from the present study: 

1. A robust model consisting of two equations was 

Table 7 Ranking system of the prediction models for ultimate bearing capacity 

Method 
Correlation coefficient 

Arithmetic calculations 
of qup /qum 

Cumulative probability Overall ranking 

CC (%) R1 μ σ R2 P50 P90 R3 RI R 

Terzaghi 

(1943) 
84.90 7 0.99 0.41 2 0.86 1.78 4 13 4 

Meyerhof (1963) 94.50 4 0.89 0.31 3 0.90 1.36 2 9 2 

Hansen (1970) 94.40 5 0.73 0.30 7 0.71 1.08 9 21 7 

Vesic 

(1973) 
94.51 3 0.88 0.31 5 0.87 1.28 3 11 3 

Shahnazari-MLR 
(2012) 

72 9 0.80 1.61 6 0.76 1.84 8 23 8 

Shahnazari-MGP 

(2012) 
93.7 6 0.84 0.39 4 0.80 1.28 5 15 5 

Tsai-GP (2013) 73.27 8 0.75 0.27 9 0.82 1.66 6 24 9 

Sadrossadat-LGP 
(2013) 

95.9 2 0.73 0.37 8 0.78 1.08 7 17 6 

M5΄ - GP 97.1 1 1.02 0.21 1 1.01 1.28 1 3 1 
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derived for predicting the ultimate bearing capacity of 

shallow foundations on granular soil using a hybrid 

approach. The evaluation of this model indicated that the 

ability of the M5’ algorithm for branching the data 

associated with the ability of genetic programming for 

nonlinear modeling, can well simulate the experimental 

values of the ultimate bearing capacity by suggesting a 

relationship with high correlation coefficient. 

2. The M5’-GP hybrid model was compared with the 

classic methods including Terzaghi, Meyerhof, Hansen and 

Vesic, and the artificial intelligence-based models such as 

MLR, Multi-gene GP, GP, and LGP. It was concluded that 

the new model proposed to determine the ultimate bearing 

capacity of the shallow foundation performs better than the 

previous methods regarding all the three indices of MAE, 

RMSE, and CC. 

3. According to the sensitivity analysis conducted on the 

hybrid model, the internal friction angle of the soil (φ) had 

the greatest impact on the model. The embedment depth of 

the foundation (D) also had a significant effect on the new 

model. The effective unit weight of the soil (γ), width of the 

foundation (B), and length of the foundation (L) are the 

other important parameters in determining the ultimate 

bearing capacity by the proposed model, respectively. 

4. A comprehensive ranking system was created based 

on four important indices: the correlation coefficient of 

predicted and measured values, mean and standard 

deviation of measured values to predicted ones, cumulative 

probability of 50% and 90% of observation to prediction 

ratios. The results of this ranking indicated the superiority 

of the M5’-GP hybrid approach in predicting the ultimate 

bearing capacity of shallow foundations from different 

aspects, in contrast to other methods. 
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Appendix A: Compiled database for developing the 
predictive model of the ultimate bearing capacity 
 

Table A1 Training data 

Foundation 

width (B) 

Foundation 

depth (D) 

Aspect 

ratio (L/B) 

Specific 

gravity (γ) 

Internal friction 

angle (ϕ) 

Ultimate bearing 

capacity (qu) 
 

0.6 0.3 2 9.85 34.9 270 
 

0.6 0.3 2 10.2 37.7 570 

0.6 0 2 10.85 44.8 860 

0.6 0.3 2 10.85 44.8 1760 

0.5 0 1 10.2 37.7 165  

0.5 0 2 10.2 37.7 203  

0.5 0 2 10.2 37.7 195  

0.5 0 3 10.2 37.7 214  

0.52 0 3.85 10.2 37.7 186  

0.5 0.3 1 10.2 37.7 681  

0.5 0.3 2 10.2 37.7 530  

0.5 0.3 3 10.2 37.7 402  

0.52 0.3 3.85 10.2 37.7 413  

0.5 0 1 11.7 37 111  

0.5 0 1 11.7 37 132  

0.5 0 2 11.7 37 143  

0.5 0.013 1 11.7 37 137  

0.5 0.029 4 11.7 37 109  

0.5 0.127 4 11.7 37 187  

0.5 0.3 1 11.7 37 406  

0.5 0.3 1 11.7 37 446  

0.5 0.5 2 11.7 37 565  

0.5 0.5 4 11.7 37 425  

0.5 0 1 12.41 44 782  

0.5 0.3 1 12.41 44 1940  

0.5 0.5 2 12.41 44 2847  

0.5 0.5 4 12.41 44 2033  

0.5 0.49 4 12.27 42 1492  

0.5 0 2 11.77 37 123  

0.5 0 2 11.77 37 134  

0.5 0.3 1 11.77 37 370  

0.5 0.5 2 11.77 37 464  

0.5 0 4 12 40 461  

0.5 0.5 4 12 40 1140  

1 0.2 3 11.97 39 710  

0.991 0.711 1 15.8 32 1773.7  

2.489 0.762 1 15.8 32 1158  

1.492 0.762 1 15.8 32 1540  

3.016 0.889 1 15.8 32 1161.2  

0.0585 0.029 5.95 15.7 34 58.5  

0.0585 0.029 5.95 16.1 37 82.5  

0.0585 0.058 5.95 16.1 37 98.9  

0.0585 0.029 5.95 16.5 39.5 121.5  

0.0585 0.058 5.95 16.5 39.5 142.9  

Table A1 Continued 
Foundation 

width (B) 

Foundation 

depth (D) 

Aspect 

ratio (L/B) 

Specific 

gravity (γ) 

Internal friction 

angle (ϕ) 

Ultimate bearing 

capacity (qu) 
 

0.0585 0.029 5.95 17.1 42.5 180.5  

0.0585 0.058 5.95 17.1 42.5 211  

0.094 0.047 6 15.7 34 74.4  

0.094 0.047 6 16.1 37 104.8  

0.094 0.094 6 16.1 37 127.5  

0.094 0.047 6 16.5 39.5 155.8  

0.094 0.094 6 16.5 39.5 185.6  

0.094 0.094 6 16.8 41.5 244.6  

0.094 0.047 6 17.1 42.5 235.6  

0.094 0.094 6 17.1 42.5 279.6  

0.152 0.075 5.95 15.7 34 98.2  

0.152 0.15 5.95 15.7 34 122.3  

0.152 0.15 5.95 16.1 37 176.4  

0.152 0.075 5.95 16.5 39.5 211.2  

0.152 0.15 5.95 16.5 39.5 254.5  

0.152 0.075 5.95 16.8 41.5 285.3  

0.152 0.075 5.95 17.1 42.5 335.3  

0.152 0.15 5.95 17.1 42.5 400.6  

0.094 0.047 1 15.7 34 67.7  

0.094 0.094 1 15.7 34 90.5  

0.094 0.094 1 16.1 37 131.5  

0.094 0.047 1 16.5 39.5 147.8  

0.094 0.094 1 16.5 39.5 191.6  

0.094 0.047 1 16.8 41.5 196.8  

0.094 0.047 1 17.1 42.5 228.8  

0.094 0.094 1 17.1 42.5 295.6  

0.152 0.075 1 15.7 34 91.2  

0.152 0.15 1 15.7 34 124.4  

0.152 0.15 1 16.1 37 182.4  

0.152 0.075 1 16.5 39.5 201.2  

0.152 0.15 1 16.5 39.5 264.5  

0.152 0.075 1 16.8 41.5 276.3  

0.152 0.075 1 17.1 42.5 325.3  

0.152 0.15 1 17.1 42.5 423.6  

0.08 0 1 17.2 42.8 133  

0.15 0 1 17.2 42.8 246  

0.05 0 1 17.2 42.8 109  

0.1 0 1 17.1 42.8 152  

0.15 0 1 17.1 42.8 214  

0.25 0 1 17.1 42.8 333  

0.3 0 1 17.1 42.8 404  

0.03 0 1 15.89 42 52  

0.05 0 1 15.89 42 95  

0.06 0 1 13.2 32 14  

0.06 0 1 15.4 42 106  

1 0 1 19.5 38.75 377  

1 0 1 19.5 38.75 335  
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Table A1 Continued 
Foundation 

width (B) 

Foundation 

depth (D) 

Aspect 

ratio (L/B) 

Specific 

gravity (γ) 

Internal friction 

angle (ϕ) 

Ultimate bearing 

capacity (qu) 
 

1 0 1 19.5 38.75 305  

1 0 1 19.5 38.75 400  

1 0 1 19.5 38.75 296  

1 0 1 19.5 38.75 390  

0.71 0 1 19.5 38.75 438.4  

1 0 1 16.8 40.55 773  

1 0 1 16.8 40.55 685  

1 0 1 16.8 40.55 560  

1 0 1 16.8 40.55 598  

1 0 1 16.8 40.55 584  

1 0 1 16.8 40.55 716  

1 0 1 16.8 40.55 922  

1 0 1 16.8 40.55 659  

1 0 1 16.8 40.55 640  

1 0 1 16.8 40.55 626  

1 0 1 16.8 40.55 927  

0.7 0 1 16.8 40.55 612.2  

0.75 0 1 20.8 44.95 856.9  

0.45 0 1 20.8 44.95 953.1  

0.45 0 1 20.8 44.95 454.3  

0.3 0 1 20.8 45.7 422.2  

0.3 0 1 20.8 45.7 900  

0.3 0 1 20.8 45.7 1688.9  

0.91 0 1 14.6 31.95 324.8  

0.61 0 1 14.6 31.95 94.1  

0.61 0 1 14.6 31.95 322.5  

0.61 0 1 19 37 258  

0.8 0 1 17.1 39.75 348.4  

0.63 0 1 17.1 39.75 365.3  

0.46 0 1 17.1 39.75 104  

0.31 0 1 15.8 37.9 478.7  

1.2 0 1 20.4 41 1129.9  

0.3 0 1 20.4 41 1277.8  

0.3 0 1 20.4 41 811.1  

0.3 0 1 20.4 41 333.3  

0.3 0 1 20.4 41 233.3  

0.76 0 1 16.2 40.8 744.4  

0.31 0 1 16.2 40.8 260.1  

0.31 0 1 16.2 40.8 468.3  

1 0.71 1 15.5 35.3 1550  

1.5 0.76 1 15.5 35.3 1355.6  

2.5 0.76 1 15.5 35.3 1152  

3 0.89 1 15.5 35.3 1011.1  

 

Table A2 Testing data 

Foundation 

width (B) 

Foundation 

depth (D) 

Aspect 

ratio (L/B) 

Specific 

gravity (γ) 

Internal friction 

angle (ϕ) 

Ultimate bearing 

capacity (qu) 

0.6 0 2 10.2 37.7 200 

Table A2 Continued 

Foundation 

width (B) 

Foundation 

depth (D) 

Aspect 

ratio (L/B) 

Specific 

gravity (γ) 

Internal friction 

angle (ϕ) 

Ultimate bearing 

capacity (qu) 

0.5 0 1 10.2 37.7 154 

0.5 0.3 2 10.2 37.7 542 

0.5 0.3 4 11.7 37 322 

0.5 0 4 12.41 44 797 

0.5 0.5 2 12.41 44 2266 

1 0 3 11.93 40 630 

3.004 0.762 1 15.8 32 1019.4 

0.0585 0.058 5.95 15.7 34 70.91 

0.0585 0.029 5.95 16.8 41.5 157.5 

0.094 0.094 6 15.7 34 91.5 

0.094 0.047 6 16.8 41.5 206.8 

0.152 0.075 5.95 16.1 37 143.3 

0.152 0.15 5.95 16.8 41.5 342.5 

0.094 0.047 1 16.1 37 98.8 

0.094 0.094 1 16.8 41.5 253.6 

0.152 0.075 1 16.1 37 135.2 

0.152 0.15 1 16.8 41.5 361.5 

0.08 0 1 17.1 42.8 130 

0.2 0 1 17.1 42.8 266 

0.04 0 1 15.89 42 92 

0.06 0 1 14.8 42 72 

1 0 1 19.5 38.75 368 

1 0 1 19.5 38.75 435 

1 0 1 16.8 40.55 500 

1 0 1 16.8 40.55 726 

1 0 1 16.8 40.55 825 

0.75 0 1 20.8 44.95 1020.4 

0.3 0 1 20.8 45.7 600 

0.61 0 1 14.6 31.95 196.2 

0.46 0 1 14.6 31.95 259.9 

1.2 0 1 20.4 41 978.5 

0.3 0 1 20.4 41 522.2 

3 0.76 1 15.5 35.3 1144.4 
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