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1. Introduction 
 

The cyclic response of laterally loaded piles has recently 

received considerable attention with the sharp increase of 

offshore operations by the oil and gas industry. An offshore 

pile foundation that supports a drilling and production 

platform deviates from classic pile scenario because the 

offshore environment poses additional challenge of a large 

number of load cycles induced by wind and wave. The 

development of the p-y curve for modeling soil reaction 

was based on the semi-empirical method. The laterally 

loaded pile was modeled as a Winkler elastic beam 

supported by nonlinear soil springs (Reese et al. 1974). The 

full-scale tests under both static and cyclic lateral loads 

recognized the limitation of theoretical formulation, and 

thus input parameters of p-y curve were modified to adjust 

the relative density and cyclic load effect (Reese and Cox 

1975, API 1993). 

A renewed interest in long-term pile foundations has 

also been driven by an increase in offshore wind turbines to 

generate renewable energy. The design of an offshore 

foundation mainly depends on the water depth, sediment  
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properties, loading types, and available construction 

method. Among offshore foundations types, including 

gravity bases, suction caissons, and tripods, the monopile 

has been the most commonly selected foundation type due 

to its low cost, simple construction, and appropriateness for 

shallow water (Malhotra 2010). The design procedure for 

wind turbine monopiles still follows the semi-empirical p-y 

curve based on the low failure rate of in-service piles over 

many decades. The guidelines were established for long-

flexible piles (embedded depth to diameter L/D ~ 34), for 

which the pile bending capacity is more critical than its 

rotation resistance. Consequently, the method has been 

revisited to evaluate its applicability to large-diameter 

monopiles. Experimental studies show that the stress-strain 

response for large-diameter monopiles is more flexible than 

that the American Petroleum Institute (API) calculation 

method because the soil resistance to the lateral movement 

of the pile is more developed with a mobilized friction 

angle (Dyson and Randolph 2001, Bienen et al. 2012, Choo 

and Kim 2016, Jeong et al. 2017). In addition, the large-

diameter pile behaves as a rigid pile and the accumulated 

rotation (i.e., angular displacement) is more prevalent than 

the deflection on the pile head (Leblanc et al. 2010, Peng et 

al. 2011, Kuo et al. 2012, Arshad and O’Kelly 2016). 

Recently, a series of model tests under 1g conditions were 

conducted to investigate the pile-soil interaction during 

long-term lateral cyclic loading (Cuéllar et al. 2009, Shi et 

al. 2018). The experimental study showed that the pile 

subjected to cyclic lateral loading experienced a cone-

shaped subsidence in the sand around the upper part of the 

pile and a densified truncated cone-shaped zone along the 
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pile shaft. 

The long-term monopile response to repetitive loading is 

characterized by the evolution of displacements, pile 

rotation, and stress redistribution along the embedded pile. 

The effects of pile geometries and number of repetitive 

loadings on the soil response need to be better understood. 

This study explores the long-term soil response around 

offshore monopolies using the finite element method 

(FEM). A semi-empirical numerical approach is adopted to 

account for fundamental features of volumetric strain 

(terminal void ratio) and shear strain (shakedown and 

ratcheting), the strain accumulation rate, and stress 

obliquity. The parametric study includes pile diameter, 

embedded length, and moment arm distance from the 

surface. This manuscript starts with a review of 

fundamental features for long-term soil response. The 

numerical simulations under static and repetitive loads are 

presented next followed by an analysis of the results. In 

addition, further interpretation explains the propagation of 

shear localization that has been previously observed in the 

surrounding soil of monopile over a long period of time. 
 

 

2. Fundamental features: Volumetric and shear 
strain 
 

The analysis of the long-term soil response on 

geostructures requires characterizing the plastic strain 

accumulation, which depends on soil type and density, 

initial effective stress (static stress), cyclic stress amplitude 

and obliquity, and the number of cycles (Barksdale 1972, 

Brown 1974, Diyaljee and Raymond 1982, Stewart 1986, 

Kaggwa et al. 1991, Niemunis et al. 2005, Wichtmann et al. 

2007, Karg et al. 2010, Wichtmann et al. 2010, Wichtmann 

et al. 2010). Strain accumulation approaches asymptotic 

conditions as the number of cycle increases.Volumetric 

strain and shearstrain are described by the asymptotic trend. 

Volumetric strain: terminal void ratio. A soil specimen 

subjected to repetitive loading reaches a terminal void ratio 

and characteristic fabric (Narsilio and Santamarina 2008). 

While soils show contractive behavior, dilative soils 

strained significantly beyond their contraction-dilation 

transition point undergo disruption of interlocking and 

dilate as they evolve towards terminal density (Monismith 

et al. 1975, Luong 1980, Wichtmann et al. 2005). An 

experimental study under zero-lateral strain boundary 

condition exhibited a process-dependent compaction 

response towards the terminal void ratio (Chong and 

Santamarina 2016). 

Shear strain: shakedown and ratcheting. Shear strain 

accumulation shows a wider range of asymptotic 

conditions. From previous studies focused on the analysis 

of soil fabric and measurement of energy losses, the 

following stages were classified (Koiter 1960, Barksdale 

1972, Brown 1974, Sawczuk 1974, Monismith et al. 1975, 

Sharp and Booker 1984, García-Rojo and Herrmann 2005): 

• Elastic shakedown: when cyclic loads cause a strain 

level below the elastic threshold strain, the soil recovers the 

original state upon unloading, and the dissipated energy per 

cycle remains constant thereafter; there is no creation or 

loss of interparticle contacts. 

• Plastic shakedown: the strain level in each cycle 

exceeds the elastic threshold strain, the soil undergoes 

contact slippage and particle rearrangement in every cycle 

and energy dissipation involves frictional loss; yet, there is 

no accumulation of residual shear strain at the end of the 

cycle. 

• Ratcheting: plastic shear strains continue accumulating 

in every cycle. While interparticle contacts change in every 

cycle, polar plots of contacts and contact forces analyzed at 

the end of every cycle converge towards constant 

asymptotic conditions after a large number of cycles. 

 

 

3. Numerical methods 
 

The numerical modeling of long-term geostructures 

needs to track the incremental plastic strain induced by each 

cycle and update the stress increment; yet the accumulation 

of physical deformation should be larger than the 

accumulation of numerical errors. To overcome implicit-

based calculation, a semi-empirical explicit scheme was 

previously proposed that incorporates classical constitutive 

mode into the strain accumulations functions (Suiker and de 

Borst 2003, Niemunis et al. 2005, François et al. 2010, Kuo 

et al. 2012, Pasten et al. 2014). Some accumulation 

functions need the numerical cutoff criterion to stop 

accumulating plastic strain when the cyclic strain drops 

below the elastic threshold or when the void ratio reaches 

the terminal void ratio. The criterion at every incremental 

cycle should be checked with strains for all nodes, and thus 

requires higher computation cost during large number of 

cycles. This study adopts the semi-empirical explicit 

scheme, which satisfies the asymptotic conditions in the 

volumetric strain and shear strain. The algorithm is 

developed within the framework of FEM and consists of 

three steps, as summarized in Fig. 1. 

 

3.1 Numerical algorithm 
 

Step 1: Geostatic stress and first load cycle 

Geostatic stress and initial static load are exerted on an 

offshore foundation using standard FEM and a mechanical 

constitutive model (stage O); the Modified Cam Clay model 

is utilized in this study. Then, the sequential loads are 

applied with maximum load (stage A), minimum load (stage 

B), and the initial static load (stage C); the initial load and 

cyclic amplitude are defined by the ultimate static load and 

safety factor. The stress and strain induced by the first cycle 

load reflect the combined effect of initial void ratio, initial 

effective stress (static stress), cyclic stress amplitude and 

obliquity. The calculated stress and strain are imposed at 

nodes and elements as the initial conditions of Step 2. 

Step 2: Strain accumulation functions 

As the number of load cycles increase, the volumetric 

strain asymptotically converges toward terminal density 

while the shear strain gradually reaches a constant value 

compatible with plastic shakedown state. In addition, the 

process-dependent strain accumulation requires the 

densification rate parameter . The strain at the ith cycle are 

formulated as 
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The volumetric strain accumulation with average stress 

obliquity (navg = M) close to critical state becomes zero. 

Thus, the terminal volumetric strain can be formulated from 

Eq. (3) as i → ∞ 
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These polynomial-type strain accumulation functions  

 

Fig. 1 Steps of numerical algorithm 

 
Fig. 2 Model calibration of the strain accumulation using repetitive loading test: (a) Zero-lateral strain condition – average 

static stress ’avg = 150 kPa, and vertical cyclic stress amplitude ’v = 50 kPa (experimental data from Chong and 

Santamarina 2016); (b) Triaxial strain condition – average mean stress p’avg = 200 kPa and cyclic stress amplitude q = 60 

kPa (experimental data from Wichtmann 2005). The accumulated strain acc = [(axial)2 + 2(radial)2]0.5. Points are from 

experimental test and lines are from numerical simulation. The average stress obliquity avg =qavg / pavg 
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satisfy the fundamental features of volumetric strain and 

shear strain, the strain accumulation rate, and stress 

obliquity. 

Step 3: Incremental stress and strain during  N cycle 

The stress increment  during N cycle is updated 

with the accumulated strain vector defined by plasticity 
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where De is the elastic stiffness matrix [66], t and p 

are total and plastic strain increments [61], I is identify 

vector [61], p’N and qN are mean and deviatoric stress 

components of the stress state from the previous cycle N. 

The stress increment updated by the accumulated strains 

caused unbalanced forces in the system. The unbalanced 

forces are equilibrated in subsequent iterations. The 

preconsolidation pressure pc’ that defines the size of the 

yield surface is calculated with the updated void ratio and 

effective mean stress 
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where e1kPa is the void ratio at 1kPa,  is the isotropic 

compression, and  is the isotropic recompression. The load 

cycle increment N significantly affects numerical 

stabilities. In particular, the early cycles (N < 100) produces 

the most pronounced displacements. Thus, the load cycle 

was increased with the exponential function N = 1.2m, 

where m is integer number increment from 0. 
 

3.2 Model calibration 
 

The numerical algorithm was implemented using the 

UMAT subroutine in ABAQUS 6.14. The model calibration 

is performed with different strain boundary conditions and 

stress obliquity. The constitutive parameters (a, b, c) are 

defined by formal inversion (note that the strains induced 

Table 1 Model parameters used in this study: (a) Modified Cam Clay parameters and (b) Strain accumulation functions. 

The loose sand properties for Ko condition are used to simulate the long-term monopile foundation in section 4.2 

(a) MCC Parameters Symbol Value 

Unit weight [kN/m3]  18.0 

Isotropic compression [ ]  0.01 

Isotropic recompression [ ]  0.001 

Drained Poisson’s ratio [ ]  0.3 

MCC strength (for Axial Compression)  1.42 

Friction angle [o] ’ 35 

Void ratio at 1kPa [ ] e1kPa 0.785 

Coefficient of earth pressure at rest [ ] Ko 0.58 

(b) Empirical strain accumulation functions 

 
Stress obliquity Accumulated strain rate 

Accumulated volumetric strain 

v
acc|N 

Accumulated shear strain q
acc|N 

avg  a1 a2 b1 b2 c1 

Triaxial condition 

0.5 1.02 0.5 1.0 -0.15 0.8 810-5 

1 1.02 0.5 1.0 -0.15 0.65 510-5 

1.125 1.02 0.5 1.0 -0.15 0.62 310-5 

Ko condition 
0.4 (Loose) 1.01 0.31 0.4 -0.56 0.4 0 

0.4 (Dense) 1.18 0.48 0.4 -0.71 0.4 0 

  

Fig. 3 Element tests of strain accumulation: (a) Zero-lateral strain test - Evolution of lateral stress coefficient and (b) 

Triaxial test - Cumulative radial strain. 
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by the first loading and the model parameters remain 

constant during numerical simulation). Fig. 2 shows the 

comparison between experimental data from previous 

studies (Wichtmann 2005, Chong and Santamarina 2016) 

and the numerical simulations from this study for 

accumulated strain. For the zero-lateral strain condition, the 

model matches well with the adopted densification rate 

parameter. The calibrated model parameters are summarized 

in Table 1. The terminal volumetric strain can be computed 

with the calibrated constitutive parameters by using 

equation 5. This analysis shows that a soil element with the 

densification factor  = 1.14 and the average stress 

obliquity avg = 0.4 reaches a terminal volumetric strain 

vN→ = 0.015 if vN→ = 0.001. Also, the model tested 

with the triaxial strain conditions predicts the measured data 

with a different rate of strain accumulation under different 

stress obliquity. While limited data is used to adjust the 

numerical model, the comparisons confirm that the strain 

function with the relaxation of these parameters can be 

suitable for tracking the incremental plastic strains induced 

by different strain boundary conditions and stress 

obliquities. 

 

3.3 Physical validation 
 

Fig. 3(a) shows the evolution of the horizontal to 

vertical stress ratio k = ’h/’v under a zero-lateral strain 

boundary condition. The stress ratio largely increases 

during the first few cycles and converges towards the 

asymptote for a large number of cycles. Similar results are 

observed in experimental tests under a zero-lateral strain 

condition (Finn 1981, Bouckovalas et al. 1984, Sawicki 

1994, Sawicki and Swidzinski 1995). Fig. 3(b) shows the 

calculated cumulative radial strain with the number of load 

cycles under the triaxial strain condition. Higher average 

stress obliquity avg produces more cumulative strain, as 

observed in previous studies (Chang and Whitman 1988, 

Wichtmann et al. 2010). 
 

 

4. Simulation of monopile foundation 
 

A monopile foundation is simulated by imposing a static 

load followed by a repetitive load due to the lack of the load 

history. The initial static load and load amplitude are 

defined by the ultimate static load which varies with pile 

geometries (diameter D, and embedded length L, and 

moment arm distance from the surface h). Thus, the 

ultimate lateral load is numerically investigated under static 

load, followed by a monopile response to the repetitive 

loads. 

 

4.1 Ultimate lateral resistance under static load 
 

The study of piles has been advanced in the context of 

transmission lines, power stations, heavy buildings, and 

highway structures. In many cases, lateral loads govern the 

design of piles. The soil resistance to the lateral movement 

of the pile is characterized by the distribution of lateral 

stress in front of the pile and the side shear friction. The 

stress distribution around the pile subjected to lateral load is 

affected by pile shape (Smith 1987). Several methods have 

been proposed to calculate the ultimate lateral resistance of 

free-headed laterally-loaded rigid piles based on a 

simplified horizontal stress distribution along the pile length 

(Broms 1964, Reese et al. 1974, Meyerhof et al. 1981, 

Meyerhof et al. 1988, Prasad and Chari 1999, Zhang et al. 

2005). The ultimate lateral load can be obtained from 

numerical integration of the net horizontal stress by 

subtracting the passive stress from the active one. The 

numerically computed load is compared with two empirical 

methods. The Broms method assumes that only passive 

earth pressure linearly increases along the pile and the 

active pressure is ignored. By considering the influence of 

pile shape for a 2D numerical analysis, the ultimate lateral 

load can be rewritten as (Broms 1964) 

Lh

KD
56.0H

2

p

staticult
+


=−

 

(8) 

where h is the moment arm distance from the ground 

surface, L is the embedded pile length, D is the pile 

diameter, and Kp is the passive earth pressure. Meanwhile, 

the method by Zhang et al. includes the pile-soil interface 

resistance and the rotation distance from the ground surface 

and properly predicts the lateral resistance obtained from 

both flexible and rigid model piles (Zhang et al. 2005). The 

ultimate lateral load (Hult-static) can be rewritten as 

( ) ( )La7.1a7.2tanK2KD34.0H 22

pstaticult −+=−  
(9a) 

( ) ( )
2.2

hL5.10h3.7L3.5h7.2L6.0
a

5.022 ++++−
=

 

(9b) 

where K is the lateral earth pressure coefficient, a is the 

rotation distance calculated by equation 9b, and  is the 

interfacial friction angle between the pile and soil. The K 

value is defined by the pile type and construction method 

and its typical range for normally consolidated sediment 

varies between 0.3 and 1.0 (Kulhawy 1991). K (~ 0.58) is 

selected for this study, equal to the initial Ko value. The 

interfacial friction angle is related to numerical stability. A 

pile subjected to horizontal cyclic loading compresses and 

expands soil elements, and thus the relaxation at the 

interface between the soil and pile leads to numerical 

instability (Tuladhar et al. 2008). Contact elements based 

on Coulomb friction theory are employed to improve 

contact interaction between the pile and soil elements. The 

value of /’ varies between 0 and 1, depending on the 

surface roughness, mean particle size of the sand, and the 

method of installation (Tiwari and Al-Adhadh 2014). As in 

the case of a smooth steel pipe pile,  is taken as two-thirds 

of the friction angle of the soil (=2/3’). In fact, the 

installation of a driven pile foundation inherently disturbs 

the soil around the pile; however, the disturbance effect is 

not considered in the numerical modeling because the 

plastic zone induced by horizontal repetitive loading is 

much larger than the installation disturbance (Achmus et al. 

2009). 

The monopile response to static loading is simulated 

under a plane strain boundary condition with four-node full  
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integration elements. As shown in Fig. 4, the domain size is 

100 m high and 100 m wide. Lateral boundaries are located 

far from the monopile to minimize boundary effects on 

surface settlements; vertical displacement is allowed on side  

 

 

 

 

boundaries, the bottom boundary is pinned, and the top 

surface is free. The pile is modeled as a linearly elastic 

material: a pile made of concrete with unit weight con = 25 

kN/m3, Young’s modulus Econ = 200 GPa, and Poisson’s  

 

Fig. 4 Geometry and boundary conditions used in this study 

 

Fig. 5 Horizontal stress distribution along the embedded length of the pile when a static load is laterally applied to the 

pilehead. (a) L/D = 6.7 and (b) L/D = 13.3. The pile diameter D is 3m and the relative length of pile is fixed as h/L = 0.5. 

Horizontal stress is obtained by subtracting the passive stress from the active one and continuous lines are estimated using 

Eqs. (8) and (9). 

  

Fig. 6 Effect of pile geometries on ultimate lateral resistance under static loads applied at the top of the pile. (a) D = 3 m; (b) 

D = 6 m. Continuous lines in (a) and (b) are obtained from equation (2). The stress transmitted through pile is concentrated at 

the node shared by pile element and soil element and a perfectly embedded pile (h = 0 m) is limited by numerical instability 
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ratio con = 0.3. A parametric study is conducted to explore 

the effect of pile geometries on the ultimate static load 

resistance. Note that the vertical load has little effect on the 

lateral load-carrying capacity of the monopile (Ahmed and 

Hawlader 2016). Numerically computed load resistance is 

obtained from formal load control that increases the applied 

horizontal load on the pile head until numerical instability 

occurs. The applied load is limited by mesh distortion (the 

determinant of the Jacobian matrix approaches zero and the 

stiffness integral cannot be solved). For example, a 

perfectly embedded pile (h=0m) fails to reach the ultimate 

lateral resistance because the stress transmitted through the 

pile is concentrated at the node shared by pile-and soil-

elements, and thus the neighboring elements are highly 

distorted. 

Pile rigidity has a pronounced effect on the pile-soil 

response. A free-head rigid pile under lateral load shows 

linear displacement along the embedded pile and develops 

the movement even at the pile end. For a flexible pile,  

 

 

 

significant displacement occurs on the upper part of the 

pile. Previous studies proposed rigidity parameters 

involving pile and soil stiffness to characterize a rigid or 

flexible pile (Broms 1964, Poulos and Davis 1980, 

Randolph 1981, Briaud et al. 1984). Also, the relative pile 

geometric ratio (length to diameter, L/D) can identify pile 

response; L/D > 10 (longer pile embedded length) behaves 

as flexible pile, otherwise it behaves as a rigid pile. This 

study adopts the pile geometric ratio for simplicity. (Peng et 

al. 2011, Arshad and O’Kelly 2016).  

Fig. 5 presents the horizontal stress distribution along 

the pile. When the static load is laterally applied to the node 

at the pile head, passive pressures are developed at the front 

face above the rotation point of the pile and active pressures 

are formed at the corresponding back face. The trend of 

passive stress follows an elliptical shape, yet active stress 

linearly increases from the rotation point to the pile end. 

The numerically computed horizontal stress trends are 

compared with two empirical equations. While Broms  

 

Fig. 7 Monopile foundation response to horizontal repetitive load for different cycles: (a) Accumulation of horizontal 

displacement; Distribution of (b) void ratio and (c) deviatoric stress. 

  
Fig. 8 Effect of horizontal load amplitude on the displacement evolution of a pile foundation: (a) Horizontal displacement; 

(b) Vertical displacement. The displacements are measured at the ground surface (Point A) and their signs follow the 

coordinates. The horizontal load amplitudes H are defined by 5%, 10%, and 15% of Hallowable ~ 2.1 MN (FS = Hult / 

Havg ~ 6). 
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method, which disregards the horizontal stress on the active 

side, overestimates the ultimate lateral resistance, the Zhang 

method captures the shape of horizontal stress. In addition, 

the rotation point is approximately located at around 0.75L 

in both cases. The numerically observed rotation point was 

approximately 0.78L (for h  0) and decreased with longer 

moment arm. The typical range is 0.7L ~ 0.78L for the 

monopile foundation (Ahmed and Hawlader 2016). 

Different pile geometries are simulated and compared with 

the Zhang method, as shown in Fig. 6. A longer pile 

embedded in soil elements (higher L/D) enhances the 

ultimate lateral resistance due to a higher overturning 

moment, yet the ultimate load is decreased with higher 

eccentricity (longer h). The comparison shows that the 

numerical analysis causes slightly higher ultimate 

horizontal load than the Zhang method in all cases. 

 

4.2 Monopile foundation response to repetitive load 
 

A monopile foundation on sand is simulated by 

imposing a static load (Hallowable) followed by repetitive 

lateral load (H). The numerically predicted lateral 

resistance is Hult = 12.6 MN for L/D = 6.7 and h/L = 0.5 

(Fig. 6(b)). Thus, average static load Hallowable = 2.1 MN  

 

 

 

(factor of safety FS = 6) and cyclic load amplitude H = 

0.32MN (0.15Hallowable) are applied on the node at pile top. 

Fig. 7 presents the stress and strain fields according to 

the number of cycles. The horizontal repetitive load 

produces horizontal displacements (Fig. 7(a)). The plastic 

displacement initiates in soil elements located on the ground 

surface, yet propagates along the soil elements up to the 

neighboring toe of the pile. The repetitive loads cause 

additional horizontal displacement of 4 cm after N = 9,100. 

Correspondingly, the void ratio field shows a “soil 

densification effect” (Fig. 7(b)). The void ratio gradually 

decreases at the passive side and the pile end. A previous 

experimental study observed that the sand surrounding the 

pile subjected to cyclic horizontal load on the pile head 

undergoes densification and grain migration. It reveals the 

clear presence of two distinct sand domains due to 

convective granular flow near the pile (Cuéllar et al. 2009). 

Further interpretation is provided in the Discussion section 

of this paper. The deviatoric stress field shows either 

strength-hardening or- softening, depending on the pile side 

(Fig. 7(c)). The repetitive load increases the shear resistance 

following the loading direction while the opposite side 

undergoes repetitive softening that propagates toward the 

pile end. 

  
Fig. 9 Effect of moment arm distance on the displacement evolution of a pile foundation: (a) Horizontal displacement and 

(b) Vertical displacement. The displacements are measured at the ground surface (Point A). The average and cyclic loads 

are Hallowable = Hult / 6 and H = 0.10Hallowable for ultimate lateral resistance Hult defined by static load shown in 

Fig. 6 

  

Fig. 10 Effect of pile geometries (embedded pile depth L and diameter D) on the displacement evolution of a pile 

foundation subjected to repetitive loading: (a) Horizontal displacement and (b) Vertical displacement. The relative length of 

the pile is fixed as h/L = 0.05. Note that the horizontal load amplitude ratio taken as 10% in all cases is defined by the 

ultimate lateral load corresponding to its pile geometry (Fig. 6) 
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Repetitive load amplitude, which plays a crucial role in 

characterizing long-term pile response, has a pronounced 

effect on the accumulation of vertical and horizontal 

displacements (Fig. 8). The horizontal load amplitude is 

defined by the ultimate horizontal load computed from a  

 

 

 

 

static simulation (Fig. 6) and safety factor (FS = 6). While 

both displacements increase proportionally to the repetitive 

load amplitude, horizontal displacement is larger than 

vertical displacement. Most displacements occur during 

early cycles (N < 100), yet their accumulation rate is 

  

Fig. 11 Evolution of horizontal displacement along a monopile foundation: (a) Number of cycles (D = 3 m) and (b) 

Horizontal load amplitudes (N = 1,021). The displacements are measured at nodes along the pile. The relative length of pile 

is h/L = 0.05 

  

Fig. 12 Change in horizontal stress along a monopile foundation subjected to repetitive lateral loads: Redistribution of 

lateral stress with (a) D = 3 m (flexible pile) and (b) D = 6 m (rigid pile) for load cycles N=1, 11, 95, and 9,100. The 

relative length of pile is h/L = 0.05. Lateral stress is obtained by subtracting the active stress from the passive stress on the 

pile 

  

Fig. 13 Evolution of lateral load resistance: (a) Pile geometry (h/L = 0.05) and (b) Moment arm distance (L = 40 m and D = 

6 m). Lateral load resistance at end of each cycle is calculated from numerical integration of lateral stress shown in Fig. 11 
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decreased for a large number of cycles. The asymptotic 

displacement increases with higher horizontal load 

amplitude. As anticipated, cumulative displacements 

become more pronounced as FS decreases. 
An offshore monopile undergoes the eccentric load 

induced by wind and waves that act on the upper part of the 
pile. The effects of eccentric loads on the displacement of 
the monopile are examined as shown in Fig. 9. The 
simulation presents that a shorter eccentric ratio (h/L) 
produces larger horizontal displacement at the ground 
surface, yet the vertical displacement show contrary trend. 
This is because the repetitive horizontal load with larger 
moment arm (i.e., longer h) mostly contributes to the 
vertical response. 

Fig. 10 shows the effect of pile geometry on the 
evolution of displacement. When the repetitive horizontal 
load corresponding to each pile geometry ratio (L/D) is 
exerted on the pile head, larger diameter (at the same 
embedded depth) or longer embedded pile depth (at the 
same diameter) piles produces larger displacements. It 
should be noted that if the same magnitudes of horizontal 
load are applied to different pile geometry, the longer h/L or 
lower L/D pile would produce more displacement. 

Fig. 11 presents the evolution of horizontal 
displacements along the pile. After the first cycle, the pile 
experiences a displacement transition from compression to 
extension. In Fig. 11(a), the critical depth (distance from 
ground surface to the transition point) remains constant 
after the number of cycles, while the horizontal 
displacement gradually evolves from the zero displacement 
point. The critical depth is approximately located at around 
0.9L regardless of embedded pile depth; the longer moment 
arm distance h slightly reduces the critical depth for both 
rigid and flexible piles (from 36 m to 33 m – not presented 
here). In fact, previous simulations observed that the 
embedded pile depth has little influence on the critical 
depth (Achmus et al. 2009, Kuo et al. 2012). Higher 
horizontal load amplitude increases the displacement along 
pile (Fig. 11(b)). The trends of horizontal displacement are 
significantly affected by relative pile geometry ratio. A low 
L/D ratio (L/D ~ 6.7) exhibits a rigid pile response where 
the displacement linearly increases from the embedded pile 
depth. Meanwhile, a flexible pile (L/D ~ 13.3) shows a 
nonlinear pattern of displacement where incremental rate of 
displacement largely increases toward the ground surface. 

The variation in lateral stress along the pile is explored 
as shown in Fig. 12. The initial regime of active pressure 
decreases and its magnitude increases around the pile end. 
However, the pile rigidity results in a distinct pattern on the 
passive side. For the flexible pile, horizontal stress 
decreases until the upper part of the pile, yet increases from 
the middle part of the pile (Fig. 12(a)). The rigid pile (larger 
diameter) shows that a local reduction of the horizontal 
stress takes place around the middle of the pile (Fig. 12(b)). 

The lateral load resistance in each cycle is calculated 
from numerical integration of the net lateral stress by 
subtracting the active stress from the passive stress. The 
lateral load resistance is evaluated in terms of the 
dimensionless ratio 

( ) 100
H

HH
%

1N

1NiN 
−

=
=

==

 

(10) 

Fig. 13 shows the evolution of the lateral load resistance 

with the number of cycles. In all cases, the repetitive lateral 

load enhances the lateral load resistance followed by soil 

densification around the pile. 

 

 

5. Discussion 
 

5.1 Propagation of shear localization around pile 
 

An insightful investigation into the long-term pile 

response was conducted by observing the particle 

movements as a function of the number of cycles (Cuéllar et 

al. 2009). It was revealed that the sediment surrounding the 

pile subjected to cyclic horizontal load experiences coupled 

densification and granular convection related to particle 

rearrangement and constant sliding as the main mechanisms 

for plastic deformation; as the pile moves back and forth, 

the stress relaxation at the pile-soil interface enables the 

sand grains adjacent to the pile-head to move downwards 

along the interface. Once the grains are densely packed up 

to the critical depth, they could not move further down. The 

rotation frustrations among the grains are overcome with 

frictional slippage at contact and the migrating grains would 

move forward pushed by the following grains. While they 

move toward the ground surface, the convective granular 

flow occurs within the pile-head vicinity. The shear band 

formed by the coupled densification and granular 

convection is captured with the numerical continuum model 

used in this study (Fig. 14). The numerically observed 

gradient of shear stress at the end of cycle shows the 

propagation of shear localization from the pile tip to the 

ground surface, which is very similar to the shear band 

marked by the mixture of colored particles. In addition, the 

progressive pile movement induced by the horizontal 

repetitive loads eventually changes the passive failure line 

developed from the pile tip. The failure line formed by the 

tangent line to the trajectory is greater than the passive 

failure line (=45 − ’/2) because the repetitive loads 

improves the passive resistance defined by the static load. 

 

5.2. Uncertainty of friction angle 
 

Friction angle plays a controlling role in accumulating 

the soil deformations around the pile. For the static load, the 

mobilized angle of internal friction and dilation angle is 

characterized by the relative density, confining pressure, 

and plastic shear strain. In particular, the friction anisotropy 

is observed in triaxial axial extension AE and compression 

cases AC for normally consolidated clays (Mayne and Holtz 

1985). The repetitive loads increase the interaction between 

the pile and the surrounding soils and progressively change 

the interfacial friction angle. Furthermore, the Modified 

Cam Clay model used in this study fails to not only predict 

the observed softening and dilatancy of dense sands, but 

also recognize the mobilized friction angle during the 

repetitive loads. Indeed, the soils around the monopile 

experience a different stress path and accumulated strain 

levels, and thus the selection of friction angle involves large 

uncertainty. 
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6. Conclusions 
 

This study analyzes a monopile foundation subjected to 

repetitive loads. A semi-empirical numerical scheme that 

consists of two parts is used (1) to extract stress and strains 

at the first cycle using the Modified Cam Clay model and 

(2) to track the progressive accumulation of plastic 

deformation during repetitive loading using an empirical 

accumulation function. In particular, the strain function 

contains fundamental features to capture the long-term soil 

behavior: volumetric strain (terminal void ratio) and shear 

strain (shakedown and ratcheting), the strain accumulation 

rate, and stress obliquity. A model is calibrated under 

different strain boundary conditions by relaxing four model 

parameters.  

Numerical simulations show the accumulation of 

vertical and horizontal displacements and stress 

redistribution with the number of horizontal load cycles. 

Higher horizontal load amplitude accumulates larger 

displacements. The relative pile geometry (embedded pile 

length to diameter ratio L/D) has a pronounced effect on the 

trends of the horizontal displacement profile. The low L/D 

ratio (L/D ~ 6.7) exhibits a rigid pile response where the 

displacement linearly increases from the embedded pile 

depth. Meanwhile, the flexible pile (L/D ~ 13.3) shows a 

nonlinear pattern of displacement where the incremental 

rate of displacement largely increases toward the ground 

surface. The pile rigidity causes a distinct pattern on the 

passive side formed along the loading direction. For the 

flexible pile, horizontal stress decreases up to the upper part 

of the pile, yet increases from the middle part of the pile. 

The rigid pile (larger diameter) shows that a local reduction 

of the horizontal stress occurs around the middle of the pile. 

The numerically computed lateral load resistance increases 

with the number of load cycles due to the soil densification 

around the pile. Further analysis reveals that the convective 

granular flow is drawn by the gradient of shear stress at the 

end of the cycle. 
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