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1. Introduction 
 

Thick plate, thin plate, and a membrane have a large 

difference according to their structure. Thin circular plates 

and membranes are widely used in pressure sensors, 

microphones, loudspeakers, gas flow meters, optical 

telescopes, solar powers, radio and radar antennae, and 

many other devices. Plate theories are beneficial for designs 

and analyses of these devices. Zhao (2008) described the 

flexural properties of a plate which were influenced by its 

thickness. According to Zhao (2008), plates can be 

classified into three categories: membranes, thin plates, and 

thick plates depending upon the aspect ratio. The aspect 

ratio is defined as 𝑎/ℎ, where 𝑎  is diameter of a plate 

and ℎ is the thickness of plate. The plates with aspect ratio, 

 𝑎/ℎ ≥  80 . . .100 are referred as membranes. It is termed 

as thin plate with aspect ratio as  8…10 ≤ 𝑎/ℎ ≤
 80… .100. Moreover, if 𝑎/ℎ ≤  8 . . .10, the plate is termed 

as thick plate. 

Deshmukh et al. (2005, 2006) considered the inverse 

problem of transient heat conduction in a thin finite circular 

plate with integral transform technique and the thin circular 

plate for unknown heating temperatures in the form of 

Bessel functions and with integral techniques. Kanoria et al. 

(2011) studied the thermoelastic response of fiber-

reinforced thin circular disc with three-phase lag due to 

axisymmetric thermoelastic loading. Gaikwad et al. (2005, 

2012, 2016) deliberated the circular plate for known interior 

temperature under Steady-state field, a thin circular plate 

due to uniform internal energy generation using Hankel 

transform technique for its solution and the inverse problem  
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of thermoelasticity in a thin isotropic circular plate. 

Khobragade et al. (2012) examined thermal deflection of a 

thin circular plate using boundary conditions of radiation 

type. Mahmoud (2012) had considered the impact of 

rotation, relaxation times, magnetic field, gravity field and 

initial stress on Rayleigh waves and attenuation coefficient 

in an elastic half-space of granular medium and obtained 

the analytical solution of Rayleigh waves velocity by using 

Lame’s potential techniques. Mahmoud (2012) considered 

the impact of rotation, relaxation times, magnetic field, 

gravity field and initial stress on Rayleigh waves and 

attenuation coefficient in an elastic half-space of granular 

medium and obtained the analytical solution of Rayleigh 

waves velocity by using Lame’s potential techniques. 

Varghese et al. (2014) studied thermoelastic deformation 

with annular heat supply on a thin circular plate.  Keivani 

et al. (2014) discussed the forced vibration problem of a 

Euler-Bernoulli beam with a semi-infinite field by 

considering it a BVP in the frequency domain. Alzahrani 

(2016)  investigated 2D generalized magneto-

thermoelasticity of a fiber-reinforced anisotropic material 

under GN theory- III type. Tripathi et al. (2017a, b) 

investigated a quasi-static uncoupled theory of 

thermoelasticity based on time-fractional heat conduction 

equation for a thin circular plate and studied a thin hollow 

circular disk with quasi static uncoupled theory of 

thermoelasticity with the time-fractional derivative of order 

alpha subjected to a time-dependent heat flux. Vinyas et al. 

(2017) discovered a multiphysics behaviour of magneto-

electro-elastic (MEE) cantilever beam using thermo-

mechanical loading. Moreover, Kumar et al. (2017a) 

investigated the homogeneous isotropic thermoelastic thick 

circular plate with dual-phase lags and two temperatures. 

Ezzat and El-Bary (2017a) had applied the magneto-

thermoelasticity model to a one-dimensional thermal shock 

problem of functionally graded half-space based on a 

memory-dependent derivative. Ahire et al. (2019) studied a 
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problem of thermal stresses in circular plate due to internal 

moving heat sources with integral transform technique. 

Despite this, several researchers worked on different theory 

of thermoelasticity as Marin (1994, 1999), Abbas & Youssef 

(2009), Mohamed et al. (2009), Palani  and Abbas 

(2009),Othman and Abbas (2012), Zenkour & Abbas 

(2014), Sharma et al. (2015), Kumar et al. (2017, 2016a), 

Marin (2016), Ezzat et al. (2012), Abbas  (2007, 2014, 

2015), Ezzat et al. (2017), Othman & Marin (2017), Akbaş 

(2017), Ozdemir (2018), Taleb et al. (2018), Houari et al. 

(2018), Heydari (2018), Chauthale et al. (2017) , Marin and 

Craciun (2016, 2017), Lata and Kaur (2018) , Marin et al. 

(2017, 2018), Lata and Kaur (2019a, b, c, d), and Kaur and 

Lata (2019a, b) and Liu et al. (2019). Inspite of all these 

efforts, no attempt has been made for thermoelasticity of 

thin circular plate with rotation and time-harmonic source. 

In this paper, we have attempted to study the 

deformation in transversely isotropic thin circular plate due 

to isothermal/thermally insulated boundaries with rotation 

and time-harmonic source.  The Laplace and Hankel 

transform has been used to obtain the general solution of the 

field equations. The analytical expressions of stresses, 

conductive temperature, displacement components are 

computed in transformed domain. However, the resulting 

quantities are obtained in the physical domain by using 

numerical inversion technique. Some particular cases are 

also discussed. 
 

 

2. Basic equations 
 

Following Lata et al. (2019c) and Abd-Alla & Alshaikh 

(2015) the constitutive relations and field equations for an 

anisotropic thermoelastic medium in absence of body forces 

and heat sources are 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙 − 𝛽𝑖𝑗 (1 + 𝜏1

𝜕

𝜕𝑡
) 𝑇, (1) 

𝐶𝑖𝑗𝑘𝑙𝑒𝑘𝑙,𝑗 − 𝛽𝑖𝑗 (1 + 𝜏1
𝜕

𝜕𝑡
) 𝑇,𝑗 = 𝜌�̈�𝑖, (2) 

𝐾𝑖𝑗𝜑,𝑖𝑗 = (1 + 𝜏0

𝜕

𝜕𝑡
) (𝜌𝐶𝐸�̇�) + 𝛽𝑖𝑗𝑇0�̇�𝑖𝑗 , (3) 

where 

𝑇 =  𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗 ,  𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝛼𝑖𝑗,  

𝑒𝑖𝑗 = 
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖).  𝑖 = 1,2,3 

(4) 

We should note that for G-L theory the thermal 

relaxation time must satisfy the relation 𝜏1 ≥ 𝜏0 > 0and 

following Kumar et al. (2016b), equation of motion for a 

uniformly rotating medium with an angular velocity 𝛀 is 

𝑡𝑖𝑗,𝑗 + 𝐹𝑖 =  𝜌{�̈�𝑖 + (𝛀 × (𝛀 × 𝐮)𝑖 + (2𝛀 × 𝒖)̇𝑖 }, (5) 

Here 𝐶𝑖𝑗𝑘𝑙are elastic parameters and having symmetry 

(𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘). The symmetries in  𝐶𝑖𝑗𝑘𝑙  

is due to 

• The stress tensor is symmetric, which is only possible 

if (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙). 

• If a strain energy density symmetry exists for the 

material, the elastic stiffness tensor must satisfy 𝐶𝑖𝑗𝑘𝑙 =

 𝐶𝑘𝑙𝑖𝑗 . 

• From stress tensor and elastic stiffness, tensor 

symmetries infer (𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘)  and 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 =

 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 . 

 

 

3. Formulation of the problem 
 

We consider a transversely isotropic thin circular plate 

of thickness 2b occupying the space D defined by 0 ≤ 𝑟 ≤
∞,−𝑏 ≤ 𝑧 ≤ 𝑏. Thin plates are usually characterized by the 

ratio a / b (the ratio between the length of a side, a, and the 

thickness of the material, b, falling between the values of 8 

and 80 as mentioned by Ventsel et. al. (2001). Let the plate 

be subjected to axisymmetric heat supply and 

thermomechanical load applied into its inner boundary 

having initially undisturbed state at a uniform temperature 

T0. We use plane cylindrical co-ordinates (r, θ, z) with the 

centre of the plate as the origin. 

As the problem considered is plane axisymmetric, 
(𝑢, 𝑣, 𝑤, 𝑎𝑛𝑑 𝜑) are independent of  𝜃 . We restrict our 

analysis to a two-dimension problem with �⃗⃗� =
(𝑢, 0, 𝑤). Also applying the transformation 

 𝑥′ = 𝑥′ = 𝑥 𝑐𝑜𝑠 𝜙 + 𝑦 𝑠𝑖𝑛𝜙,  𝑦′ = −𝑥 𝑠𝑖𝑛𝜙 + 𝑦𝑐𝑜𝑠𝜙, 𝑧′ = 𝑧. (6) 

where 𝜙 is the angle of rotation in x-y plane, on the set of 

equations (1)-(3) to derive the equations for transversely 

isotropic thermoelastic solid with two temperatures and 

with energy dissipation, to obtain 

𝐶11 (
𝜕2𝑢

𝜕𝑟2 + 
1

𝑟

𝜕𝑢

𝜕𝑟
−

1

𝑟2 𝑢) + 𝐶13 (
𝜕2𝑤

𝜕𝑟𝜕𝑧
) + 𝐶44

𝜕2𝑢

𝜕𝑧2 +

 𝐶44 (
𝜕2𝑤

𝜕𝑟𝜕𝑧
) − 𝛽1 (1 + 𝜏1

𝜕

𝜕𝑡
)

𝜕

𝜕𝑟
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) −

𝑎3
𝜕2𝜑

𝜕𝑧2} = 𝜌 (
𝜕2𝑢

𝜕𝑡2 − 𝛺2𝑢 + 2𝛺
𝜕𝑤

𝜕𝑡
) , 

(7) 

(𝐶11 + 𝐶44) (
𝜕2𝑢

𝜕𝑟𝜕𝑧
+

1

𝑟

𝜕𝑢

𝜕𝑧
) + 𝐶44 (

𝜕2𝑤

𝜕𝑟2 +
1

𝑟

𝜕𝑤

𝜕𝑟
) +

 𝐶33
𝜕2𝑤

𝜕𝑧2 − 𝛽3 (1 + 𝜏1
𝜕

𝜕𝑡
)

𝜕

𝜕𝑧
{𝜑 − 𝑎1 (

𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) −

𝑎3
𝜕2𝜑

𝜕𝑧2} = 𝜌 (
𝜕2𝑤

𝜕𝑡2 − 𝛺2𝑤 − 2𝛺
𝜕𝑢

𝜕𝑡
),  

(8) 

(𝐾1) (
𝜕2𝜑

𝜕𝑟2 + 
1

𝑟

𝜕𝜑

𝜕𝑟
) + (𝐾3)

𝜕2𝜑

𝜕𝑧2 =  𝑇0 (𝛽1
𝜕�̇�

𝜕𝑟
+ 𝛽3

𝜕�̇�

𝜕𝑧
) +

𝜌𝐶𝐸 (1 + 𝜏0
𝜕

𝜕𝑡
) {�̇� − 𝑎1 (

𝜕2�̇�

𝜕𝑟2 + 
1

𝑟

𝜕�̇�

𝜕𝑟
) − 𝑎3

𝜕2�̇�

𝜕𝑧2}.  
(9) 

In above equations, we use the contracting subscript 

notations (1→ 11, 2→ 22, 3→ 33, 5→ 23, 4→ 13, 6→ 12) 

to relate 𝐶𝑖𝑗𝑘𝑙  to 𝐶𝑚𝑛 .  Also 𝑎1 and 𝑎3  are two 

temperature parameters. 

For axisymmetric problem following Dhaliwal (1980) 

and Lata et al. (2019c) Constitutive relations are 

𝑡𝑟𝑟 = 𝑐11𝑒𝑟𝑟 + 𝑐12𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, 

𝑡𝑧𝑟 = 2𝑐44𝑒𝑟𝑧 

𝑡𝑧𝑧 = 𝑐13𝑒𝑟𝑟 + 𝑐13𝑒𝜃𝜃 + 𝑐33𝑒𝑧𝑧 − 𝛽3𝑇, 

𝑡𝜃𝜃 = 𝑐12𝑒𝑟𝑟 + 𝑐11𝑒𝜃𝜃 + 𝑐13𝑒𝑧𝑧 − 𝛽1𝑇, 

(10) 

where 
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Fig. 1 Geometry of the problem 
 

 

𝑒𝑟𝑧 = 
1

2
(
𝜕𝑢

𝜕𝑧
+ 

𝜕𝑤

𝜕𝑟
), 

𝑒𝑟𝑟 =
𝜕𝑢

𝜕𝑟
, 

𝑒𝜃𝜃 =  
𝑢

𝑟
, 

𝑒𝑧𝑧 =
𝜕𝑤

𝜕𝑧
, 

𝑇 =  𝜑 − 𝑎1 (
𝜕2𝜑

𝜕𝑟2
+ 

1

𝑟

𝜕𝜑

𝜕𝑟
) − 𝑎3

𝜕2𝜑

𝜕𝑧2
, 

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 , 𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗  , 

𝛽1 = (𝑐11 + 𝑐12)𝛼1 + 𝑐13𝛼3, 

𝛽3 =  2𝑐13𝛼1 + 𝑐33𝛼3. 

To facilitate the solution, the following dimensionless 

quantities are introduced 

𝑟′ = 
𝑟

𝐿
,   𝑧′ = 

𝑧

𝐿
, 𝑡′ = 

𝑐1

𝐿
𝑡, 𝑢′ =  

𝜌𝑐1
2

𝐿𝛽1𝑇0
𝑢,𝑤′ =

 
𝜌𝑐1

2

𝐿𝛽1𝑇0
𝑤, 𝑇′ = 

𝑇

𝑇0
, 𝑡𝑧𝑟

′ = 
𝑡𝑧𝑟

𝛽1𝑇0
, 𝑡𝑧𝑧

′ = 
𝑡𝑧𝑧

𝛽1𝑇0
, 𝛺′ =

𝐿

𝐶1
𝛺, 𝜑′ = 

𝜑

𝑇0
, 𝑎1

′ = 
𝑎1

𝐿2 , 𝑎3
′ = 

𝑎3

𝐿2. 

(11) 

where 𝑐1
2 =

𝑐11

𝜌
, and L is a constant of dimension of length. 

Assume the time-harmonic behaviour as 

(𝑢,𝑤, 𝜑)(𝑟, 𝑧, 𝑡) = (𝑢, 𝑤, 𝜑)(𝑟, 𝑧)𝑒𝑖𝜔𝑡. (12) 

Using the dimensionless quantities defined by (11) in 

equations (7)-(9) and after that suppressing the primes and 

applying Hankel transforms defined by 

𝑓(𝜉, 𝑧, 𝜔) =  ∫ 𝑓∗(𝑟, 𝑧, 𝜔)𝑟𝐽𝑛(𝑟𝜉)𝑑𝑟
∞

0
. (13) 

On the resulting quantities, we obtain 

(ζ1 + 𝛿2𝐷
2)�̃� + [ζ2𝐷 − ζ3]�̃� + (−ζ5𝐷

2 + ζ4)�̃� = 0, (14) 

(ζ2𝐷 + ζ3)�̃� + (𝛿3𝐷
2 + ζ6)�̃� + (ζ7𝐷 + ζ8𝐷

3)�̃� = 0, (15) 

ζ9�̃� + ζ10𝐷�̃� + (ζ11 + 𝐷2ζ12)�̃� = 0, (16) 

where 

𝛿1 = 
𝑐13+𝑐44

𝑐11
, 𝛿2 = 

𝑐44

𝑐11
, 𝛿3 = 

𝑐33

𝑐11
, 𝛿4 = 

𝛽1
2𝑇0

𝜌
,   𝛿5 =

 
𝛽1𝛽3𝑇0

𝜌
, 𝛿6 =  𝜌𝐶𝐸𝐶1

2, 𝐷 ≡
𝑑

𝑑𝑧
 . 

and 

ζ1 = −𝜉2 + ω2 + Ω2, 

ζ2 = 𝛿1𝜉, 

ζ3 = 2Ωωi, 

ζ4 = ξ(1 + a1ξ
2)(1 + 𝜏1𝑖𝜔), 

ζ5 =  𝑎3𝜉(1 + 𝜏1𝑖𝜔), 

ζ6 =  −𝛿2𝜉
2 + 𝜔2 + Ω2, 

ζ7 =  −
β3

β1
(1 + a1ξ

2)(1 + 𝜏1𝑖𝜔), 

ζ8 =  
β3

β1
a3(1 + 𝜏1𝑖𝜔) 

ζ9 = 𝛿4𝜔𝑖𝜉, 

ζ10 = −𝛿5𝜔𝑖, 

𝜁11 = −𝛿6(𝜔𝑖 − 𝜏0𝜔
2)(1 + a1ξ

2) − 𝜉2𝐾1 , 

𝜁12 = (𝐾3 + 𝑎3𝛿6(𝜔𝑖 − 𝜏0𝜔
2)). 

Using the dimensionless quantities defined by (11) in 

equations (10) and after that suppressing the primes and 

applying Hankel transforms defined by (13) we have 

𝑡𝑧�̃� = 
𝐶13

𝐶11

𝜉�̃� + 𝛿3𝐷�̃� −
β3

β1

(1 + 𝑎1𝜉
2 − 𝑎3𝐷

2)�̃�, (17) 

𝑡𝑟�̃� = 𝛿2𝐷�̃� − 𝜉𝛿2�̃�, (18) 

𝑡𝑟�̃� = −𝜉�̃� +
𝐶12𝜉

𝐶11
�̃� +

𝐶13

𝐶11
𝐷�̃� − (1 + 𝑎1𝜉

2 − 𝑎3𝐷
2)�̃�. (19) 

The non-trivial solution of (14)-(16) by eliminating �̃�, 

�̃�, and �̃� yields 

𝐴𝐷6 + 𝐵𝐷4 + 𝐶𝐷2 + 𝐸 = 0, (20) 

where 

𝐴 = 𝛿2𝛿3𝜁12 − 𝛿2𝜁10𝜁8, 

𝐵 = 𝜁1𝜁12𝛿3 − 𝜁1𝜁10𝜁8 + 𝛿2𝛿3𝜁11 + 𝛿2𝜁12𝜁6 − 𝛿2𝜁10𝜁7−𝜁2
2𝜁12 −

𝜁2𝜁9𝜁8 + 𝜁5𝜁10𝜁2 − 𝜁5𝜁9𝛿3, 

𝐶 = 𝛿3𝜁1𝜁11 + 𝛿2𝜁6𝜁11 + 𝜁1𝜁6𝜁12 − 𝜁1𝜁10𝜁7−𝜁2
2𝜁11 + 𝜁2𝜁7𝜁9 −

𝜁5𝜁6𝜁9 + 𝜁4𝜁2𝜁10 − 𝛿3𝜁4𝜁9 + 𝜁3
2𝜁12, 

𝐸 = 𝜁6𝜁1𝜁11 − 𝜁4𝜁6𝜁9. 

The solutions of the equation (20) can be written in the 

form 

�̃� =  ∑𝐴𝑖(𝜉, 𝜔)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (21) 

�̃� = ∑𝑑𝑖𝐴𝑖(𝜉, 𝜔)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (22) 

�̃� = ∑𝑙𝑖𝐴𝑖(𝜉, 𝜔)𝑐𝑜𝑠ℎ(𝑞𝑖𝑧), (23) 

where 𝐴𝑖,𝑖 = 1, 2, 3  being arbitrary constants, ±𝑞𝑖(𝑖 =

1,2,3) are the roots of the equation (20) and 𝑑𝑖 and 𝑙𝑖 are 

given by 

𝑑𝑖 =
(𝜁2𝜁12−𝜁8𝜁9)𝑞𝑖

3+𝜁3𝜁12𝑞𝑖
2+(𝜁2𝜁11−𝜁7𝜁9)𝑞𝑖+𝜁3𝜁11

(−𝜁8𝜁10+𝛿3ζ12)𝑞𝑖
4+(𝛿3𝜁11+𝜁6𝜁12−𝜁7𝜁10)𝑞𝑖

2+𝜁6𝜁11
,  (24) 
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𝑙𝑖 =
(−𝜁9𝛿3+𝜁1𝜁10)𝑞𝑖

2+𝜁3𝜁10𝑞𝑖−𝜁8𝜁9

(−𝜁8𝜁10+𝛿3ζ12)𝑞𝑖
4+(𝛿3𝜁11+𝜁6𝜁12−𝜁7𝜁10)𝑞𝑖

2+𝜁6𝜁11
.  (25) 

Also, from (17)-(19) and (21)-(23) we have 

𝑡𝑧�̃� = ∑𝐴𝑖(𝜉,𝜔)𝜂𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝜇𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧), (26) 

𝑡𝑟�̃� = ∑𝐴𝑖(𝜉, 𝜔)𝑀𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝑁𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧) , (27) 

𝑡𝑟𝑟 = ∑𝐴𝑖(𝜉, 𝜔)𝑅𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝑆𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧). (28) 

where 

𝜂𝑖 =  
𝐶13

𝐶11
𝜉 −

β3

β1
𝑙𝑖(1 + 𝑎1𝜉

2−a3qi
2), 

𝑅𝑖 = −𝜉 +
𝐶12𝜉

𝐶11
− (1 + 𝑎1𝜉

2 − 𝑎3qi
2), 

𝑆𝑖 =
𝐶13

𝐶11
𝑑𝑖𝑞𝑖, 

𝜇𝑖 = 𝛿3𝑑𝑖𝑞𝑖, 

𝑀𝑖 =  𝛿2𝑑𝑖𝜉, 

𝑁𝑖 = 𝛿2𝑞𝑖  , 𝑖 = 1, 2, 3. 

 

 

4. Boundary conditions 
 

We consider a cubical thermal source and normal force 

following Kar and Kanoria (2011) of unit magnitude along 

with vanishing of tangential stress components at the stress-

free surface at z = ±b. Mathematically, these can be written 

as 

ℎ1

𝜕𝜑

𝜕𝑧
+ ℎ2𝜑 =  ±𝑔𝑜𝐹(𝑟, 𝑧), (29) 

𝑡𝑧𝑧(𝑟, 𝑧, 𝑡) = 𝑓(𝑟, 𝑡), (30) 

𝑡𝑟𝑧(𝑟, 𝑧, 𝑡) = 0. (31) 

Here, ℎ2 → 0  corresponds to thermally insulated 

boundaries , ℎ1 → 0 corresponds to isothermal boundaries. 

Using the dimensionless quantities defined by(11) on the 

equations (29)-(31) and taking Hankel and Laplace 

transform of the resulting equations and then using (26)-

(27) and (21)-(23) yields 

∑𝐴𝑖(𝜉, 𝜔) 𝑙𝑖(ℎ1𝑞𝑖 + ℎ2) sinh(𝑞𝑖𝑧) = ±𝑔𝑜�̃�(𝜉, 𝑧), (32) 

∑𝐴𝑖(𝜉, 𝜔)𝜂𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝜇𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧) = 𝑓(𝜉, 𝜔), (33) 

∑𝐴𝑖(𝜉, 𝜔)𝑀𝑖𝑐𝑜𝑠ℎ(𝑞𝑖𝑧) + ∑𝑁𝑖 𝐴𝑖(𝜉, 𝜔) sinh(𝑞𝑖𝑧) , = 0.  (34) 

Solving the equations (21)-(23) with the aid of (32)-(34) 

and also solving (17)-(19), we obtain 

�̃� =  
𝑓(𝜉,𝜔)

Δ
{−𝜒1𝜗1 + 𝜒2𝜗2 − 𝜒3𝜗3} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4𝜗1 − 𝜒5 𝜗2 +𝜒6𝜗3}, (35) 

�̃� =      
𝑓(𝜉,𝜔)

Δ
{−𝜒1 𝑑1 𝜗1 + 𝜒2 𝑑2 𝜗2 − 𝜒3 𝑑3 𝜗3} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4 𝑑1 𝜗1 − 𝜒5 𝑑2𝜗2 +𝜒6 𝑑3 𝜗3},  

(36) 

�̃� =
𝑓(𝜉,𝜔)

Δ
{−𝜒1 𝑙1 𝜗1 + 𝜒2 𝑙2 𝜗2 − 𝜒3 𝑙3 𝜗3} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4 𝑙1 𝜗1 − 𝜒5 𝑙2𝜗2 +𝜒6 𝑙3 𝜗3},  

(37) 

𝑡𝑧�̃� =
𝑓(𝜉,𝜔)

Δ
{−𝜒1𝐺4 + 𝜒2𝐺5 − 𝜒3𝐺6} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4𝐺4 −

𝜒5 𝐺5 +𝜒6𝐺6},  
(38) 

𝑡𝑧�̃� =
𝑓(𝜉,𝜔)

Δ
{−𝜒1𝐺7 + 𝜒2𝐺8 − 𝜒3𝐺9} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4𝐺7 −

𝜒5 𝐺8 +𝜒6𝐺9},  
(39) 

𝑡𝑟�̃� =
�̃�(𝜉,𝜔)

Δ
{−𝜒1𝐺10 + 𝜒2𝐺11 − 𝜒3𝐺12} +

𝑔𝑜�̃�(𝜉,𝑧)

Δ
{𝜒4𝐺10 − 𝜒5 𝐺11 +𝜒6𝐺12}, 

(40) 

where 

Gi = 𝑙𝑖(ℎ1𝑞𝑖 + ℎ2)𝜃𝑖, 

Gi+3 = 𝜂𝑖 𝜗𝑖 + 𝜇𝑖𝜃𝑖 , 

Gi+6 = 𝑁𝑖 𝜃𝑖 + 𝑀𝑖 𝜗𝑖 , 

Gi+9 = 𝑆𝑖 𝜃𝑖 + 𝑅𝑖 𝜗𝑖 , 𝑖 = 1,2,3. 

Δ = G1𝜒4 − G2𝜒5 + G3𝜒6, 

Δ1 = −𝑓(𝜉, 𝑠)𝜒1 + 𝑔𝑜�̃�(𝜉, 𝑧)𝜒4, 

Δ2 = 𝑓(𝜉, 𝑠)𝜒2 − 𝑔𝑜�̃�(𝜉, 𝑧)𝜒5, 

Δ3 = −𝑓(𝜉, 𝑠)𝜒3 + 𝑔𝑜�̃�(𝜉, 𝑧)𝜒6, 

𝜒1 = [G2G9 − G8G3], 

𝜒2 = [G1G9 − G7G3], 

𝜒3 = [G1G8 − G2G7], 

𝜒4 = [G5G9 − G8G6], 

𝜒5 = [G4G9 − G6G7], 

𝜒6 = [G4G8 − G5G7], 

𝜗𝑖 = cosh(𝑞𝑖𝑧) , 𝜃𝑖 = sinh(𝑞𝑖𝑧) , 𝑖 = 1,2,3 

 

 

5. Applications 
 

For constant load and heat source which decays moving 

away from the centre of the thin circular plate in the radial 

direction as well as along the axial directions 

𝑓(𝑟, 𝑡) = 𝐻(𝛼 − 𝑟)𝑒𝑖𝜔𝑡 , 𝐹(r, z) =
1

√𝑟2+𝑧2
 (41) 

where 𝐻(𝛼 − 𝑟)  is the Heaviside function. Applying 

Hankel Transform, on Equations (41), gives 

𝑓(𝜉, 𝜔) =  
𝛼𝐽1 (𝜉𝛼)

𝜉
𝑒𝑖𝜔𝑡 , �̃�(𝜉, 𝑧) =

𝑒−𝜉|𝑧|

𝜉
  (42) 

 

 

6. Inversion of the transforms 
 

To find the solution of the problem in physical domain, 

invert the transforms in equations (35)-(40) by inverting the 

Hankel transform using 
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𝑓∗(𝑟, 𝑧, 𝑠) =  ∫ 𝜉𝑓(𝜉, 𝑧, 𝑠)𝐽𝑛(𝜉𝑟)𝑑𝜉

∞

0

 (45) 

The last step is to calculate the integral in Eq. (45). The 

method for evaluating this integral by using Romberg’s 

integration with adaptive step size is described in Press et 

al. (1986).  

 

 

7. Particular cases 
 

(i) If the coupling constant is taken zero i.e., 𝛿4 =
0 𝑎𝑛𝑑𝛿5 = 0 then (32)-(37) gives results for a transversely 

isotropic thermoelastic thin plate for uncoupled generalized 

thermoelasticity with two relaxation times. 

 

 

8. Numerical results and discussion 
 

In order to illustrate our theoretical results in the 

proceeding section and to show the effect of rotation in 

different forms of boundary conditions as mentioned in 

applications in the above part, we now present some 

numerical results. Cobalt material is chosen for the purpose 

of numerical calculation, which is transversely isotropic. 

The physical data for cobalt material, which is transversely 

isotropic, is taken from Dhaliwal and Singh (1980) is given 

by 

𝑐11 = 3.07 × 1011𝑁𝑚−2, 

𝑐12 = 1.650 × 1011𝑁𝑚−2, 

𝑐13 = 1.027 × 1010𝑁𝑚−2, 

𝑐33 = 3.581 × 1011𝑁𝑚−2 

𝑐44 = 1.510 × 1011𝑁𝑚−2, 

𝐶𝐸 = 4.27 × 102𝐽𝐾𝑔−1𝑑𝑒𝑔−1, 

𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 𝜌 = 8.836 × 103𝐾𝑔𝑚−3 

𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 

𝐾1 = 0.690 × 102𝑊𝑚−1𝐾𝑑𝑒𝑔−1,  

 𝐾3 = 0.690 × 102𝑊𝑚−1𝐾−1, 

𝐿 = 1, 𝜏1 = 𝜏0 = 1, 𝑏 = 0.01𝑚 

The values of normal force stress 𝑡𝑧𝑧 , tangential 

stress𝑡𝑧𝑟 , radial stress 𝑡𝑟𝑟and conductive temperature 𝜑 

for a transversely isotropic thermoelastic solid with two 

temperature and thermal relaxation times is presented 

graphically to show the impact of frequency. 

• The solid black line with centre symbol square 

corresponds to thermal insulated boundaries and𝜔 = 0.5. 

• The solid red line with centre symbol circle 

corresponds to thermally insulated boundaries and 𝜔 =
1.0. 

• The solid green line with centre symbol triangle 

corresponds to isothermal boundaries and 𝜔 = 0.5. 

• The solid blue line with centre symbol diamond 

corresponds to isothermal boundaries and 𝜔 = 1.0. 

Fig. 2 shows the variations of displacement component 

𝑢 with radius r for constant load and heat source. In the  

 

Fig. 2 variations of displacement component u with radius r 

 

 

Fig. 3 variations of displacement component w with radius r 
 

 

initial range of radius r, there is a sharp increase in the value 

of displacement component u for 𝜔 = 0.5   and then 

oscillates with smaller amplitude for thermally insulated 

boundary conditions as compared to that of an isothermal 

boundary. However, for 𝜔 = 1.0, there is a sharp decrease 

in the value of displacement component u for 𝜔 = 0.5  

and then oscillates with smaller amplitude for thermally 

insulated boundary conditions as compared to that of 

isothermal boundary. Moreover, away from source applied, 

it follows oscillatory behaviour near the zero value. We can 

see that the frequency of time-harmonic source has 

significant effect on the displacement component 

Fig. 3 illustrates the variations of displacement 

component 𝑤with radius r for constant load and heat 

source. In the initial range of radius r, there is a decrease in 

the value of displacement component for all the cases. 

However, for thermal insulated boundary and rotation, the 

displacement component varies more as compared to 

isothermal boundaries, with and without rotation. Moreover, 

away from source applied, it follows opposite oscillatory 

behaviour near the zero value. We can see that the rotation 

have significant effect on the displacement component in all 

the cases as there are more variations in 𝑤 in case of 

rotation, it behaves opposite for thermal insulated and 

isothermal boundary conditions. 

Fig. 4 illustrates the variations of conductive 

temperature 𝝋 with radius r for constant load and heat 

source. In the initial range of radius r, there is a sharp 

increase in the value of 𝝋 for all the cases for the 

isothermal boundary. However, for thermal insulated 

boundary conductive temperature 𝝋 decreaseswith radius r.  
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Fig. 4 variations of Conductive temperature 𝝋  with 

radius r 

 

 

Fig. 5 variations of the tangential stress component 

𝒕𝒛𝒓 with radius r 

 

 

Fig. 6 variations of radial stress with radius r 

 

 

Moreover, away from source applied, it follows opposite 

oscillatory behaviour near the zero value. 

Fig. 5 illustrates the variations of the tangential stress 

component 𝒕𝒛𝒓with radius r for constant load and heat 

source. In the initial range of radius r, tangential stress 

component  𝒕𝒛𝒓decreases for 𝜔 = 1.0 whereas for 𝜔 =
0.5  its value increases for both types of boundary 

conditions with a difference of amplitude. Moreover, away 

from source applied, it follows opposite oscillatory 

behaviour near the zero value 

Fig. 6 illustrates the variations of radial stress 𝑡𝑟𝑟with 

radius r for constant load and heat source. For thermally 

insulated boundaries, the radial stress varies less as 

compared to isothermal boundary for both with 𝜔 =

0.5 𝑎𝑛𝑑 𝜔 = 1.0. Moreover, away from source applied, it 

follows oscillatory behaviour near the zero value. 

 

 

9. Conclusions 
 

In this paper, we have discussed the thermoelastic 

problem for a transversely isotropic thin circular plate with 

rotation, two temperature and with two relaxation time of 

generalized thermoelasticity with a time-harmonic source in 

the context of GL theory. Thermally insulated and 

isothermal boundary cases for circular edges are considered 

and temperature is maintained on upper and lower surface 

of the circular thin plate. The finite Hankel transform 

technique is used to obtain numerical results.  

In the present research article, conductive temperature, 

displacement, and stresses along with rotation, two 

temperature, relaxation time with time-harmonic source and 

thermally insulated and isothermal boundary for constant 

load and heat source have been outlined. Since the thickness 

of plate is very small, the series solution given here will be 

definitely convergent. The temperature, displacement and 

thermal stresses that are obtained can be applied to the 

design of pressure sensors, microphones, gas flow meters, 

optical telescopes, radar antennae and many other devices 

structures or machines in engineering applications. 
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