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1. Introduction 
 

The 3D NS equations are Fourier decomposed in the θ-

direction to transform the 3D equations into a set of 2D 

problems, which can be spatially discretized via a 

spectral/hp element method and temporally discretized via a 

velocity-correction scheme (Levin et al. 2015). 

When the numerical simulation is transformed from 

two-dimensional to three-dimensional, the amount of 

calculation is substantially increased. Serial computing 

cannot satisfy the requirements. Compared with serial 

computing, parallel computing can solve the same problem 

more quickly, can use a smaller amount of input to 

complete the task and can exceed the physical limit. Parallel 

computing is an effective approach for large-scale 

numerical simulation. The IB-SEM system uses a common 

parallel interface standard message passing interface (MPI) 

(Agapito 2013, Gropp et al. 2014). MPICH is one of the 

most popular parallel programming standards for MPI 

standards. 

Due to its simple geometry, flow around a cylinder has 

been a popular topic in the field of hydrodynamics. It is of 

substantial significance for engineering applications. The 

characteristics of the flow field depend on the Reynolds 

number. The variational characteristics of the flow around a 

cylinder are highly complicated with the change of the  
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Reynolds number. 

Three-dimensional flow around a sphere is a basic 

research topic in fluid research in fluid mechanics. Taneda 

conducted a substantial amount of experimental research 

(Taneda 1956). When the Reynolds number reached 24, 

flow separation occurred behind the sphere and symmetric 

vortex rings began to appear. When the Reynolds number 

reached 210, steady asymmetric vortex structures began to 

appear. When the Reynolds number exceeded 270, the 

vortex began to fall off. When the Reynolds number was 

420-800, the tail vortex began to fall irregularly and to 

rotate. In numerical studies, the assumption of axial 

symmetry was typically imposed due to the limited 

computational efficiency of the methods. In this scenario, 

the computational results were not satisfactory when the 

Reynolds number exceeded 210. Lee Sungsu used the finite 

element method to simulate the flow around a sphere when 

the Reynolds number ranged from 100 to 500 (Lee 2000). 

In this chapter, the flow around a sphere was investigated 

using the IB-SEM system and the results were compared 

with those of other studies (Park et al. 2016). 

In the simulation of flow in 3D porous media, little 

related research has been conducted, which can be divided 

into the following categories: First, a coupled micro-

mechanical technique for modelling pore water flow and 

solid-phase deformation of granular soils was proposed. 

The fluid-particle interactions were investigated and the 

fluid motion was idealized using averaged Navier-Stokes 

equations and the discrete element method (DEM) (Siamak 

et al. 2016, Chen et al. 2016). Second, a particle–fluid 

coupling scheme with a mixed Lagrangian–Eulerian 

approach that enables the simulation of coupling problems 

with large Reynolds numbers was implemented in PFC 2D 

and PFC 3D (Marina et al. 2015, Wang and Ni 2013). 
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Third, the three-dimensional response of sandy deposits was 

investigated using a coupled hydromechanical model when 

subjected to critical and over-critical upward pore fluid flow 

(El and Zeghal 2005). 

The IB-SEM system was established based on a spectral 

element method, namely, Semtex, and the rigid immersed 

boundary method (Wang et al. 2018). This system is used to 

simulate solid and fluid interactions. 
 

 

2. Basic theory for the numerical simulation 
 

2.1 Fourier transformation in the azimuthal direction 
 

The velocity components are 2𝜋 in 𝜃 . The three 

dimensional Navier-Stokes equations can be transformed 

into a set of two dimensional complex Fourier modes (see 

Fig. 1). 

𝑢�̂�(𝑧, 𝑟, 𝑡) =
1

2𝜋
∫ 𝑢(𝑧, 𝑟, 𝜃, 𝑡)𝑒−𝑖𝑘𝜃

2𝜋

0

𝑑𝜃 (1) 

where k is the integer azimuthal wavenumber. The velocity 

field can be recovered from these complex modes via 

Fourier series reconstruction 

(𝑧, 𝑟, 𝜃, 𝑡) = ∑ 𝑢�̂�
∞
𝑘=−∞ (𝑧, 𝑟, 𝑡)𝑒𝑖𝑘𝜃        (2) 

The cylindrical-coordinate forms of the gradient and 

Laplacian of a complex scalar mode are 

∇𝑘= (𝜕𝑧( ), 𝜕𝑟( ),
𝑖𝑘

𝑟
( ))     (3) 

∇𝑘
2= 𝜕𝑧

2 +
1

𝑟
𝜕𝑟𝑟( ) −

𝑘2

𝑟2
( )   (4) 

And the divergence of a complex vector mode is 

∇ ∙ ( )𝑘 = 𝜕𝑧( ) +
1

𝑟
𝜕𝑟𝑟( ) +

𝑖𝑘

𝑟
( )        (5) 

The radial and azimuthal velocity components are 

coupled to divergence the viscous terms by introducing 

𝑣�̃� = 𝑣�̂� + 𝑖𝑤�̂� and 𝑤�̃� = 𝑣�̂� − 𝑖𝑤�̂�          (6) 

The whole set of equations can be symmetrized by pre-

multiplication on both sides by r, leading to 

𝜕𝑟𝑟𝑢�̂� + 𝑟[𝑁(𝑢)𝑧]�̂� = −𝑟𝜕𝑧𝑝�̃� +
1

𝑅𝑒
(𝜕𝑧𝑟𝜕𝑧 + 𝜕𝑟𝑟𝜕𝑟 −

𝑘2

𝑟
)𝑢�̂�     (7) 

𝜕𝑡𝑟𝑣�̃� + 𝑟[𝑁(𝑢)𝑟]�̃� = −(𝑟𝜕𝑟 − 𝑘)𝑝�̂� +
1

𝑅𝑒
(𝜕𝑧𝑟𝜕𝑧 +

𝜕𝑟𝑟𝜕𝑟 −
[𝑘+1]2

𝑟
)𝑣�̃�      

(8) 

𝜕𝑡𝑟𝑤�̃� + 𝑟[𝑁(𝑢)𝜃]�̃�

= −(𝑟𝜕𝑟 + 𝑘)𝑝�̂� +
1

𝑅𝑒
(𝜕𝑧𝑟𝜕𝑧

+ 𝜕𝑟𝑟𝜕𝑟 −
[𝑘 − 1]2

𝑟
)𝑤�̃� 

(9) 

𝜕𝑧𝑟𝑢�̂� + 𝜕𝑟𝑟𝑣�̂� + 𝑖𝑘𝑤�̂� = 0 (10) 

Full solution algorithm 

For the 𝜕𝑧𝑟 = 0, the pressure Poisson equation can be  

 

Fig. 1 Fourier transform 
 

 

written as 

(𝜕𝑧𝑟𝜕𝑧 + 𝜕𝑟𝑟𝜕𝑟 −
𝑘2

𝑟
) 𝑝�̂�

𝑛+1 =
1

∆𝑡
(𝜕𝑧𝑟𝑢�̂�

∗ + 𝜕𝑟𝑟𝑣�̂�
∗ +

𝑖𝑚𝜔�̂�
∗)        

(11) 

Each component was appeared in the right hand side 

divergence term 

𝑟𝑢�̂�
∗ = − ∑ 𝛼𝑞𝑟�̂�

(𝑛−𝑞)

𝐽

𝑞=1

− ∆𝑡 ∫ 𝛽𝑞𝑟[𝑁(𝑢(𝑛−𝑞))𝑧]�̂�
𝐽−1

𝑞=0

 (12) 

𝑟𝑣�̂�
∗ = − ∑ 𝛼𝑞𝑟�̂�

(𝑛−𝑞)

𝐽

𝑞=1

− ∆𝑡 ∫ 𝛽𝑞𝑟[𝑁(𝑣(𝑛−𝑞))𝑧]�̂�
𝐽−1

𝑞=0

 (13) 

𝑟𝜔�̂�
∗ = − ∑ 𝛼𝑞𝑟�̂�

(𝑛−𝑞)

𝐽

𝑞=1

− ∆𝑡∫ 𝛽𝑞𝑟[𝑁(𝜔(𝑛−𝑞))𝑧]�̂�
𝐽−1

𝑞=0

 (14) 

 

2.2 Discretization of 3D Navier-Stokes equations 
 

The Navier-Stokes equations must be discretized prior 

to being applied to computational fluid dynamics. The 

discretization methods include the spatial discretization 

method for the spectral/hp element method and the temporal 

discretization method for the velocity-correction scheme. 

The NS equation can be expressed in the cylindrical 

coordinate system (𝑧, 𝑟, 𝜃) as follows 

𝜕𝑡∗𝑢∗ = −(𝑢∗ ∙ ∇)𝑢∗ −
1

𝜌
∇𝑝∗ + 𝑣∇2𝑢∗        (15) 

∇ ∙ 𝑢∗ = 0      (16) 

Z represents the stream-wise coordinate 

where 𝑢∗(𝑧∗, 𝑟∗, 𝜃, 𝑡∗)  is the velocity field, in which z 

represents the streamwise coordinate; 𝑝∗(𝑧∗, 𝑟∗, 𝜃, 𝑡∗)  is 

the pressure; 𝜌 is the density; and v is the viscosity. The 

equations for the corresponding nondimensionalized 

variables (without superscript *) are as follows 

𝜕𝑡𝑢 = −(𝑢 ∙ ∇)𝑢 − ∇𝑝 +
1

𝑅𝑒
∇2𝑢        (17) 

∇ ∙ 𝑢 = 0     (18) 

where, 

𝑟 =
𝑟∗

𝐿
        (19) 
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𝑧 =
𝑧∗

𝐿
   (20) 

𝑡 =
𝑡∗𝑢∞

𝐿
 (21) 

𝑢(𝑧, 𝑟, 𝜃, 𝑡) = (𝑢, 𝑣, 𝑤)(𝑡) =
𝑢∗

𝑢∞

 (22) 

𝑝 =
𝑝∗ − 𝑝∞

𝜌𝑢∞
2

 (23) 

Re =
𝑢∞𝐿

𝑣
 (24) 

Here, L,  𝑢∞ and 𝑝∞ are characteristic length, velocity 

and pressure respectively. 

 

 

3. Concurrent execution for the 3D IB-SEM 
 

The IB-SEM system was established based on the 

Spectral element method and the rigid immersed boundary 

method. This system is used to simulate the interaction of 

the solid and fluid which are shown in Fig. 2 (Li et al. 

2019). 

In the pre-processing，the modelling software of the 

IB-SEM system is established. This software was used to 

realize two dimensional and three dimensional immerse 

boundary modelling and the elements and nodes of fluid 

domain generating. 

For the large-scale three-dimensional simulation, the 

computation time of the serial algorithm is too long. A 

message passing interface is required for parallelizing the 

above algorithms. For the three-dimensional NS equation, 

the MPI method is used to parallelize the distributed 

memory cluster. 

 

Table 1 Computational scale N=5123, Single step 

calculation time and speed-up ratio analysis 

Number of processors 
Single step time 

(second) 
Speed-up ratio 

8 31.5 1 

16 16.4 1.9 

32 9.0 3.5 

64 4.9 6.5 

128 3.5 9 

256 2.2 14.1 

 

 

Running of the three dimensional IB-SEM system 

The code supports concurrent execution for 3D 

simulations, with MPI used as the message-passing kernel. 

Compile using make MPI=1 to produce dns_mp. (When 

compiling femlib, it will also be necessary to compile in the 

appropriate message-passing routines by switching to the 

femlib directory and using the following commands: make 

clean; make MPI=1; and make install MPI=1.) Nonlinear 

terms are not dealiased if running in parallel but are 

dealiased in the Fourier direction if running on one process 

or running the serial code. To obtain a serial code that does 

not perform dealiasing on Fourier terms (e.g., for cross-

checking), compile the serial code using make ALIAS=1 to 

produce dns_alias (after deleting nonlinear.o; see Table 1). 

 
 

4. Flow around the cylinder and the sphere 
 

4.1 Calculation of the vorticity and velocity magnitude 
 

Vorticity is a concept in fluid mechanics that describes 

the rotation of a fluid. In continuum mechanics, the 

vorticity is a pseudo vector field that describes the local 

spinning motion of a continuum near a specified point, as 

would be viewed by an observer who is located at that point  

 

Fig. 2 The simulation process of IB-SEM system 
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Fig. 5 The curve of u along the y direction near wake region 

 

 

and travelling along with the flow. It is defined as the curl 

of the fluid velocity vector. The unit of vorticity is one 

second (s-1). 

Vortex lines are defined by the relation  

𝑑𝑥

𝜔𝑥
=

𝑑𝑦

𝜔𝑦
=

𝑑𝑧

𝜔𝑧
        (25) 

where, 𝜔 = (𝜔𝑥, 𝜔𝑦 , 𝜔𝑧)  is the vorticity in Cartesian 

coordinates. 

𝜔𝑥 =
𝜕𝜔

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
 (26) 

  

 

 
 

Fig. 6 The immerse boundary nodes 
 

 

𝜔𝑦 =
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
 (27) 

𝜔𝑧 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 (28) 

The velocity magnitude is 

𝑣𝑚 = √(𝑢𝑥)
2 + (𝑢𝑦)

2 + (𝑢𝑧)
2        (29) 

 

Fig. 3 Schematic diagram of calculation and grid 

  
(a) Vorticity (b) Velocity magnitude 

Fig. 4 The simulation results of flow around cylinder 
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After the simulation, the vorticity was calculated in 

Tecplot. U, V and W represent the velocity in the three-

dimensional flow. The vorticity, which is denoted as (wx, 

wy, wz), is expressed by the following equations:. 

{𝑤𝑥} = 𝑑𝑑𝑦({𝑤}) − 𝑑𝑑𝑧({𝑣})     (30) 

{𝑤𝑦} = 𝑑𝑑𝑧({𝑢}) − 𝑑𝑑𝑥({𝑤}) (31) 

{𝑤𝑧} = 𝑑𝑑𝑥({𝑣}) − 𝑑𝑑𝑦({𝑢}) (32) 

The velocity magnitude can be calculated as  

{VelocityMagnitude} = sqrt({𝑢} ∗∗ 2) + {𝑣} ∗∗ 2 + {𝑤} ∗∗ 2        (33) 

 

4.2 Flow around a cylinder (Semtex3D) 
 

In this section, a cylinder with diameter 𝐷 = 1  is 

considered as the research object and Semtex3D is used to 

simulate the flow field around the cylinder. The domain and 

meshes are shown in Fig. 7. The diameter of the cylinder is 

equal to the characteristic length. The length, width and 

height of the computational domain are 25, 10 and 4. The 

numbers of the elements and nodes are 74 and 94. The 

number of curves is 52. 

Boundary conditions and initial conditions 

The velocity of the inlet is 𝑢 = 1. The inlet and outlet 

are set on the left and right sides of the domain. The other 

four surfaces and the cylinder surface are non-slip wall 

boundaries. The Reynolds number is 200. 

The computational domain is illustrated in Fig. 3 

The simulation of 𝜔𝑧 is shown in Fig. 4. 

The distribution of  along the y-direction in the near-

wake region behind the cylinder is plotted in Fig. 5. When 
𝑦

𝐷
= 0, u attains its minimum value of -0.247. When 𝑦/𝐷 

is in the range of (-1, 0) and (0, 1), the speed increases 

substantially with the absolute value of 𝑦/𝐷. Then, the 

speed decreases slowly as the absolute value of 𝑦/𝐷 

increases.  

The results are consistent with previous results. Using 

Semtex3D, the flow around the cylinder can be accurately 

simulated at various Reynolds numbers.  

When the fluid flows through the surface of the cylinder, 

most of the pressure on its surface is negative. Then, due to 

the combined effect of the negative pressure difference and 

the fluid viscosity, the fluid is separated from the cylinder 

surface. The surface of the cylinder generates vortices with 

alternating shedding, which results in a periodic force that 

acts on the surface of the cylinder. When the shedding 

vortices enter the flow field behind the cylinder, a 

recirculation zone forms near the surface of the cylinder. 
 

4.3 Flow around a sphere (IB-SEM) 
 

Calculation of the vector force of the sphere 

𝜏 is the viscous shear stress and  

𝜏 ∙ 𝑛 = Re−1 [

2𝜕𝑥𝑢𝑥 𝜕𝑥𝑢𝑥 + 𝜕𝑥𝑢𝑦 𝜕𝑧𝑢𝑥 + 𝜕𝑥𝑢𝑧

𝜕𝑦𝑢𝑥 + 𝜕𝑥𝑢𝑦 2𝜕𝑦𝑢𝑦 𝜕𝑧𝑢𝑦 + 𝜕𝑦𝑢𝑧

𝜕𝑧𝑢𝑥 + 𝜕𝑥𝑢𝑧 𝜕𝑧𝑢𝑦 + 𝜕𝑦𝑢𝑧 2𝜕𝑧𝑢𝑧

] ∙ [

𝑛𝑥

𝑛𝑦

𝑛𝑧

]        (34) 

The force of viscous force in x, y and z directions are 

respectively 

 

Fig. 7 The computational domain 

 

 

𝜏𝑥 = Re−1(2𝜕𝑥𝑢𝑥 ∗ 𝑛𝑥 + 𝜕𝑦𝑢𝑥 ∗ 𝑛𝑦 + 𝜕𝑥𝑢𝑦 ∗ 𝑛𝑦 +

𝜕𝑧𝑢𝑥 ∗ 𝑛𝑧 + 𝜕𝑥𝑢𝑧 ∗ 𝑛𝑧)        
(35) 

𝜏𝑦 = Re−1(𝜕𝑦𝑢𝑥 ∗ 𝑛𝑥 + 𝜕𝑥𝑢𝑦 ∗ 𝑛𝑥 + 2𝜕𝑦𝑢𝑦 ∗ 𝑛𝑦

+ 𝜕𝑧𝑢𝑦 ∗ 𝑛𝑧 + 𝜕𝑦𝑢𝑧 ∗ 𝑛𝑧) (36) 

𝜏𝑧 = Re−1(𝜕𝑧𝑢𝑥 ∗ 𝑛𝑥 + 𝜕𝑥𝑢𝑧 ∗ 𝑛𝑥 + 𝜕𝑧𝑢𝑦 ∗ 𝑛𝑦 + 𝜕𝑦𝑢𝑧

∗ 𝑛𝑦 + 2𝜕𝑧𝑢𝑧 ∗ 𝑛𝑧) (37) 

In fluid dynamics, the drag coefficient, which is denoted 

as 𝐶𝑑, is a dimensionless quantity that is used to quantify 

the drag or resistance of an object in a fluid environment, 

such as air or water. It is used in the drag equation, in which 

a smaller drag coefficient corresponds to the object having 

less aerodynamic or hydrodynamic drag. The drag 

coefficient is always associated with a specified surface 

area. 

𝐶𝑑 =
2𝐹𝑑

𝜌𝑢2𝐴
=

8𝐹𝑑

𝜌𝑢2𝜋𝐷2        (38) 

where 𝐹𝑑 is the drag force, the 𝐹𝑑 is defined as 

  𝐹𝑑 = ∫ 𝑓𝑥
𝐵𝑑Γ

Γ
      (39) 

𝐹𝑑𝑥 = 𝜏𝑥 + 𝑝𝑥  (40) 

𝐹𝑑𝑦 = 𝜏𝑦 + 𝑝𝑦 (41) 
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𝐹𝑑𝑧 = 𝜏𝑧 + 𝑝𝑧 (42) 

ρ  is the mass density of the fluid, u is the mean 

freestream velocity. A is the reference area. 

  𝐴 = 𝜋𝐷2 4⁄       (43) 

To evaluate the accuracy of the three-dimensional IB-

SEM system for the simulation of moving spheres, we use it 

to simulate the laminar flow around a sphere for Reynold 

numbers from 50 to 300. In this study, the sensitivity of the 

drag to boundary perturbations in the three-dimensional 

flow past a sphere is investigated. The sphere was simulated 

via the immersed boundary method. The surface of the 

sphere is considered the perturbation boundary. 

The numerical model integrates the three-dimensional, 

time-dependent, incompressible, Navier-Stokes, continuity 

equations and non-dimensionalizes the result according to 

the diameter of the sphere and the free-stream velocity. 

For comparison with other studies, the diameter of the 

sphere is set to 1. The size of the domain is 25*20*20 in the 

x-, y- and z-directions. The sphere is centred at (10,10,10) 

in the Cartesian coordinate system. 

The density of the fluid is set as 1.0. The inflow and out 

flow are located at x=0 and x=25, respectively. Free stream 

boundary conditions with𝑢 = 1.0 ,  𝑣 = 1.0  and 𝑤 = 1.0 

are applied to the inflow boundary. The far-field boundaries 

are located at y=0 and y =20. Two typical Reynolds 

numbers, namely, 100 and 200, are considered. 

The three-dimensional computational domain is 

decomposed into 2000 spectral elements and 2091 nodes in 

the x- and y-directions, in each of which piecewise 

continuous nodal-based polynomial expansions with 

polynomial order P=6 are applied. Time integration is 

conducted using a velocity-correction scheme. The same 

numerical methods are used to integrate the Navier-Stokes 

equations and the adjoint equation using a well-validated 

numerical code that has been used in DNS and 

hydrodynamic stability studies of vortex flow and flow 

around immersed boundaries.  

The number of rigid immersed boundary nodes is 441, 

as shown in Fig. 11. The feedback forcing coefficients were 

set to α = −400000  and 𝛽 = −600 . For the feedback 

forcing method, the stability limit for the time step was 

approximated by 

∆𝑡 <
−𝛽−√(𝛽2−2𝛼𝑘)

𝛼
        (44) 

where k is a problem-dependent constant of order one. 

Hence, the time step ∆𝑡 was set to 0.001 in our simulation. 

The computational domain and the immersed boundary are 

illustrated in Fig. 6 and 7. 

There are three main methods for calculating the vertical 

structures: (1) 𝑄 − citerion , (2) ∆ − citerion , and (3) 

 𝜆2 − citerion 

The first three-dimensional vortex criterion that uses 

(1.1) is the 𝑄 − citerion of Hunt, Wray & Moin, which 

defines a vortex as a spatial region (Hunt et al. 1988). 

𝑄 ≡
1

2
(𝑢𝑖,𝑖

2 − 𝑢𝑖,𝑗𝑢𝑗,𝑖) = −
1

2
𝑢𝑖,𝑗𝑢𝑗,𝑖 =

1

2
[|𝛺|2 − |𝑆|2] > 0      (45) 

where, S is the rate of strain tensor which is defined as 

 

Fig. 8 ISO-surface of velocity magnitude 

 

 

Fig. 9 3D vertical structures of sphere for planar 

symmetric flows 

 

 

    𝑆 =
𝐽+𝐽𝑇

2
         (46) 

𝛺 is the vorticity tensor which is defined as 

𝛺 =
𝐽−𝐽𝑇

2
       (47) 

We define the gradient velocity tensor J 

𝐽 ≡ ∇�⃗� [

𝜕𝑥𝑢𝑥 𝜕𝑦𝑢𝑥 𝜕𝑧𝑢𝑥

𝜕𝑥𝑢𝑦 𝜕𝑦𝑢𝑦 𝜕𝑧𝑢𝑦

𝜕𝑥𝑢𝑧 𝜕𝑦𝑢𝑧 𝜕𝑧𝑢𝑧

] (48) 

Another well-known Galilean-invariant definition is the  

of Chong, Perry & Cantwell (1990), who define vortices as 

regions with 

∆= (
𝑄

3
)
3

+ (
det∇�⃗� 

2
)2 > 0 (49) 

In these regions, the velocity gradient ∇�⃗�  admits 

complex eigenvalues, thus local instantaneous stirring is a 

plausible assumption. 

Finally, according to the 𝜆2 − citerion  of Jeong & 

Hussain (1995), vortices are defined as  

𝜆2(𝑆
2 + 𝛺2) < 0   (50) 
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Table 2 Comparison of drag coefficients at Re=100 and 

Re=200 

Case 
Drag coefficient Cd 

Re=100 Re=200 

Johnson et al. 1.112 0.79 

A. Gilmanov et al. 1.153 - 

Write et al. 1.128 0.8 

present 1.132 0.8 

256 2.2 14.1 

 

 

Fig. 10 Comparison of separation length 

 

where 𝜆2(𝐴)  denotes the intermediate eigenvalue of a 

symmetric tensor A. 

Fig. 8 shows the velocity field in 2D section on z=5. 

This image shows in detail the direction of the velocity field 

in the middle plane of the sphere. 

A hairpin vortex is formed in the wake. It can be 

observed from Fig. 9 that the vertical structures are 

symmetric to the x–z plane at this Reynolds number, 

although the axisymmetric is lost. 

The drag coefficients in the numerical simulation via 

IB-SEM are compared with the previous numerical and 

experimental results in Table 2 (Johnson and Patel 1999, 

Gilmanov et al. 2003, White 1974). According to Table 2, 

the numerical result well accords with the previous results. 

The results were compared with results from the 

literature (Johnson and Patel 1999, Gilmanov et al. 2003). 

Satisfactory agreement is observed in Fig. 10. 

 

 

5. Flow around a 3D porous structure 
 

The three-dimensional pore flow simulation better 

accords with the actual conditions than the two-dimensional 

simulation. However, many problems are encountered with 

the three-dimensional simulation, such as high modelling 

and computational complexities. Based on the MPI and the 

Hamilton HPC, the calculation speed and efficiency are 

substantially improved with the required accuracy. The 

water flow in the pores between three dimensional particles 

is studied in this section. The simulation model is 

established as follows (see Fig. 11): 

The flow was directly simulated in the void space of the 

resulting models using an IB-SEM system at various 

Reynolds numbers to investigate the effects of the particle  

 

Fig. 11 Comparison of separation length 

 

 

Fig. 12 The size of domain and distribution of particles 
 

 

shape and grain size polydispersity on the hydraulic 

gradient. Fig. 12 (a) shows the pressure drop from front 

(red) to back (blue) of the porous medium that was created 

by IBM.  

The simulation parameters are as follows: The number 

of particles is 27. The size of the domain and the 

distribution of particles are shown in Fig. 12. The Reynolds 

number is 100. Free-stream boundary conditions with =
1.0, 𝑣 = 1.0,  and 𝑤 = 0  are applied to the inflow 

boundary. The time step is 𝑑𝑡 = 0.001 . The three-

dimensional computational domain is decomposed into 

1600 spectral elements and 1681 nodes in the x- and y-

directions, in each of which piecewise continuous nodal-

based polynomial expansions with polynomial order P=4 

are applied. 

From Fig.13, the results of simulation show that three 

IB-SEM system can reflect the pressure and velocity of 

water in three dimensions porous. In the three dimensional 

pore media, the water pressure presents obvious 

stratification phenomenon. And the pore medium has 

obvious hindrance to the fluid velocity. This simulation 

prepared for the three dimensional water inrush simulation. 

With the gradual increase of the seepage pressure, the three-

dimensional pore media is gradually destroyed from the 

inside to the outside, until the large-scale water inrush 

channel is formed and water inrush occurs. 
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(a) ISO-surface of pressure and velocity 

 
(b) Slices of velocity 

 
(c) ISO-surface of velocity magnitude 

Fig. 13 The simulation results of flow in porous media 

 

 

This kind of water inrush usually occurs under the 

condition of large water pressure and loose filling medium. 

When the karst pipeline is exposed with excavation, the 

water and the filling medium will gush together and have a 

strong burst. Therefore, the prediction work must be done 

ahead of time before excavation. 

6. Conclusions 
 

The 3D IB-SEM system is established through the 

theory of Fourier transformation and the discretization of 

the 3D Navier-Stokes equations. Compared with previous 

research, this system yields accurate results. 

Then, by using the open MPI and the Hamilton HPC 

service, the computing efficiency is increased substantially. 

Three-dimensional pore flow is successfully investigated. 
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