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1. Introduction 
 

Understanding the mechanical behaviors of jointed rock 

masses is crucial for predicting the stable of rock 

engineering projects (Li et al. 2019, Gao et al. 2019, Huang 

et al. 2019, Oh et al. 2019). The strength, deformation and 

failure characteristics of jointed rock masses are dependent 

heavily on the sample scale (named scale effect) until the 

sample size exceeds a critical value (Heuze 1980, Krauland 

et al. 1989). The magnitude of the critical value is termed 

the representative elementary volume (REV) (Hill 1963, 

Bear 1972, Long et al. 1982). The existence of REV enables 

us to treat rock masses as an equivalent continuum without 

considering the complicated joint system. Therefore, large-

scale rock engineering structures can be conveniently 

simulated using the numerical simulation method, when 

major discontinuities (large size single feature) are only 

considered. Rock engineering projects, e.g., tunnels, rock 

slopes and deep underground openings, are commonly 

situated in higher in-situ stress environment. Therefore, the 

influence of confining stress on the REV of jointed rock 

masses is required for the design, operation and stability 

assessment of rock engineering projects. 

Various methods have been used to determinate the 

REV. Analytical solutions (Amadei 1981) and empirical 

methods (e.g. GSI, Q, RMR) (Bieniawski 1978, Barton 

2002) are two approaches widely used to estimate the REV 

of jointed rock masses. These methods are unable to 

estimate the REV of the jointed rock masses with sufficient 

accuracy since the variation of confining stress and 
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loading conditions cannot be considered. Laboratory studies 

that experiment rock samples with limited number joints 

have been conducted to understand the mechanical 

properties of jointed rock masses (Heuze 1980, Darlington 

et al. 2011). However, few samples have been prepared 

with size that reached the REV due to the experimental 

difficulties. Additionally, the mechanical behaviors of field-

scale jointed rock masses cannot be extrapolated through 

the behavior of an idealized rock sample at the laboratory 

scale (Ribacchi 2000, Khani et al. 2013). The REV of 

jointed rock masses can also be determined through in-situ 

testing (Neuman 1987, Cuisiat and Haimson 1992). But 

undertaking such tests is expensive and impracticable.  

Numerical simulation has been proven to be an 

alternative method to simulate the REV of jointed rock 

masses, due to its advantage to calculate the complex joint 

geometry system. The REV is closely associated with the 

joint geometric parameters of the joint network, which we 

refer to geometrical REV. Oda and Masanobu (1988) 

recommended the relation between the geometrical REV 

and the typical length of joint traces. Kulatilake (1985) and 

Pariseau et al. (2008) successfully applied the finite element 

method (FEM) to investigate the scale effect of strength and 

deformation parameters of jointed rock masses, whereby the 

mechanical REV is determined. Khani et al. (2013) used the 

distinct element method to investigate the effect of the 

fracture intensity on the REV of the deformation modulus 

and Poisson’s ratio of jointed rock masses. The geometrical 

and mechanical REVs of jointed rock mas were estimated 

using synthetic rock masses models by Esmaieli et al. 

(2010). Wang et al. (2002) applied the discrete fracture fluid 

flow model to determine the REV size for the rock masses 

with respect to hydraulic behavior. 

Existing studies mainly focus on the REV of jointed 

rock masses subjected to uniaxial compression. The 
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mechanical behaviors of jointed rock masses are affected 

appreciably by the confining stress (Prudencio and Jan 

2007, Cai 2008, Yang et al. 2015b, Lei et al. 2017). 

Tremendous efforts have been made to study the influence 

of the confining stress on the equivalent strength and 

deformability properties of jointed rock masses based on the 

REV determined on uniaxial compression (Baghbanan 

2008, Bidgoli and Jing 2014, Yang et al. 2015a, Laghaei et 

al. 2018, Vazaios et al. 2018). However, the influence of the 

confining stress on the REV of jointed rock masses is often 

ignored. 

The paper numerically studies the influence of confining 

stress on the scale effect of jointed rock masses of different 

strengths (weak, medium and strong). The jointed rock 

masses of the water inlet slope of Xiaowan Hydropower 

Station, China is taken as an example, and a FEM code 

considering the material heterogeneity and the joint 

probability distribution is used to study the issue. Firstly, 

the validity of the FEM code is verified by comparing with 

the experimental results. Furthermore, three different two-

dimensional discrete fracture network models are 

established based on the Monte-Carlo method and the joint 

probability distribution. Then, a series of biaxial 

compression tests is conducted to investigate the effect of 

the confining stress on the strength and deformation 

characteristics as well as the REV of jointed rock masses. 

Finally, the effects of joint system (joint dip angle and joint 

intensity) on the stress-dependency of the REV are 

reported. 
 
 

2. Numerical simulation 
 

2.1 Validation of the RFPA2D 
 

Two-dimensional rock failure process analysis 

(RFPA2D), which was proposed in 1995 by Tang (1997), is 

employed as the basic rock failure analysis tool. The 

heterogeneity of rocks and joints at a mesoscopic level can 

be considered by assuming that the rock and joint properties 

(i.e., elastic modulus) obey the Weibull distribution. Elastic 

damage mechanics is used for describing the constitutive 

law of single meso-level element. The maximum tensile 

strain criterion and Mohr-Coulomb failure criterion are 

 

 

Fig. 2 Experimental samples with 60º joint inclination angle 

 

 

employed as the damage threshold. The finite element in the 

RFPA2D will be considered to fail in the tensile pattern when 

its minimum principal stress exceeds the tensile strength, 

and to fail in the compressional shear pattern when the 

compression-shear stress satisfies the Mohr-Coulomb 

criterion. Additional details on the RFPA simulation have 

been extensively presented (Wong et al. 2002, Li and Tang 

et al. 2015).  

To verify the effectiveness of RFPA2D to study the scale 

effect of jointed rock masses, the idealized jointed rock 

specimens with various sizes are simulated using RFPA2D 

and the results are compared with the related laboratory 

results. The sizes of the tested models in the dimensions of 

high, width and thickness are 40 mm × 40 mm × 80 mm, 80 

mm × 80 mm × 80 mm, 120 mm × 120 mm × 80 mm, 160 

mm × 160 mm × 80 mm, 200 mm × 200 mm × 80 mm, 

respectively. Correspondingly, the number of the penetrated 

joints in the tested models are 1, 4, 9, 16 and 25, 

respectively. Fig. 1(a) shows the layout of the tested model 

containing a single joint. The other layouts of the tested 

models are the accumulation of the single joint models. For 

example, the layout of the tested model containing twenty-

five joints are shown in Fig. 1(b). In the tested models, the 

joint is penetrated through the model thickness, and the 

length and width of joint are fixed at 12 mm × 2 mm. 

Furthermore, the inclination angles 𝜃  (the angle of the 

joint with the direction of the horizontal direction) of the 

transfixion joints in the tested model are fixed at 60º and 

75º, respectively. 

  
(a) The model containing a single joint (b) The model containing twenty-five joints 

Fig. 1 The layout of the partial tested models 
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Table 1 Probability statistical distribution of joint 

parameters (Wang et al. 2010) 

Joint parameters in weak-

strength rock masses 
#1 #2 #3 

Dip angle (°) 

Type I I I 

Mean value 74.78 87.48 39.27 

Standard 
deviation 

8.69 13.29 8.33 

Trace length 

(m) 

Type II I II 

Mean value 2.44 1.97 1.72 

Standard 

deviation 
0.34 0.36 1.35 

Spacing (m) 

Type II I II 

Mean value 0.33 0.26 0.44 

Standard 

deviation 
0.33 0.26 0.78 

Joint parameters in mediate-

strength rock masses 
#1 #2 #3 

Dip angle (°) 

Type I I I 

Mean value 80.26 89.3 42.88 

Standard 

deviation 
9.91 9.25 6.54 

Trace length 
(m) 

Type II II II 

Mean value 2.54 1.56 1.52 

Standard 
deviation 

1.39 1.01 0.87 

Spacing (m) 

Type III II III 

Mean value 0.3 0.31 0.29 

Standard 

deviation 
0.3 0.44 0.29 

Joint parameters in strong-

strength rock masses 
#1 #2 #3 

 

 

Table 1 Continued 

Joint parameters in weak-

strength rock masses 
#1 #2 #3 

Dip angle (°) 

Type I I IV 

Mean value 81.86 86.83 40.44 

Standard 

deviation 
10.06 11.59 7.41 

Trace length 
(m) 

Type II II II 

Mean value 2.14 1.36 0.76 

Standard 
deviation 

1.45 0.98 0.55 

Spacing (m) 

Type III III III 

Mean value 0.40 0.34 0.54 

Standard 

deviation 
0.40 0.34 0.54 

 
 

The experimental samples with joint inclination angle of 

60º is illustrated in Fig. 2. For each tested experimental 

sample, three cement mortar specimens, which is a mixture 

of C42.5 cement, fine sand and water with the weight ratio 

of 2:2:1, are prepared to simulate the natural rock masses. 

The experimental samples are cured for 28 days 

(temperature is 20 ± 3°C and relative humidity is more than 

95%) before being subjected to uniaxial compression test. 

The average values of unit weight, elastic modulus, UCS, 

tensile strength, frictional coefficient, cohesion and 

Poisson’s ratio of the cement mortar material are evaluated 

as 2072.4 kg/m3, 2.173 GPa, 34.522 MPa, 1.315 MPa, 37°, 

2.748 MPa and 0.225, respectively, in laboratory test. A 

series of uniaxial compression tests is conducted using the 

RMT-150C Rock Mechanics Testing System. A constant 

  
(a) Models with 60º joint inclination angle (b) Models with 75º joint inclination angle 

Fig. 3 Comparison of UCS between the experimental and numerical results 

  
(a) Four joints model with 60º inclination angle (b) Nine model with 75º joint inclination angle 

Fig. 4 Comparison of failure patterns between the experimental and numerical results 

629



 

Na Wu, Zhengzhao Liang, Yingchun Li, Xikun Qian and Bin Gong 

axial displacement-controlled load of 0.002 mm/s is applied 

on the top of the experimental samples until failure occurs. 

Additionally, the corresponding numerical models are 

generated by using RFPA2D and the displacement-controlled 

load of strain rate of 2.0e-5 per step is applied on the top of 

the models until failure occurs. The mechanical parameter 

values used in the RFPA2D are obtained based on the 

laboratory test.  

Fig. 3 shows the comparison of UCS between the 

experimental and numerical results. Results show that the 

values of the UCS gradually decrease with an increasing 

tested model size and show scale effect. It is worth noting 

that the numerical results for 60º are slightly lower than the 

related experimental results (Fig. 3(a)), while the numerical 

results for 75º are higher than the related experimental 

results (Fig. 3(b)). Comparison of failure patterns between 

the experimental and numerical results are given in Fig. 4. 

The models mainly show shear failure at the tips of the 

joints until the cracks connect and failure occurs. Overall, 

the scale effect and failure patterns of tested model in the 

numerical simulation coincide with the experimental tests. 

Due to the limited test conditions, most laboratory 

sample studies on the size effect of jointed rock masses are 

in uniaxial compression. Therefore, it is a pity that the 

reliability of RFPA2D to study the scale effect of jointed 

rock masses can only be verified under uniaxial 

compression. This is also the reason why the numerical 

method was used to study the effect of confining pressure 

on scale effect of jointed rock masses, especially for field 

scales. In addition, the RFPA2D has been widely applied in 

investigating the strength and deformation behavior of 

jointed rock specimens at lab-scales (Xu et al. 2013, Li and 

Tang 2015), and the scale effect of jointed rock masses at 

field scales (Wang et al. 2016, Wu et al. 2019). 
 

2.2 Engineering background 
 

To investigate the impact of various rock types on the 
scale effect of jointed rock masses, the rocks of different 
strengths of the water inlet slope of Xiaowan Hydropower 
Station, China are studied. The main rock types of the slope 
are hornblende-plagioclase gneiss and biotite granite gneiss. 
Since there are no large faults, stability of the slope is 
mainly governed by small joints developing in the rock 
masses. According to different weathering degree, the rock 
masses of the water inlet slope are divided into three zones 
from the surface to the inside as weak-, medium- and 
strong-strengths rock masses. The geometric parameters of 
the joints in these three zones conform to the probability 
distribution. Field measurement is carried out by surveying 
lines, and a probability statistical model reflecting the 
distribution characteristics of the jointed rock masses is 
established. There are three sets of joints in each zone and 
the joint geometric parameters, e.g., trace length, dip angle 
and spacing are given in Table 1. Types I, II, III and IV in 
Table 1 stand for the normal distribution, the ogarithmic 
normal distribution, the negative exponential distribution 
and the uniform distribution, respectively. 

 
2.3 Numerical model set-up 

 

In the numerical model, accurate description of the  

Table 2 The mechanical parameters of rocks and joint used 

in the numerical simulation 

Material type 
Heterogen

eity index 

Uniaxial 
compressive 

strength 

(MPa) 

Elastic 

modulus 
(GPa) 

Friction 

angle (°) 

Poisson’s 

ratio 

Weak-strength 
rock 

5 71.8 22.1 46 0.32 

Mediate-strength 

rock 
4 105.2 42.2 51 0.28 

Strong-strength 

rock 
3 145.8 46.2 55 0.18 

Joint 2 4.44 1.84 28 0.34 

 
 

probability statistical distribution of joints is the key to 

study the REV size and mechanical properties of jointed 

rock masses (Bandpey et al. 2018). According to the 

probability statistical distribution of joint geometric 

parameters of three different strength jointed rock masses 

(as shown in Table 1), the central coordinate of each trace 

line (xc, yc) supposed to uniform distribution were generated 

based on the Monte-Carlo method. Additionally, the 

specific values of the joint dip angle α and trace length l can 

be also obtained according to the probability distribution of 

the joint dip angle and trace length. According to the 

obtained xc, yc, α and l, the joints in the research area were 

drawn and their endpoint coordinates were stored in the 

computer. Then, three different discrete fracture network 

models of 20 m × 20 m are generated based on the Monte-

Carlo method. The main advantage of this method is a 

detailed definition of the joint geometry and a realistic 

representation of the natural joint system. Then, the network 

datum are obtained and a series of square FEM models with 

various side lengths is constructed to investigate the 

mechanical properties of jointed rock masses by embedding 

the data into the RFPA2D. The side lengths of the FEM 

models for weak jointed rock masses are 2 m, 4 m, 6 m, 8 

m, 10 m, 12 m, and for mediate and strong jointed rock 

masses are 2 m, 4 m, 6 m, 8 m, 10 m, 12 m, 14 m, 16 m and 

18 m, respectively. Fig. 5(a) shows the FEM models of 

mediate jointed rock masses using in the numerical 

simulation. The blue lines in Fig. 5(a) represent generated 

joints, and the concentric squares formed by pink lines 

represent the research regions for FEM models.  

In the numerical simulation, the plain strain model is 

adopted. The lower boundary of the numerical model is 

constrained in the vertical direction, and the confining stress 

𝜎𝑝 is applied on the other surfaces of the model. After the 

model converges, an external displacement U at a constant 

rate of 0.00002 times the model side length in the axial 

direction is applied to the upper boundary of the numerical 

sample until sample fails (Yang and Jing 2011). The 

boundary condition and loading mode are shown in Fig. 5 

(b). The confining stresses 𝜎𝑝 applied on the model are 

divided into ten grades and the value of confining stress 𝜎𝑝 

generally does not exceed the uniaxial compressive strength 

of rock masses. In the work, the confining stresses 𝜎𝑝 are 

0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, 0.05, 0.1 and 0.15 

times the uniaxial compressive strength of weak, mediate 

and strong rocks, respectively. For example, the uniaxial 

compressive strength of mediate rock is 105.2 MPa (as  
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listed in Table 2), so the confining stresses 𝜎𝑝 applied on 

the FEM models are 0 MPa, 0.526 MPa, 1.052 MPa, 1.578 

MPa, 2.104 MPa, 2.63 MPa, 3.156 MPa, 5.26 MPa, 10.52 

MPa and 15.78 MPa, respectively. Then, a series of biaxial 

compression tests is conducted on the FEM models using 

RFPA2D. 
The rock masses of different strengths are considered to 

be composed of rock blocks and joints, both of which are 
assumed to be continuous medium with varying mechanical 
parameters. The mechanical parameters of the rock blocks 
are obtained by experimental tests on the rock samples 
collected from Xiaowan Hydropower Station, China. 
However, the mechanical parameters of joints were difficult 
to obtain based on the laboratory experiments. Generally, 
the mechanical parameters of joints are relatively lower 
than those of intact rocks and the values of which have 
generally been set to 1-20% that of intact rock (Pariseau et 
al. 2008, Zhou et al. 2018, Wu et al. 2019). In this paper, 
the parameters of rock blocks and joints used in the 
numerical calculation are listed in Table 2 and much lower 
mechanical parameters are assigned to the joints based on 
the previous suggestions. 
 

 

3. Effect of confining stress and model size on the 
mechanical properties of jointed rock masses 
 

3.1 Axial stress-strain curves of medium-strength 
jointed rock masses 
 

The influence of confining stress and model size on the 

mechanical properties of jointed rock masses of different 

strengths are similar to each other. Therefore, the jointed 

rock masses in medium-strength are taken as an example to 

illustrate this issue. The effect of the confining stress 

increasing from 0 MPa to 2.630 MPa on the axial stress-

strain curves of medium-strength jointed rock masses for 

the 10 m model is given in Fig. 6. Numerical results show 

that the confining stress has a limited effect on the 

deformation characteristics of the models before yielding 

stress is reached, whereas the slope of the straight line 

portion of the axial stress-strain curve increases with the 

increase of the confining stress. When the models reach 

yield states, the compressive strength increases with 

ascending confining stress, and the axial stress-strain curves 

follow a strain-hardening trend, which is consistent with 

previous studies (Bidgoli and Jing 2014, Yang et al. 2015a).   

 

 

Fig. 6 Influence of confining stress (σp) on the axial 

stress-strain curves of medium-strength jointed rock 

masses for the 10 m model 
 

 

Fig. 7 Influence of model size under the 1.052 MPa 

confining stress on the axial stress-strain curves of the 

medium-strength jointed rock masses 
 
 

The effect of model size increasing from 2 m to 18 m under 

the confining stress of 1.052 MPa on the axial stress-strain 

curves is shown in Fig. 7. According to Fig. 7, as model size 

increases, the axial stress-strain curve, compressive 

strength, slope of straight line portion of the axial stress-

strain curves all manifest a distinct size effect with 

increasing model sizes. 
 

3.2 Failure patterns of medium-strength jointed rock 
masses 
 

Fig. 8 shows the failure patterns of medium-strength 

jointed rock masses as confining stress increases from 0  

  
(a) Illustration of the study of scale effect (b) Typical set-up and boundary conditions 

Fig. 5 Illustration and typical set-up and boundary conditions of model of medium-strength jointed rock masses 
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MPa to 2.630 MPa for the 10 m model. Results show that 

tensile-shear composite failure mainly occurs along the 

joint planes and tensile failure often appears at the joint tips 

under various confining stresses. Therefore, the models 

show tensile-shear composite failure. Specifically, as the 

confining stress increases from 0 MPa to 1.052 MPa, the 

development of tensile-shear composite cracks along the 

joint planes is restrained while the growth of tensile crack at 

the tips of joints is fully promoted. When the confining 

stress further increases from 1.578 MPa to 2.630 MPa, both 

the tensile-shear composite failure along the joint planes 

and tensile failure at the tips of joints are restrained. 

Besides, new tensile failure occurs at rock bridges of the 

partial joints. Therefore, it is concluded that the confining 

stress has a limited influence on the failure patterns of the 

10 m model, but increasing confining stress weakens the 

frictional sliding among joints, restrains lateral dilation of 

the models, and promotes the development of new shear 

joints at rock bridges. 

The influences of model size increasing from 2 m to 18 

m under 1.052 MPa confining stress on the failure patterns 

of medium-strength jointed rock masses are plotted in Fig. 

9. As shown in Fig. 9, when the model side length is 2 m,  

 

 

 

the joints contained in the model are almost connected. The 

model is mainly controlled by one of the connected joints 

and undergoes tensile failure along the joint planes, which 

approximately parallel to the vertical direction (the dip 

angles of the joints in the model are mainly 80° and 89°, as 

shown in Table 1). When the model side length is larger 

than 2 m, the model contains several discontinuous joints. 

The shear failure firstly occurs along the joint planes and 

then tensile stress concentration appears in the tips of joints. 

The models mainly show tensile-shear composite failure. 

Therefore, the failure patterns of jointed rock masses are 

significant related to the model size, which contains 

complex joint geometric structures. 

 

 

4. Effect of confining stress on REV of jointed rock 
masses 
 

Fig. 10 shows the influence of confining stress on the 

compressive strength of jointed rock masses of different 

strengths. It can be seen that the compressive strength of the 

models first decreases and then remains unchanged for 

weak- and strong-strength jointed rock masses as model  

 

Fig. 8 Influence of confining stress (σp) on the failure patterns of medium-strength jointed rock masses for the 10 m model 

 

Fig. 9 Influence of model size under 1.052 MPa confining stress on the failure patterns of medium-strength jointed rock 

masses 
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size increases under various confining stresses (Figs. 10(a) 
and (c)). It is noteworthy that when the model size increases 
from 2 m to 4 m, the compressive strength of medium-
strength jointed rock masses increases with the increase of 
model size, as shown in Fig. 10(b). The main reason can be 
analyzed from the influence of joint geometric distribution 
on the mechanical properties of rock masses. When the 
model size is 2 m, there is a persistent joint in the model (as 
shown in Fig. 9), hence the compressive strength of the 
model with a size of 2 m is smaller than that of 4 m. In 
addition, the compressive strength of jointed rock masses in 
different strengths exhibits distinct size effect. 

In general, the minimum volume beyond which the 

compressive strength tends to be stable as the model size 

increases is called the REV. In order to quantitatively 

 

 

 

analyze the effect of confining stress on the REV of 

compressive strength of jointed rock masses, the variation 

coefficients is given in Eq. (1)( Yang et al. 2015a) 

𝐾𝑖 =
|𝐴𝑖 − �̅�𝑖|

�̅�𝑖
 (1) 

where 𝐾𝑖  is the variation coefficient of compressive 

strength, 𝐴𝑖 is the compressive strength assessed by the 

RFPA2D with model size of i, and �̅�𝑖  is the average 

compressive strength with a model size greater than or 

equal to i. In addition, the smaller the value of 𝐾𝑖 produces 

smaller fluctuation in the compressive strength when the 

model size is greater than or equal to i. 

Fig. 11 illustrates the relationship between the variation 

   
(a) Weak-strength (b) Medium-strength (c) Strong-strength 

Fig. 10 Influence of confining stress (σp) on the compressive strength of jointed rock masses of different strengths 

  
(a) Weak-strength (b) Medium-strength 

 
(c) Strong-strength 

Fig. 11 Relationship between variation coefficient of compressive strength and model size of jointed rock masses of 

different strengths under various confining stresses 
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Fig. 12 Influence of normalized confining stress 𝜎p 𝜎c⁄  on 

the REV of jointed rock masses of different strengths 

 

 

coefficient of compressive strength and the model size of 

the jointed rock masses of different strengths under various 

confining stresses. Numerical results show that the Ki first 

fluctuates and then tends to be stable, which exhibits an 

obvious size effect with the increase of the model size. In 

this work, the acceptable error of the Ki is set to 5%. 

Correspondingly, the minimum model size beyond which 

the Ki is less than or equal to 5% is determined as the REV. 

To quantify the relation of the REV and confining stress, 

the ratio of confining stress (𝜎𝑝) applied on the jointed rock 

masses to the UCS (𝜎𝑐) of intact rocks is defined as the 

normalized confining stresses ( 𝜎𝑝 𝜎𝑐⁄ ). Therefore, the 

normalized confining stresses 𝜎𝑝 𝜎𝑐⁄  of jointed rock 

masses of different strengths are 0, 0.005, 0.01, 0.015, 0.02, 

0.025, 0.03, 0.05, 0.1 and 0.15. 

Fig. 12 introduces the influence of 𝜎𝑝 𝜎𝑐⁄  on the REV 

size of jointed rock masses in different strengths. For weak-

strength jointed rock masses, the REV size keeps at 10 m × 

10 m as the σp σc⁄  increases from 0 to 0.005, then 

decreases to 8 m × 8 m as σp σc⁄  increases to 0.01, and 

finally keeps a constant value of 8 m × 8 m as σp σc⁄  

increases to 0.15. For medium-strength jointed rock masses, 

the REV reduces from14 m × 14 m to 10 m × 10 m as 

𝜎𝑝 𝜎𝑐⁄  increases from 0 to 0.01, then remains constant at 10 

m × 10 m as 𝜎𝑝 𝜎𝑐⁄  increases to 0.03, and eventually 

declines again to a constant value of 8 m × 8 m as 𝜎𝑝 𝜎𝑐⁄  

increases to 0.15. For strong-strength jointed rock masses, 

the REV drops from 16 m × 16 m to 10 m × 10 m as 𝜎𝑝 𝜎𝑐⁄  

grows from 0 to 0.015, then remains constant at 10 m × 10 

m as 𝜎𝑝 𝜎𝑐⁄  increases to 0.05, and finally decreases again a 

constant value of 6 m × 6 m as 𝜎𝑝 𝜎𝑐⁄  increases to 0.15. 

The results indicate that the REV of jointed rock masses 

present a step-like reduction as 𝜎𝑝 𝜎𝑐⁄  increases. 

Therefore, the confining stress weakens the scale effect of 

the jointed rock masses and reduces the sensitivity of model 

size to the rock masses strength. At present, it is still a 

problem to accurately describe the magnitude and direction 

of the stress field of rock masses in complex rock 

engineering. The reason is that the stress state of rock 

masses is not only related to gravity, but also affected by the 

geological structure with various types and scales. 

Generally, it is obviously reasonable to regard the 

maximum REV as the REV of the study zone. Hence, the 

REV obtained under the uniaxial compression test can be 

used as the REV of jointed rock masses that subjected to 

complex stress conditions. This is of great significance in 

practical rock engineering application. 
 

 

5. Discussions 
 

The REV of jointed rock masses is significant 

influenced by the complex joint system (such as the joint 

dip angle and the joint density) (Khani et al. 2013, Zhang et 

al. 2013). To further understand of the effect of confining 

stress on the REV of jointed rock masses, three typical joint 

models containing various joint dip angles and joint 

densities (termed Models A, B and C) are established. The 

joint trace length is fixed at 0.8 m and follows a logarithmic 

normal distribution in the model. The joint dip angle and 

the joint spacing follow the logarithmic normal distribution 

and the negative exponential distribution, respectively. 

Furthermore, Model A contains a set of horizontal joints 

having a density of 3.5 m-2 (Fig. 13(a)). Given the same 

joint density, the joint dip angle in Model B is vertically 

rotated by 90° in the clockwise direction as shown in Fig. 

13(b). Model C contains a set of horizontal joints, and the 

joint density is 0.2 times of that in the Model A, as shown in 

Fig. 13(c). The sizes of the square models of the three 

typical jointed rock masses are 2 m, 4 m, 6 m, 8 m, 10 m, 

12 m and 14 m (Fig. 13). The mechanical parameters of 

rocks used in RFPA2D
 are shown in Table 3. Much lower 

mechanical parameters are assigned to the joints. Finally, a 

series of biaxial compression tests is carried out, and the 

confining stresses applied on the models are 0 MPa, 5 MPa, 

10 MPa, 15 MPa and 20 MPa, respectively. The loading 

method is the same as that in Section 2. 

Under different confining stresses, the compressive 

strength of three typical joint models shows a significant 

scale effect (Fig. 14). The variation coefficients of 

compressive strength can be acquired according to Eq. (1), 

and the REVs of three typical joint models also can be got 

with an acceptable 𝐾𝑖 of less than 5%. Fig. 15 shows the 

influence of confining stress on the REVs of three typical 

joint models. For Model A, the REV remains unchanged at 

6 m × 6 m as the confining stress increases from 0 MPa to 

20 MPa. The REV of Model B first keeps stable at 10 m × 

10 m as the confining stress increases from 0 MPa to 5 

MPa. With further increase of confining stress from 5 MPa 

to 10 MPa, the REV decreases to 8 m × 8 m and finally 

remains constant at this value. In addition, the REV of 

Model C first decreases from 10 m × 10 m to 8 m × 8 m as 

confining stress increases from 0 MPa to 5 MPa, and then 

keeps unchanged at 8 × 8 m. when the confining stress is 

greater than 5 MPa. It can be concluded that the influence 

of the confining stress on the REV of the jointed rock 

masses not only is affected by the joint dip angle, but also 

related to the magnitude of joint density. 

To overcome computational limitations, the 3D joints 

were mapped into a 2D model. This is a widely used 

approach to investigate the scale effect and REV of jointed 

rock masses (Pouya and Ghoreychi 1998, Bidgoli and Jing 

2014, Zhou et al. 2018). Previous studies have successfully  
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Table 3 The mechanical parameters of rock and joint used 

in the numerical simulation 

Material 

type 

Heterogeneity 

index 

Uniaxial 
compressive 

strength (MPa) 

Elastic 
modulus 

(GPa) 

Friction 

angle (°) 

Poisson’s 

ratio 

Rock 5 100 15 51 0.28 

Joint 2 5 0.75 28 0.34 

 

 

demonstrated the viability of this simplification. 

Additionally, the equivalent mechanical parameters of 

jointed rock masses in in-situ stress environment can be 

obtained by considering the anisotropic behavior of the rock 

masses based on the REV size determined under the 

uniaxial compression test. It lays a foundation for the study 

of field-scale engineering problem using the equivalent 

continuum model. Finally, the paper provided a method to  

 

 

 
Fig. 15 Influence of confining stress on the REV of three 

typical joint models 

 

 

determine the REV size of jointed rock masses under 

   
(a) Model A (b) Model B (c) Model C 

Fig. 13 Model set-up for three typical joint models 

  
(a) Model A (b) Model B 

 
(c) Model C 

Fig. 14 Influence of confining stress (σp) on the compressive strength of three typical joint models 
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various stress environment, and the results obtained are 

based on two-dimensional simulation model. More 

knowledge related to three-dimensional cases demands to 

be further studied. 
 

 

5. Conclusions 
 

• A series of two-dimensional (2D) joint network models 

was established based on the Monte-Carlo method and a lot 

of biaxial compressive tests were conducted to study the 

scale effect of the jointed rock masses of different strengths. 

The numerical results suggested that the compressive 

strength of jointed rock masses of different strengths 

exhibited distinct size effect under various confining 

stresses. 

• The REVs of the jointed rock masses of different 

strengths were obtained with an acceptable variation 

coefficient of less than 5% under various normalized 

confining stress. Numerical results showed that the REVs of 

the jointed rock masses of different strengths presented a 

step-like reduction as normalized confining stress increased. 

This indicated the confining stress weakened the scale 

effect of the jointed rock masses and reduced the sensitivity 

of the model size to the rock masses strength.  

• Jointed rock masses are commonly situated under 

complex in-situ stress environment. The REV of jointed 

rock masses is significantly affected by confining stress, 

and generally decreased as confining stress increases. The 

REV determined under uniaxial compression test is greater 

than that determined under biaxial compression test. 

Therefore, the REV determined under uniaxial compression 

test can be treated as the REV of jointed rock masses of 

rock-engineering structures in the field. 
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Nomenclature 
 

REV Representative elementary volume of jointed rock 

masses 

θ The angle of the joint with the direction of the 

horizontal direction 

U Displacement loading 

σp Confining stress 

σp/σc Normalized confining stresses 

Ki Variation coefficient with model size i 

Ai Mechanical parameter with model size i 
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�̅�𝑖 Average mechanical parameter with model size 

greater than or equal to i 

i Model size 

α Joint dip angle 

l Joint trace length 

(xc, yc) Central coordinate of each trace line 
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