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1. Introduction 
 

Currently, stability problem of tunnel face is one of the 

research focuses in geotechnical engineering. The studies in 

this field are traditionally performed by developing 

deterministic computational models to replace the complex 

system failure processes using numerical approaches or 

simulations, such as limit analysis theory, limit equilibrium 

method, finite element analysis and other methods 

(Aminpour et al. 2017, Nian et al. 2014, Soomro et al. 

2017, Zou and Xia 2016). Those approaches are efficient 

and accurate in predicting critical support pressure against 

tunnel face. 

As an important issue affecting face stability, the 

nonlinearity of excavation media has attracted a lot of 

attentions of scholars. The Hoek-Brown failure criterion 

was proposed to describe the nonlinear properties of rock 

mass. In terms of its superior performance in modelling 

rock failure, Hoek-Brown criterion has been widely adopted 

in literature. Serrano et al. (2016) used the modified Hoek-

Brown criterion to calculate the ultimate bearing capacity of 

a strip foundation of an anisotropic discontinuous rock 

mass. Yang and Chen (2019) investigated the effect of water 

pressure on three-dimensional (3D) unsaturated soil slope 

stability. Xu and Yang (2019) studied the stability of soil 

slope subjected to water drawdown and presented the 

stability charts for practical use. In contrast, those 

deterministic models with a nonlinear failure criterion are  
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more convincing in characterizing rock failure. 

Another issue involved with face stability is 

uncertainties of rock properties. Given the inherent spatial 

variability of rock mass, designers in practical engineering 

often pay more attention to how stable the tunnel face is 

rather than whether it is stable. For this sake, probabilistic 

approaches are introduced to evaluate the face stability 

considering the influence of uncertainties of rock properties 

(Miro et al. 2015). Crude MC is the most straightforward 

and robust approach to perform probabilistic stability 

analysis of tunnel face, but it suffers from low 

computational efficiency and expensive costs. In addition, 

the first-order and second-order reliability methods 

(FORM/SORM) are also commonly used approaches which 

are, however, not applicable for cases with nonlinear or 

implicit limit state functions. 

In view of previous studies, deterministic models for 

tunnel face or slope stability are often strongly nonlinear 

and implicit which causes great trouble in performing 

probabilistic analysis with traditional reliability methods 

(Paternesi et al. 2017). To address this problem, several 

advanced probabilistic approaches are proposed. The 

response surface method (RSM) is commonly adopted to fit 

the implicit limit state function by assuming a closed-form 

polynomial in advance. But it is less efficient in those cases 

whose actual limit state functions are multimodal functions 

with several peaks and troughs. Recently, a new strategy 

combining metamodels and MC to construct an efficient 

approximation model prevails in engineering reliability 

analysis. Echard et al. (2011) proposed an active learning 

reliability method combining Kriging and MC, which was 

proved to be accurate enough with a minor number of calls 

to the deterministic model. Pan and Dias (2017) developed 
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an efficient reliability method by taking advantage of the 

adaptive support vector machine (SVM) and MC. Four 

representative examples were referred to as validations. 

These models were trained with active learning function by 

adding the new points in the training data one by one until 

the requirement was satisfied.  
Another efficient way for model training is called as 

uniform design which uniformly chooses the training points 
in the design space without addition of new training points 
but can get a similar computational accuracy with that 
obtained by those active learning approaches. Jiang et al. 
(2015) proposed an efficient method of uniform design for 
SVM training to fit the structural failure function. The 
advanced structural analysis tool (e.g., Finite Element 
Analysis) was used to solve each pair of loads under the 
principle of approximation to the limit load and distribution 
on its two sides. These metamodel-based probabilistic 
approaches show great superiority and broad applicability 
in failure probability calculation of engineering structures. 

This paper is devoted to a probabilistic model for 

stability analysis of 3D tunnel face excavated in spatially 

random Hoek-Brown rock mass. mi, GSI, D and σc are 

regarded as random variables to investigate the influence of 

uncertainties of Hoek-Brown parameters on face failure. A 

novel uniform design is proposed to train the Kriging by 

designing a series of sampling points that are uniformly 

distributed in the space of random variables. Unlike the 

existing active learning function, the uniform design does 

not require to adding new points to training data iteratively 

and subsequently can improve the model training efficiency 

without sacrificing estimation accuracy. The random data 

generated by MC are evaluated using the trained Kriging 

with small number of calls to the actual limit state function. 

The proposed probabilistic model is proved to be accurate 

and efficient in failure probability estimation of tunnel face 

considering nonlinear Hoek-Brown criterion. 
 

 

2. Deterministic computational model 
 

2.1 Nonlinear Hoek-Brown failure criterion 
 

The linear Mohr-Coulomb failure criterion has been 

widely used in engineering due to its straightforward 

statement of stress-strain relationship of geotechnical 

materials (Li and Yang 2019a, e, f). However, researchers 

find that almost all rock and soil materials exhibit a 

nonlinear behavior in laboratory tests. The internal friction 

angle is not constant but reduces with the increase of 

confining pressure, eventually forming a curved Mohr’s 

envelope. These findings necessitate the proposal of 

nonlinear failure criteria. To fulfill this demand, Hoek-

Brown criterion was proposed in an attempt to provide a 

more reliable way to study rock failure (Hoek et al. 2002). 

It is written as 

( )1 3 3 /
n

c b cm s    = + +
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The expressions of mb, s and n are 
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Fig. 1 Tangential line to the Hoek-Brown strength curve 
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where σ1 and σ3 are respectively the major and minor 

principal stresses at failure; σc is the uniaxial compressive 

stress of the rock at failure; GSI is the geological strength 

index, which represents the integrity of the rock mass; D is 

the disturbance coefficient which varies from 0 for 

undisturbed rock mass to 1.0 for heavily disturbed one and 

mi represents the rock material constant determined by rock 

type. 

 

2.2 Generalized tangential technique 
 

In order to facilitate the usage of Hoek-Brown failure 

criterion in Mohr-Coulomb failure criterion-based 

geotechnical software, Hoek and Brown (Hoek et al. 2002) 

gave the equivalent cohesion and internal friction angle by 

fitting an average linear relationship to the curve generated 

by Eq. (1). Obviously, results obtained by this method is not 

the real upper bound solutions due to the intersection with 

Hoek-Brown strength curve. To overcome this problem, An 

effective approach is to simplify the nonlinear criterion into 

a linear one. Based on this approach, the generalized 

tangential technique (Li and Yang 2019c, d). The method 

was extended to evaluate stability problem with nonlinear 

failure criterion and limit analysis (Qin and Chian 2017, 

Ausilion and Zimmaro 2017, Li and Yang 2019b). As 

shown in Fig. 1, the tangential line can be expressed as 

= tant n tc  +
 (5) 

where ct, φt are respectively the intercept and slope angle of 

tangential line. According to the tangential technique, ct can 

be expressed as a function of φt in combination of nonlinear 

Hoek-Brown criterion. 

1

1 1cos (1 sin ) tan sin (1 sin ) tan
1

2 2sin 2sin
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c t t c t t t c t
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mn mn s
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Scholars directly used ct, φt instead of cohesion and 

internal friction angle to formulate external work rate and 

internal energy dissipation based on upper bound theorem 

of limit analysis. Due to the convex failure surface of Hoek-

┵t
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M

┱

┮n
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Brown criterion, the limit load solved by the tangential 

technique is equal to or larger than that by actual failure 

surface, which ensures an upper bound solution. 
 

2.3 Limit analysis of tunnel face stability 
 

Limit analysis is widely used in engineering (Yang and 

Chen 2019a, b, Zhang and Yang 2019a, b). In this section, it 

is performed routinely to construct the deterministic 

computational model of tunnel face failure. As shown in 

Fig. 2, a 3D rotational failure mechanism of tunnel face is 

presented according to Michalowski and Drescher (2009). 

The profile of the curved rigid cone is fundamentally 

composed of two crossed and same-centered logspiral 

curves which respectively start from the tunnel roof and 

tunnel invert and outline the upper and lower boundaries. C, 

d respectively denote the buried depth and diameter of 

tunnel. ω is the angular velocity. θ1, θ2, θ3 are the rotation 

angles of OB, OA, OE respectively. For the sake of 3D 

analysis, the local coordinate system is established whose x-

axis is perpendicular to the paper outwards with a varying 

origin along the center line of the curved cone. l is the value 

of y which is determined by the location where the cross-

section of curved cone is intersected with tunnel face as the 

rotation angle ranges from θ1 to θ2. R is the radius of each 

cross-section of curved cone. 

As shown in Fig. 2, the two logspiral curves, i.e. AE and 

BE, are respectively written as 

2( )tan

1 0( )r r e
   −=

 
(7) 

1( )tan

2 0( )r r e
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(8) 

where θ is a variable denoting the rotation angle; r0 and r'0 

are presented as follows. 
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Provided that rm is the distance measured from the 

center of rotation O to the center line of curved cone, both 

of rm and R can be expressed as functions of θ, namely 
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where the expressions of f1(θ), f2(θ) can be seen in 

Appendix. 

To respect the upper bound theorem, the deterministic 

model is established by equating the rate of external work to  

 

Fig. 2 Graphical representation of 3D tunnel face failure 

 

 

the rate of the energy dissipation in any kinematically 

admissible velocity field. In combination with Hoek-Brown 

criterion, the work rate done by self-weight of rock mass Pγ 

is calculated with help of triple integral. 
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(14) 

where γ=unit weight of rock mass, l=r0f3(θ) and the 

expressions of g11(θ1, θ2), g12(θ2,θ3), f3(θ) are presented in 

Appendix. 

Another part of external work rate done by support 

pressure PT can be expressed as 
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(15) 

where σT is the uniform support pressure applied on tunnel 

face and g2(θ1, θ2) can be seen in Appendix. 

For the curved cone, the work rate of energy dissipation 

PD is only produced along the sliding surface. By means of 

surface integral, it can be calculated as follows. 
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(16) 

where α0=arcos(f3/f2) and the expressions of g31(θ1, θ2), 

g32(θ2, θ3) can be seen in Appendix. 

Hence, the critical support pressure can be calculated as 
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For a tunnel excavated in Hoek-Brown rock mass, the 

inherent nonlinearity of rock mass is an important factor 

that affects the face stability. With resort to the generalized 

tangential technique, σT is optimized with the objective 

function of Eq. (6) and Eq. (17). The constraint conditions 

are given as follows. 

1 2
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3. Probabilistic model based on Kriging and MC 
 

3.1 Kriging theory 
 

This part is devoted to a short review of Kriging theory 

which states that the limit state function G(x) can be 

expressed as a regression model and a stochastic process 

(Echard et al. 2011, Gaspar et al. 2014). 

( ) ( ) ( )G F = +x x x
 (19) 

where x is the input vector; F(x) is the trend function 

obtained by regression analysis; ε(x) is the random error 

function representing the prediction error. The trend 

function is typically written as a low-order polynomial 

function as described in Eq. (20). 
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(20) 

where k denotes the dimension of x and β=[β0, β1,…, βk,…, 

β11, β12,…βkk]T denotes the vector of regression coefficients. 

The case of a constant trend function is known as “ordinary 

Kriging” which is most widely adopted and often suffices 

for high prediction accuracy. So the ordinary Kriging is 

adopted in this paper. It can be expected that the trend 

function can give a good prediction for the untried points 

that are close to the ones belonging to sampling points, but 

not for the distant ones. So it is inferred that the error 

function is spatially correlated. In Kriging theory, ε(x) is 

considered as a stationary Gaussian process with the mean 

and the covariance between two points x and y as follows 

2
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=
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(21) 

where σ2
ε refers to the process variance and Rλ is the 

correlation function with undetermined parameters λ=[λ1, 

λ2,…λk]T. The Gaussian correlation function is most 

commonly used in literature as it is relatively smooth, 

infinitely differentiable and often numerically more stable 

which can be expressed as 

2

1

( , ) exp ( )
k

i i i

i

R x y 
=

 = − − x y

 

(22) 

The parameter λi accounts for the correlation between 

ε(x) and ε(y) along the i-th random variable. An anisotropic 

correlation function with different λi for each random 

variable is preferred in the following studies to provide 

better flexibility in approaching the response surface. 

Considering u sampling points [x1, x2,…,xu]T, the actual 

response Y=[Y1, Y2,…,Yu]T can be obtained by running G(x) 

for each sampling point. So the scalars β0 and σ2
ε are 

estimated as follows. 

1 1 1

0
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where 1 represents the u dimensional column vector which 

is filled with 1 and R is the matrix of correlation and 

expressed as 
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(25) 

An indispensable precondition to obtain the estimations 

of β0 and σ2
ε is to calculate the value of λ by means of 

maximum likelihood estimation under the following 

objective function. 

1/ 2ˆ ˆarg min(det ) u




=λ R
 

(26) 

The best unbiased prediction Ĝ(x) at an untried point x 

can be written as 

1

0 0
ˆ ( ) ( ) ( )TG  −= + −x r x R Y 1

 
(27) 

where r(x)=[Rλ(x, x1), Rλ(x, x2),…, Rλ(x, xu)]T. 

The DACE provides an easily computable analytical 

function to evaluate the uncertainty of local prediction for 

untried points. The analytical function denoting the 

minimum of mean squared error (MSE) between Ĝ(x) and 

G(x) is presented as 

2 2 1 1 1

ˆ ( ) (1 ( ) ( ) ( ) ( ) ( ))T T T

G
f f  − − −= + −1 1x x R x r x R r x

 
(28) 

where f(x)=1TR-1r(x)-1. 

 

3.2 Algorithm of the probabilistic model 
 

A probabilistic model for tunnel face stability is 

established combining Kriging and MC. Its basic idea is to 

construct a Kriging approximation model as a surrogate to 

classify a Monte Carlo population of N points without 

evaluating N times the actual limit state function. The 

proposed model can greatly reduce the computational time 

and costs without sacrificing the estimation accuracy of 

failure probability. To investigate the nonlinearity of 
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Table 1 The uniform table for probabilistic stability analysis 

of tunnel face 

No. mi GSI D σc 

1 0 0 0 0 

2 1 1 0 0 

3 1 0 1 0 

4 0 1 0 1 

5 0 0 1 1 

 

 

surrounding rock mass, the Hoek-Brown parameters mi, 

GSI, D and σc are treated as random variables and 

uniformly chosen to train the Kriging model. Fig. 4 presents 

the flow chart of the proposed probabilistic model where T 

denotes the support pressure against tunnel face, and it is 

based on the following steps: 

(1) Uniform design of initial sampling points 

The probabilistic stability analysis of tunnel face is 

 

 

 

started with constructing a Kriging model. It is an essential 

step to design a set of initial sampling points that are 

uniformly distributed in the space of random variables. In 

this contribution, the uniform design is obtained according 

to the uniform table as shown in Table 1. Each column 

represents a random variable and each row represents a 

combination of all random variables, namely a sampling 

point. It is inspired by the orthogonal table with two factors 

and two levels, where “0” represents the mean value and 

“1” represents an offset along the direction of each random 

variable. The offset takes 5 times the standard deviations of 

random variables to ensure that there are always several 

points on the opposite side of the mean-value point with 

respect to the limit state function. Fig. 3 presents a 

subdivision scheme of the uniform design to enrich the 

initial sampling points which actually contributes a lot to 

improvement of prediction accuracy of Kriging model. On 

the plane determined by each two random variables, the 

sampling points are selected for each fan-shaped area with a 

 

(a) Design of unit vectors (b) Design of random variables 

Fig. 3 Subdivision scheme of the uniform design 

 

Fig. 4 Flow chart of the proposed probabilistic model 
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vertex of η (η=2π/q, q=1, 2, 3,…) which can be achieved by 

designing a set of unit vectors firstly (see Fig. 3(a)). Then 

the unit vectors are moved to the mean-value point and 

enlarged by the offset along each axial direction (see Fig. 

3(b)). The subdivision scheme is performed for all the lines 

from the second to the fifth in Table 1. 

(2) Approximation to limit state surface with bisection 

search 

As a metamodel-based MC, the role of Kriging model is 

equivalent to a classifier. So only the sign (positive or 

negative) of the response instead of the exact value 

contributes to the estimation accuracy of failure probability. 

From this perspective, the most efficient way to improve the 

sign prediction of Kriging model is sampling as closely to 

the limit state surface as possible where the points have the 

highest probability to be mistakenly classified. To meet this 

requirement, the bisection method is adopted to search the 

points that are distributed on limit state surface. The mean-

value point is set as one boundary for each bisection search 

and the initial sampling points whose responses have the 

opposite sign of the response at mean-value point are set as 

the other boundaries. The bisection searches are conducted 

and terminated with G(x*)=0. Not surprisingly, x* are the 

required points for Kriging model training. 

(3) Estimation of failure probability 

The Monte Carlo population of N points is generated 

according to the statistical properties of random variables. 

The trained Kriging model is used to predict the responses 

with small number of calls to actual limit state function. 

The responses that are less than 0 are counted as the number 

of occurrences of face failure which is labeled with Nf. The 

failure probability pf and its coefficient of variation COVpf 

are estimated by Eq. (29) and Eq. (30) respectively. 

f

f

N
p

N
=

 

(29) 

1

f

f

p

f

p
COV

Np

−
=

 

(30) 

(4) End of the algorithm 

COVpf is considered as an indicator of whether the size 

of Monte Carlo population N is large enough to give an 

acceptable estimation of failure probability. Traditionally, 

COVpf <5% means that the algorithm of the proposed 

approach can be terminated with a satisfying final result, 

otherwise the algorithm turns back to step 3 with a larger N. 
 

 

4. Reliability analysis 
 

4.1 Influence of uncertainty level 
 

The proposed probabilistic model is used to assess the 

face stability under the influence of different uncertainty 

levels of random variables. Three probabilistic scenarios 

with different COVs of Hoek-Brown parameters are 

investigated as shown in Table 2. The other parameters in 

Fig. 2 is set as follows: C=30 m, d=10 m, γ=21 kN/m3.  

Based on the neutral scenario, Fig. 5 presents the  

 

Fig. 5 The normalized pf and Ncall with the variation of n 

when T=50 kPa 

 

Table 2 Statistical properties of Hoek-Brown parameters 

Hoek-

Brown 

parameter 

Mean 

value 

(μ) 

Coefficient of variation (COV) 
Distribution 

type Optimistic 
scenario 

Neutral 
scenario 

Pessimistic 
scenario 

mi 10 0.08 0.12 0.16 Normal 

GSI 20 0.09 0.13 0.17 Normal 

D 0.5 0.07 0.10 0.13 Normal 

σc 1MPa 0.13 0.18 0.23 Normal 

 

 

normalized pf, which represents the rate of pf obtained by 

the proposed approach to that by direct MC, and number of 

calls to limit state function Ncall with the variation of n 

when T=50 kPa. It shows that the increase of n contributes 

to a high prediction accuracy of proposed approach. 

Meanwhile, it significantly reduces the computational 

efficiency due to the increase of initial sampling points. The 

normalized pf converges around n=12, which just ensures 

accurate estimation of failure probability with less costs in 

model training. So it is recommended that n is set to 12 in 

the following calculation. 

Table 3 presents the estimation of failure probability 

with different support pressures applied on tunnel face. The 

direct MC is performed for each case to validate the 

proposed probabilistic model except the ones that require 

more than five million trials. It is worth noting that the 

offset of uniform design should be reasonably adjusted for 

cases with high uncertainty level or extremely low failure 

probability to avoid generation of negative values or 

absence of available initial sampling points. As shown in 

Table 3, the failure probability estimated by proposed 

approach is very close to that given by direct MC for each 

case. The difference is about 5% or less. Ncall is listed to 

highlight the superior performance of proposed approach in 

improving computational efficiency. Compared with direct 

MC, Ncall is significantly reduced and it becomes more 

obvious when the failure probability is low. In addition, the 

uncertainty level has a distinct impact on failure probability 

especially when tunnel face is supported with greater 

pressure. The face stability is more significantly improved 

with enhancement of support pressure for the optimistic 

scenario. So it can concluded that more efficient 

reinforcements should be adopted to retain the face stability  
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Table 3 Failure probability with different support pressures 

T/kPa Scenario 
Proposed approach Direct MC 

Difference 

(%) 
pf COVpf (%) Ncall pf COVpf (%) Ncall 

30 

Optimistic 3.82×10-2 0.005 350 3.94×10-2 4.33 1.3×104 3.05 

Neutral 1.09×10-1 0.003 372 1.11×10-1 4.01 5.0×103 1.63 

Pessimistic 1.89×10-1 0.002 398 1.99×10-1 4.01 2.5×103 5.21 

40 

Optimistic 1.10×10-3 0.030 244 1.16×10-3 4.96 3.5×105 5.17 

Neutral 1.99×10-2 0.007 353 2.08×10-2 4.02 3.0×104 4.33 

Pessimistic 6.33×10-2 0.004 376 6.53×10-2 4.23 8.0×103 3.01 

50 

Optimistic 3.84×10-5 4.290 178 - - - - 

Neutral 3.29×10-3 0.017 280 3.35×10-3 4.46 1.5×105 1.79 

Pessimistic 1.45×10-2 0.008 328 1.52×10-2 4.64 3.0×104 4.61 

60 

Optimistic 8.39×10-7 4.370 123 - - - - 

Neutral 6.35×10-4 0.040 272 6.68×10-4 4.78 7.0×105 4.94 

Pessimistic 7.37×10-3 0.012 304 7.56×10-3 4.68 6.0×104 2.49 

 

Fig. 6 Influence of correlated variables on failure probability 

  
(a) (b) 

  
(c) (d) 

Fig. 7 PDF curves of random variables considering different distribution types 
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Fig. 8 Influence of distribution type on failure probability 
 

 

for tunnels excavated in high uncertainty level rock mass. 
 

4.2 Influence of correlated variables 
 

Previous studies showed that the correlation between 

random variables has non-negligible influence on failure 

probability. Zhang et al. (2019) suggested that the nonlinear 

parameters were not independent from each other, but 

followed a certain correlation relationship. To figure out the 

influence of correlated Hoek-Brown parameters on failure 

probability, the following relationship is used in this 

contribution to define the correlation coefficients between 

mi, GSI, D and σc. The correlated data are generated using 

MATLAB. Fig. 6 presents the failure probability for each 

uncertainty level considering the influence of correlated 

variables. In comparison with independent variables, the 

correlated variables have slight influence on failure 

probability. The biggest difference occurs under the 

conditions of pessimistic scenario and T=60kPa, where pf is 

equal to 7.37×10-3 for independent variables and 3.84×10-3 

for correlated ones. The increase of uncertainty level seems 

to make the influence of correlated variables more 

prominent. 

 

4.3 Influence of distribution type 
 

In terms of high uncertainty level of rock mass, the 

lognormal distribution is often adopted in lieu of normal 

distribution to exclude the physically meaningless negative 

values in numerical analysis. In order to investigate the 

influence of distribution type, the probabilistic stability 

analysis is performed based on lognormally distributed 

random variables in this section. Fig. 7 presents the curves 

of probability density function (PDF) of random variables 

with different distribution types. It is observed that the PDF 

curve of lognormally distributed variable shows a higher 

and earlier peak in comparison with normally distributed 

one. This phenomenon is intensified when a higher 

uncertainty level is considered. For the optimistic scenario, 

the PDF curves of two distribution types almost coincides 

with each other. However, obvious difference can be found 

between two curves for pessimistic scenario. As shown in 

Fig. 8, the failure probability derived from lognormally 

distributed variables is smaller than that from normally 

distributed ones. The difference becomes more obvious 

with a greater support pressure or a lower uncertainty level 

of random variables. It can be inferred that lognormal 

distribution may lead to a less conservative design in rock 

tunnel excavation, which permits a more economical design 

but may not be a safer one. 
 

 

5. Conclusions 
 

A model combing Kriging and Monte Carlo method is 

presented for probabilistic stability analysis of tunnel face 

in this paper. A novel uniform design is proposed to train 

the Kriging without requirement of iteratively adding new 

training points which can reduce much work in model 

training. The deterministic model is established based on 

upper bound theorem of limit analysis. With the help of 

generalized tangential technique, the Hoek-Brown failure 

criterion is introduced to account for the nonlinear 

behaviors of rock mass. The Hoek-Brown parameters mi, 

GSI, D, σc are treated as random variables. The following 

conclusions can be drawn: 
• Failure probability of tunnel face is calculated by the 

proposed probabilistic model and direct MC respectively 
considering different uncertainty levels of random 
variables. It is shown that the failure probability estimated 
by the proposed approach is very close to that given by 
direct MC, while the former requires much less calls to 
actual limit state function. So it can be concluded that the 
proposed approach is an accurate and time-saving 
alternative for probabilistic stability analysis of tunnel face 
excavated in Hoek-Brown rock mass. 

• The high uncertainty level of random variables leads to 

noticeable growth of failure probability. The face stability is 

improved significantly with the enhancement of support 

pressure for low uncertainty level, but not exactly for high 

uncertainty level case. It implies that more efficient 

reinforcements should be applied on tunnel face to retain its 

stability for poor condition rock mass. 

• The influence of correlated variables is investigated 

based on a given matrix of correlation coefficients of mi, 

GSI, D, σc. Results show that the correlated variables have 

slight influence of failure probability. The increase of 

uncertainty level makes the influence of correlated variables 

more prominent. 
• Lognormal distribution is employed to perform 

probabilistic analysis of tunnel face. Comparisons show that 
the PDF curve of lognormally distributed variable is taller 
and leans slightly forward. The lognormally distributed 
variables tend to given a positive estimation of failure 
probability. This tendency is intensified when a greater 
support pressure or a lower uncertainty level of random 
variables is considered. 

In summary, the proposed probabilistic model is capable 
of handling stability problem of tunnel face excavated in 
spatially random Hoek-Brown rock mass. The uncertainty 
level, correlation relationship and distribution type of 
random variables have different impacts on failure 
probability, which should be considered carefully in 
engineering design. 
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