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1. Introduction 
 

Recently, constructions for tunnels above the deep-

buried karst cavity are growing in southwestern part of 

China. Because of geological conditions and historical 

reasons, the traffic infrastructures in southwest of China are 

still poor. The government is now encouraging investment 

in transportation development in the southwest of China: 

large numbers of railways and highways are under 

construction. In terms of the selection of highway route, 

straight lines are mostly used. In order to implement this 

design, a large number of tunnels are widely used, 

especially in water-rich mountainous regions. Many 

researches have focused on the stability of deep tunnel 

(Daraei and Zare 2018, Sahoo and Kumar 2018, Lin et al. 

2018). Deep tunnels are located in areas with substantial 

heterogeneity of rock properties whose consideration is the 

state of the art in rock mechanics field, tunnelling, geo-

energy and mining applications. Nezhad et al. (2018) 

presented a modeling framework for simulation of crack 

propagation in heterogeneous shale rocks since the 

understanding of the effects of the mechanical properties on 

both direction of cracks and rock strength is very 

significant. In some practical engineering, there is water or 

other fillers in the karst cavity which will produce cavity 

pressure to the surrounding rock mass. When the horizontal 

rock layers between tunnel and karst cave is very thin 

during the deep tunnel excavation, the local failure of the 

rock mass around the tunnel and cave will occur due to the 

excavation-induced stress disturbance (Zhang and Lu 2018,  
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Huang and Zhang 2018, Pan and Dias 2018). In some cases, 

the pressures by fillers are very big, the fillers and rock 

mass will blow out (breaking into the tunnel). If the 

pressures are very small, the local collapse around the 

tunnel base will be occurred. In practical engineering, it is 

difficult to obtain the monitoring data about the surrounding 

rock collapse caused by the karst cavity pressure since 

when the collapse occurs the construction workers must 

evacuate for safety. Indeed, the progressive failure analysis 

leading to ultimate failure is a complicated task. Therefore, 

the mathematical analysis approach and optimization tool 

are good choices for providing guides for engineer to 

predict the movement trend of the failure rock mass and 

prevent the potential failure. 

Since the karst caves exist in rich-water area, the 

horizontal rock layers instability exerted by disturbance 

stress and seepage stress cannot be ignored. The failure of 

the horizontal rock layers is the process of rock mass 

catastrophic destabilization induced by nonlinear extension 

of plastic zones in the horizontal rock layers. Similar to the 

occurrence of the collapse for the karst cave, the sinkholes 

formed from the sudden collapse of underground cavity are 

common in limestone areas. Therefore, the stability of lined 

tunnels in rigid plastic karst rock with supporting pressure 

is a problem with similar boundary conditions as the karst 

rock dome. Inspired by this assumption, this work used 

upper bound theory to characterize the failure shape of karst 

cave beneath the deep tunnels with the calculus of 

variations and modified Hoek-Brown failure criterion, 

which has similarity to the collapse mechanism of shallow 

tunnel by Luo and Yang (2018). 

In this study, the author will set active and passive 

modes to describe the movements of potential failure blocks 

depending on the range of karst cavity pressure produced by 

fillers (Fig. 1). Both 2D and 3D failure mechanisms of the 

ellipsoidal cavity are put forward to describe the failure 

patterns of the horizontal rock layers. By considering the 
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(a) 

 
(b) 

Fig. 1 Failure mechanism predictions of a karst cave 

beneath a tunnel: (a) active case and (b) passive case 
 

 

fact that the stability of horizontal rock layers in water-rich 

area is affected by the seepage forces, this work discusses 

the effects of varying water level on the failure patterns of 

horizontal rock layers. The changing laws of the scope of 

the failure pattern obtained in this work show good 

consistency with the fact and previous published work. 
 

 

2. General method of analysis 
 

2.1 Theory framework 
 

In this work the kinematically velocity field is 

admissible and useful for the derivation of upper bound 

solutions (Chen 1975, Qin and Chian 2017, Xu et al. 2018, 

Zhu and Yang, 2018). To evaluate stability of the rock mass 

around the cavity beneath the deep tunnel, a suitable failure 

criterion is essential. Since the relationships between shear 

stress and normal stress for rock mass tend to be nonlinear, 

the failure criterion adopted here is the nonlinear modified 

Hoek-Brown (HB) criterion (Hoek & Brown 1980, 1997). It 

is well known that the nonlinear Hoek-Brown (HB) 

criterion is written in the σ1−σ3 plane, but the strength of 

rock mass is determined by normal and shear stresses. 

Based on the efforts of Hoek and Brown (1997), the 

original form of HB rule expressed in the σ1−σ3 plane has 

been converted to power-type form in the Mohr’s plane 

σn−τ. 

[( ) / ]B

ci n tm ciA    = −
 

(1) 

where σn and τ are normal and shear stresses on the failure 

surface, respectively; A and B are material constants, σci is 

the uniaxial compressive strength, σtm is axial tensile stress. 

The details of how are the constants A and B appearing in 

Eq. (1) related to the modified HB criterion constants (m, s, 

a) are demonstrated by Hoek and Brown (1997). 

The failure discontinuity layout should satisfy the 

velocity boundary condition and the compatibility between 

the strain rates and velocity according to the limit analysis 

theory. The set of formulations of this problem applies to a 

translational failure mode in the following. 
 

2.2 Upper bound analysis 
 

The upper bound theorem of limit analysis can be 

depicted as: when the velocity boundary conditions and 

consistency conditions for strain and velocity are satisfied 

by the kinematically admissible velocity field, the actual 

loads should be less than the calculated loads derived from 

equating the rate of external work to the energy dissipation 

rate. According to the literature (Chen 1975, Li and Yang 

2018a, b), the upper bound theorem can be written as 

follows 

ij ij i i i i
V S V

dV P v dS X v dV    +     
(2) 

where σij is the stress tensor, ij  
is the strain rate in 

velocity field. Pi is the limit load exerted on the boundary 

surface. S is the length of velocity discontinuity, Xi is the 

body force, V is the volume of the plastic zone, vi is the 

velocity along the velocity discontinuity. 

The upper bound procedure requires that the external 

work rate be equated to the energy dissipation rate within 

the plastic zone (Li and Yang 2019, Yang and Chen 2019, 

Yang and Zhang 2019, Zhang and Smith 2019, Zhang and 

Yang 2019, Zhang et al. 2019). This requires (Baker and 

Frydman 1983) 

( , ) ( )ex i D iW P W =
 (3) 

where Wex= external work rate, P = limit load, βi= a set of 

geometrical parameters defining the failure mechanism, and 

WD= energy dissipation rate.   
 

2.3 Kinematic constraints 
 

Since the aim of this work is to investigate the kinematic 
analysis of the impending failure block, the attention should 
be focused on the admissible velocity fields, v, which are 
assumed in the direction of the z-axis, as shown in Figs. 2 
and 3. Compared with limit equilibrium approach which 
does not account for the kinematic requirements, limit 
analysis method used in this work is a rigorous and concise 
theoretical method. In kinematic analysis, the compatibility 
between the strain rates and velocity is satisfied as below. 

By assuming the plastic potential, Ψ, to be coincident 

with the Mohr envelope and considering without any loss of 

generality, τ is positive, it is 

B

n tm

ci

ci

A
 

 


 −
 = −  

   

(4) 
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Fig. 2 Active failure mechanism of a karst cave beneath a 

tunnel 

 

 

Fig. 3 Passive failure mechanism of a karst cave beneath 

a tunnel 
 

 

So that the plastic strain rate can be written as follows 

1B

n tm

n

n ci

AB
 

  
 

−

 −
= = −  

    

(5a) 

n  



= =

  
(5b) 

where λ is a scalar parameter. As shown in Fig. 2, the plastic 

strain rate components can be written in the form (Zhang 

and Yang 2018) 

1
2 21 ( )n

v
f x

t


−

 = − + 
 

(6a) 

1
2 2( ) 1 ( )n

v
f x f x

t


−

  = + 
 

(6b) 

The scalar parameter λ can be expressed as 

1
2 2( ) 1 ( )

v
f x f x

t


−

  = + 
 

(7) 

where t is the thickness of the plastic detaching zone. 
 

 

3. Active and passive failure modes with pore-water 
pressure 
 

Based on previous analysis, a new failure mechanism is 

put forward. According to Figs. 2 and 3, two failure shape 

curves are adopted to reflect the different failure 

mechanisms of rock mass up and down the water level due 

to the fact that the water level will change during the 

excavation of deep tunnels and progressive failure of cavity. 

The karst cavity is embedded within ideally plastic 

homogeneous rock with depth H. Numerous cavities tend to 

have rectangular, circular, or other arched shape profiles 

(Luo and Yang 2018). This work adopts elliptical cross 

section which is determined by geometry coefficients a and 

b. The horizontal semiaxis of elliptical profile a stands for 

the cavity span, while the vertical semiaxis b is the ceiling 

height.  

With reference to Figs.2 and 3, it results, 

( )
2

2
2 2 2 2

2 2 2
0

( ) arcsin
2 2

L Lb a
c x dx H b L L a L

a a

 
= + − − + 

 

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 
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 


 
(9) 

In terms of the direction of the failure pattern 

movements, analytical expressions for failure surfaces are 

derived in the following. 

 

3.1 Collapse active failure mechanism 
 

The active failure mechanism for karst cavity is shown 

in Fig. 2. Within the framework of upper bound theorem, 

the energy dissipation occurs only along the slip-line. Based 

on the work of Fraldi and Guarracino (2010) and Sun et al. 

(2018), the dissipation density of a random point could be 

as, 

 
1 1

2 12 11 ( ) ( ) (1 )B
i n n n tm ci

v
D f x ABf x B

t
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−
−

−
 

  =  +  = + − −  
   

(10) 

In active mechanism, the energy dissipation along the 

velocity discontinuity surface can be obtained by 

integrating iD  over the interval [L1, L2], 

 
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(11) 

where L1 and L2 are upper and lower half widths of the 

failure block, respectively. Lw is half width of the failure 

block at water level.  

The work rate of the failure block produced by weight 

can be calculated by integral process 

2 2

1
1 1 2 1 1 1

0
( ) ( ) ( ) ( )

w

w

L L L

w w w
L L

W v c x dx v f x dx v f x dx v L f L     =  −  −  +  
 
(12) 

in which γ´1 is the buoyant weight per unit volume of the 

rock mass. γ´1=γ1−γw, where γ1 is the weight per unit volume 

of the rock mass, and γw is the unit weight of water. c(x) is 

the profile of cavity in active failure mode. 

The distribution of excess pore pressure which is 

derived from the study of Saada et al. (2012) can be written 
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as 

w w wu p p p h= − = −
 (13) 

where p is the pore water pressure at the considered point 
which can be obtained by a suitable method p=ruγhw, ru 

stands for pore pressure coefficient, and pw=γwhw is the 
hydrostatic distribution for pore pressure, hw is the vertical 
distance between the tunnel base and the bottom of the 
failure block. So -grad u can be defined as 

w ugrad u r − = −  (14) 

The explicit form of the work rate of the seepage force 

is, 

( )   ( )  
2

1 2 1 2 2
0

( ) ( ) ( ) ( )
w

w

L L

u w u w w u w
L

W v r c x f L dx v r f x f L dx   = −  − − −  −   
(15) 

As mentioned above, the limit load in dimensionless 

form could be given by 

N q H =
 (16) 

where Nγ is analogous to the stability factor. Then, based on 

Eq.(3), 

( )


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2

1

2

1 2

1 1 1 2 2 2

1 1 1 1 1 2
0

[ ( ), ( ), ] [ ( ), ( ), ]

( ) ( ) ( )

w

w
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L

u u w w

N W W W v HL

f x f x x dx f x f x x dx

r c x dx r L f L HL
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 

   
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+ − −

 
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(17) 

in which 

  1

1
1

1
1 1 1 1 1 1 1 1 1 1 1[ ( ), ( ), ] ( ) (1 ) ( )B

tm cif x f x x A B f x B f x   −
− = − − +

 
(18a) 

  ( )1

1
1

1
2 2 2 1 1 1 1 2 1 1 2[ ( ), ( ), ] ( ) (1 ) 1 ( )B

tm ci uf x f x x A B f x B r f x   −
− = − − + −  (18b) 

By virtue of the Greenberg minimum principle, the 

optimal failure mechanism can be obtained with stationary 

requirement, which may be expressed by the following 

Euler equation 

[ ( ), ( ), ] = 0 0
( ) ( )

G f x f x x
f x x f x

    
  − =      

(19) 

The explicit form of the Euler’s equation for the Eq. 

(19) can be obtained as 
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1
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1 1 1 1 1

1
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(20a) 
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ci BB
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(20b) 

Integration of nonlinear second-order homogeneous 

differential equation Eq. (20) gives the expression of failure 

surface, 

1
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0

1 1 1

1
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f x k x c
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(22b) 

where ci(i=0,1,2,3) stand for the integration constant 

coefficients determined by geometric constraints. Due to the 

stress equilibrium condition that the shear stress vanishes at 

the tunnel base, the stress condition should be satisfied, 

1( , 0) 0xy x L z = = =
 

(23) 

As shown in Fig. 2, the constraints should be considered 

1 1( ) 0f x L= =
 

(24) 

1 2 0( ) ( )w wf x L f x L n H= = = =
 

(25) 

2 2 2( ) ( )f x L c x L= = =
 

(26) 

The explicit value of n0 is the ratio of the distance 

between the tunnel base and water table to the depth from 

the cavity to the tunnel bottom. For convenience, the 

feasible range for n0 is [0,1] in this work. Considering 

Eqs.(23) and (25), the failure curves turn into  

1
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1
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1
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1
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(27) 
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(28) 

L1 can be expressed by Lw based on Eqs. (25) and (27) 

above. The entire failure surface could be regarded as 

smooth in practical engineering, so the constraint should be 

considered. 

1 2( ) ( )w wf x L f x L = = =
 

(29) 

Then, 
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(32) 
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During the derivation of expressions of failure surface 

f1(x) and f2(x), the values of Lw and L2 would be calculated 

first by solving Eqs. (26) and (32). This process is carried 

out numerically using MATLAB. Based on the previous 

analysis, when the optimal stability factor continues 

increasing, the cavity pressure is big enough to resist the 

self-weight of failure rock mass (leading to the passive 

failure mechanism).  

 

3.2 Breakout passive failure mechanism 
 

When the force produced by fillers is huge, the failure 

block above the cavity will break out into tunnel base. For 

the sake of describing the failure profile of the passive 

mode, similar to active mechanism, the analytical 

expressions should be derived, as shown in Fig. 3. L3 and L4 

are lower and upper half widths of the failure block, 

respectively. L’w is half width of the failure block at water 

table. c’(x) is the profile of cavity in passive failure 

mechanism. 

In passive mode Eq. (17) should take the form, 


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(33) 

in which 
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As shown in Fig. 3, the boundary conditions should be 

obtained 

4( , 0) 0xy x L z = = =
 

(35) 
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(39) 

Therefore, the failure surfaces could be expresses as 

based on the above constraints, 
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Then the objective (for stability factor) in optimization 

is 
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(45) 

L4 can be expressed by L’w based on Eqs. (37) and (41) 

above. And the values of L’w and L3 would be calculated by 

solving Eqs. (38) and (45). 
 

 

4. Three dimensional failure mechanism analysis 
 

Normally the failure surface of the horizontal rock 

layers is assumed in the form of the frustum of a cone in 

three-dimensional space. In this work, the plane strain 

failure mechanism of karst cavity roof could be extended to 

the axisymmetric failure mechanism in practical 

engineering by rotating the two-dimensional plane-strain 

curved surface around the z-axis, as shown in Figs. 2 and 3. 

An axisymmetric failure mechanism (by rotating two-

dimensional plane failure surface 360。around the z-axis) is 

suitable to describe the failure profile since this agrees well 

with the fact.  

For active mechanism in 3D space, the energy 

dissipation along the velocity discontinuity surface can be 

obtained, 

 

 

3

1

2

4

1
1

1
3 3 3 3 1 3

1
1

1
4 4 4 4 2 4

2 ( ) (1 )

2 ( ) (1 )

w

w

L
B

D tm ci
L

L
B

tm ci
L

W A B f x B xvdx

A B f x B xvdx

  

  

−
−

−
−

 
= − − 

 

 
+ − − 

 




 

(46) 

where σtm3, σci3, A3 and B3 are the mechanical parameters 

of the upper rock stratum in active failure mode, σtm4, σci4, 

A4 and B4 are the mechanical parameters of the lower rock 

stratum in active failure mode. 

The work rate of the failure block produced by weight 

can be calculated by integral process 

2

1

2 2

4 2 3 1( ) ( )
w

w

L L

L L
W v f x x dx v f x x dx     = −  −  

 
(47) 

where γ3 and γ4 are the self-weight density of the upper rock 

stratum and lower rock stratum in active failure, 

respectively. The explicit form of the work rate of the 

seepage force is, 
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 
2

4 2 02 ( ) 1
w

L

u u
L

W v r f x n H xdx =  + −
 

(48) 

The work rate of the cavity pressure is, 

2

2qW L q=
 

(49) 

By variational method, the expressions of failure 

surfaces could be derived with undetermined parameters. 

The explicit expressions of failure surfaces can be obtained 

based on the boundary condition below, 

1( , 0) 0xy x L z = = =
 

(50a) 

1 1( ) 0f x L= =
 

(50b) 

1 2( )f x L H= =
 

(50c) 

Similar to the active failure mechanism analysis, the 

expressions of passive failure surfaces could be derived 

with variation calculus. The three-dimensional failure 

mechanism can be obtained by rotating two-dimensional 

plane passive failure surface 360。around the z-axis. 

 
 

5. Sensitivity analysis 
 

5.1 Effects of parameters on failure mechanism 
 

If the potential failure region can be predicted, proper 

reinforcement measures can be taken by geotechnical 

engineers to make the construction safe. To determine the 

sensitivity of scope of failure pattern to rock properties and 

cavity pressure, parametric analysis is conducted to  

 

 

elucidate the influence of various factors on potential failure 

range in two-dimensional space. The failure surfaces in 

two-dimensional space for different rock parameters and 

cavity pressure corresponding to B=0.80-0.90, A=0.4-0.6, 

σci=10 MPa, n0=0, ru=0, σtm=σci/100, γ=15-25 kN/m3, b=1 

m, a=3 m, H= 5 m, and Nγ=0.45-0.55 are illustrated in Fig. 

4. 

It can be seen that the failure profile extends from the 

roof of the karst cave to the tunnel base, the range of the 

failure surface is influenced by different rock parameters B, 

A, γ and Nγ. The range of the failure surface increases with 

increase of B and A, but decreases with increase of γ both in 

active and passive mechanism. Since the 3D failure 

mechanism is built based on the 2D failure mechanism (just 

built by rotating two-dimensional plane failure surface 

360。around the z-axis), the changing laws in 3D 

mechanism should be as the same as those in the 2D 

mechanism. From a practical viewpoint, the surrounding 

rock mass with lower values of B and A and higher value of 

γ will contribute to reducing the scope of the failure pattern. 

 

5.2 Effects of pore-water pressure on failure 
mechanism 

 
The groundwater levels in karst areas play a significant 

role in determining the failure mechanism of the horizontal 

rock layers. According to Fig. 5, the upper and lower widths 

of the failure rock block in two-dimensional space 

(corresponding to B=0.80, A=0.6, σci=10 MPa, σtm=σci/100, 

γ=25 kN/m3, b= 1 m, a=3 m, H=5 m, and Nγ=0.55) L1 and 

L2 both decrease with the increase of n0 in active mode. But 

in two-dimensional passive case the lower and upper widths 

of the failure rock block L3 and L4 both increase with the 

increase of n0. This finding shows good consistency with  

  
(a) (b) 

  
(c) (d) 

Fig.4. Predictions for active failure scope of horizontal rock layers for different parameters: (a) different A1, (b) different 

B1, (c) different γ1 and (d) different Nγ  
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(a) Effects on upper half widths of the failure block L1 

 
(b) Effects on lower half widths of the failure block L2 

 

(c) Effects on half width of the failure block at water 

level Lw 

Fig. 5 Effects of pore-water pressure coefficient ru on 

scope of failure pattern in active mechanism 
 

Table 1 Effects of varying water level and pore pressure 

coefficient on active failure scopes in 3D space 

A3 A4 B3 B4 
γ3 

(kN/m3) 
γ4 

(kN/m3) 
σc3 

(MPa) 
σc4 

(MPa) 
ru n0 Lw(m) L2(m) 

0.3 0.5 0.8 0.7 20 25 1 1.5 0.2 0.3 0.47 2.87 

0.3 0.5 0.8 0.7 20 25 1 1.5 0.2 0.5 0.85 2.86 

0.3 0.5 0.8 0.7 20 25 1 1.5 0.2 0.7 1.29 2.68 

0.3 0.5 0.8 0.7 20 25 1 1.5 0.0 0.5 1.05 3.29 

0.3 0.5 0.8 0.7 20 25 1 1.5 0.1 0.5 0.94 3.04 

0.3 0.5 0.8 0.7 20 25 1 1.5 0.2 0.5 0.85 2.86 

 
 

the fact that collapse is more likely to occur under larger 

seepage forces (pore water pressure) in active mode. By 

considering the critical state for L1=0, the effects of varying 

water level and pore pressure coefficient on active failure 

scopes in 3D space is shown in Table.1. 

From a practical viewpoint, the horizontal rock layers 

with lower value of ru and higher value of n0 will contribute 

to reducing the scope of the failure pattern in active 

mechanism; the horizontal rock layers with higher value of 

ru and lower value of n0 will contribute to reducing the 

scope of the failure pattern in passive mechanism. 
 
 

6. Conclusions 
 

In this study, both active and passive collapse shapes of 
rock mass above the karst cavity is put forward when the 
surrounding rock cannot bear the pressure caused by the 
concealed cavity. Depending on the range of cavity pressure 
of fillers in cave, different failure modes are put forward in 
non-linear horizontal rock layers determining by modified 
HB failure criterion. Within the framework of upper bound 
theory, a new convenient way to include seepage effects is 
also presented and implemented, which can be used to 
explain the changing laws for scopes of failure patterns with 
varying water level and pore pressure coefficients. The 
main research findings include: 

• Both 2D and 3D failure mechanisms are put forward to 
describe the failure patterns of the horizontal rock layers 
with considering the varying water level. 

• The scope of the failure surface is influenced by 
different rock parameters B, A and γ. The range of the 
failure surface increases with increase of B and A, but 
decreases with increase of γ both in active and passive 
mechanism.  

• The horizontal rock layers with lower value of ru and 
higher value of n0 will contribute to reducing the scope of 
the failure pattern in active mechanism; the horizontal rock 
layers with higher value of ru and lower value of n0 will 
contribute to reducing the scope of the failure pattern in 
passive mechanism. This conclusion agrees well with the 
fact that collapse is more likely to occur under larger 
seepage forces (pore water pressure) in active mode, which 
is a validation of this study.  
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JS 
 

Nomenclature 
 

A Rock mass material constants 

B Rock mass material constants 

σci Uniaxial compressive strength 

σtm Axial tensile stress 

σn Normal stress 

τ Shear stress 

σij Stress tensor 

ij  Strain rate 

v, vi  Velocity of the failure rigid block 

P Limit load 

S Length of velocity discontinuity 

Xi Body force 

V Volume of the plastic zone 

Wex External work rate 

βi A set of geometrical parameters defining the failure 

mechanism 

WD Energy dissipation rate 

f(x) The function describing the failure surface in active 

model 

Wγ Work rate done by the body forces (self-weight) 

Wu Pore water pressure power 
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Pm The minimum value of P 

Ψ Plastic potential function 

λ Scalar parameter 

t Thickness of the plastic detaching zone 

n  Normal plastic strain rate 

n  Shear plastic strain rate 

iD
 

Dissipation rate 

Li(i=1,2,3,4) Half width of the failure block  

Lw, L'w Half width of the failure block at water level 

Nγ Stability factor 

q Supporting pressure 

H Embedded depth 

γ Unit weight of the rock 

γ' Buoyant unit weight of the rock 

γw Unit weight of water 

p Pore water pressure at the considered point 

ru Pore pressure coefficient 

pw Hydrostatic distribution for pore pressure 

hw Vertical distance between the tunnel base and bottom 

of the failure block 

gi(x) (i=1,2) The profile of the failure surface in passive mode 

c(x), c'(x) The profiles of the karst cavity both in active and 

passive mode 

c0,c1,c2,c3 Constant coefficients describing the failure surface 
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