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1. Introduction 
 

Soil is formed by the process of weathering, erosion, 

removal and  deposition of rock. Due to the difference of 

formation condition and sedimentary history, soil has spatial 

variability, which means that soil properties at any two 

different points are different but they are correlated 

(Degroot and Baecher 1993). Knowledge of soil’s spatial 

variability or auto-correlation is very important to many 

geotechnical engineering problems, such as the reliability 

analysis of slope stability (Babu and Murthy 2005), seepage 

analysis of a dam (Tan et al. 2011, Chan and Low 2012) 

and the determination of characteristic values of soil 

properties for reliability-based design (Orr 2017). 

Spatial variability of soil can be modeled using random 

field theory, in which the spatial variability of soil is 

described by auto-correlation function and auto-correlation 

length (Cornell 1971, Wu 1974; Vanmarcke 1977, Kulllawy 

1992, Degroot 1996, Lacasse and Nadim 1997, Phoon and 

Kulhawy 1999, Uzielli et al. 2005, Srivastava and Babu 

2011, Stuedlein et al. 2012, Lombardi et al. 2017). The 

auto-correlation function describes the reduction mode of 

the auto-correlation with distance between spatial points. 

The auto-correlation length (ACL) is a critical distance 

within which soil properties at two points are deemed as 

correlated. Otherwise, they are considered as independent 

(Onyejekwe et al. 2016). Because the type of auto-

correlation function has much smaller influence on the  
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reliability of geotechnical engineering compared to the 

influence of the auto-correlation length. (Salgado and Kim 

2014) evaluation of the auto-correlation length of soils is a 

key task in geotechnical reliability analysis and reliability-

based design. 

Due to the importance of the ACL, many studies have 

been made to evaluate the ACLs of soil properties, 

including the physical parameters (Phoon and Kulhawy 

1999), shear strength parameters (Degroot and Baecher 

1993, Haldar and Babu 2009, Matteo et al. 2013), and 

hydraulic parameters (Gupta et al. 2006, Wang et al. 2007, 

Moradi et al. 2016). Many studies evaluate the ACLs based 

on laboratory or in-situ experiments. However, the 

measuring of soil properties are very time-consuming 

(especially for unsaturated soil), and a large number of tests 

are required for calculating the ACL (Falchetto et al. 2014). 

The huge amount of laboratory or in-situ experiments is a 

great obstacle to the application of random field theory to 

geotechnical reliability analysis and design. 

Evaluating the ACL using a micro-structure method 

combined with digital image processing (DIP) can reduce 

the amount of laboratory or in-situ experiments (Berryman 

1985). Moon et al. (2014) adopted the DIP technique to 

investigate the micro-structure of asphalt mixture images, 

and then evaluated the ACL of the three-phrase random 

heterogeneous mixture by using n-point correlation 

functions. Wang et al. (2007) proposed a quartet structure 

generation set (QSGS) method, which can generate the 

micro-structures of porous media very well. Although the 

QSGS method is better than most other micro-structure 

generation methods, there is not a clear instruction for the 

determination of the parameters needed in QSGS algorithm 
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(Wang et al. 2007). 

The aim of this paper is to estimate the auto-correlation 

length of soils using a micro-structure based numerical 

method. We proposed a method to determine the QSGS 

parameters based on scanning electron microscope (SEM) 

test and digital image processing (DIP) technique. After 

obtaining the QSGS parameters of soils, we generated the 

stochastic porous micro-structures of soils using the QSGS 

algorithm, and 2-point correlation function was used to 

calculate the ACL for the numerical micro-structure of soils. 

A detail description of the proposed method is presented in 

Section 2, followed by a case study in Section 3. And then, 

discussions and conclusions are presented in Section 4 and 

5, respectively. 
 

 

2. Evaluation of ACL by micro-structure simulation 
 

There are mainly two steps for evaluating the ACL of 

soils using the proposed micro-structure numerical 

simulation. The first step is to generate a numerical micro-

structure of soils by the QSGS algorithm, and the second 

step is to calculate the ACL of soils according to the 

concept of n-point correlation function.  

 

2.1 Generation of numerical micro-structure of soils 
 

2.1.1 Quartet structure generation set (QSGS) 
algorithm 

Several methods have been proposed to generate the 

random porous media, among which quartet structure 

generation set (QSGS) algorithm is very suitable for 

modeling the micro-structure of soils, which is a mixture of 

solid particles and pores (Tacher et al. 1997, Pilotti 1998, 

Wang and Pan 2007, Griffiths et al. 2012). The QSGS 

algorithm is a multi-parameter random generation-growth 

method. Considering soil particle as a growing phase and 

pore as a non-growing phase (Wang and Pan 2007), the 

QSGS algorithm for generating a two-dimensional 

stochastic micro-structure of soils can be summarized as 

follows. 
(1) Select the parameters needed in QSGS algorithm 

(i.e., soil porosity np, core distribution probability Pc, and 

directional growth probability Pdi). The detail method for 

the determination of np, Pc, and Pdi will be described in 

Section 2.1.2. 
(2) Designate mesh density and model size for the 

numerical simulation. For example, a square model with 

side length of 200 and grid side length of 1 is used here for 

the purpose of illustration. Therefore, the number of grids 

(nx, ny) along the x- and y-direction of a two-dimensional 

coordinate system are both 200 in this example. 
(3) Designate each grid in the two-dimensional 

coordinate system as solid core or pore by assigning a 

uniformly distributed random number between 0 and 1 to 

that grid. Grids with random numbers less than the core 

distribution probability Pc are chosen as initial solid cores 

(growing phase), and the other grids in the grid system are 

chosen as pores (non-growing phase). 
(4) Expand each solid core of the growing phase into 

their neighboring grids along eight directions shown in Fig.  

 

Fig. 1 Eight growth directions of a grid in 2-dimensional 

coordinate system 

 

 

Fig. 2 A random realization of soil micro-structure (np = 

0.39, Pc = 0.01, Pd14 = 0.15 and Pd58 = 0.25Pd14. The red 

point, the blue part, and the white part represents initial 

solid cores, soil particles, and pores, respectively) 
 

 

1. The expansion process can be performed by assigning a 

uniformly distributed random number between 0 and 1 to 

each of the eight neighbor grids for each solid core. The 

neighboring grid in direction i (i = 1, 2, …, 8) will become 

a solid particle if the random number in this direction is less 

than the corresponding directional growth probability Pdi. 
(5) Repeat the growing process of Step 4 until the 

volume fraction of growing phrase is larger than the given 

value of the fraction of solid particles (i.e., 1−np), or the 

volume fraction of non-growing phrase is less than or equal 

to the given porosity np. 
Note that the formation process of the growing phrase 

(soil particles) is stochastic in the QSGS algorithm, so the 

micro-structure generated using this method is also 

stochastic. A random realization of soil micro-structure with 

np = 0.39, Pc = 0.01, Pd14 = 0.15 and Pd58 = 0.25Pd14 is shown 

in Fig. 2, in which the red point represents initial solid 

cores, the blue part represents soil particles, and the white 

part represents pores. It is apparent that the numerical 

models can reflect the stochastic characteristics of soil 

particles and pores. The generated soil model is very similar 

to the realistic micro-structure of soils. Hence, the QSGS 

algorithm is widely used in the numerical modeling of soil 

micro-structure. 
 

2.1.2 Estimation of QSGS parameters based on SEM 
and DIP 

As described in Section 2.1.1, three parameters (porosity 

np, core distribution probability Pc, and directional growth  
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(a) Before DIP 

 
(b) DIP for calculating the properties of soil particles 

Fig. 3 SEM image of a soil sample (The black parts with 

blue boundaries are soil particles) 
 

 

probability Pdi) are needed in the QSGS algorithm for 

generating the numerical micro-structure of soils. 

Considering scanning electron microscope (SEM) test can 

show soil micro-structure clearly, and digital image 

processing (DIP) technique has been widely used to analyze 

the micro-structure of porous material (Falchetto et al. 

2014), we propose a SEM-based digital image processing 

(DIP) technique for estimating the three QSGS parameters. 

The main steps are as follows. 
(1) Carry out SEM tests for soil samples to obtain SEM 

images. 
(2) Conduct digital image processing for the SEM 

images by using some software. The Image Processing 

Toolbox™ of Matlab is used in this paper because of the 

powerful programming function of Matlab (Velasquez et al. 

2010). By converting SEM image to binary image, an M×N 

digital image matrix whose element values are ones or zeros 

can be obtained, where one and zero represent soil particle 

and pore, respectively. Furthermore, the connected 

components (soil particles) in the binary image and the 

properties of soil particles (such as the areas, centroids, 

equivalent diameters, and perimeters) in the binary image 

can be easily obtained. The length unit for the binary image 

is pixel. A SEM image of a soil sample before and after 

digital image processing are shown in Fig. 3(a) and 3(b), 

respectively. 

(3) Estimate np. Soil porosity np can be calculated 

according to its definition using Eq. (1) 

p s1 ( )n A M N= − 
 

(1) 

where As is the summation of the areas of soil particles, and 

M×N is the total area of the digital image matrix. 

(4) Estimate Pc. Core distribution probability Pc is the 

probability of a grid to become a initial core of the growing 

phase. Based on this definition, Pc can be estimated using 

Eq. (2) 

d c ( )c N M N= 
 

(2) 

where Nc is the number of initial solid cores (i.e., the 

number of the connected components in the binary image). 

Theoretically, the core distribution probability Pc should be 

less than or equal to the volume fraction of soil particles 

(Wang et al. 2007), and the value of Pc controls the size of 

soil particles. A greater value of Pc leads much more solid 

particles and much smaller average size of solid particles to 

be generated within a given area (Wang and Pan 2007).  

(5) Estimate Pdi. Directional growth probability Pdi is 

the probability for a non-growing grid cell to expand into its 

neighboring cell in the ith (i = 1, 2, …, 8) direction to 

become part of the growing phase. Pd14 : Pd58 = 4 is widely 

assumed for generating an isotropic porous material (He 

and Luo 1997, Takashi and Abe 1997, Wang and Pan 2007, 

Wang et al. 2007). Similar to the estimation of 2-point 

correlation function, which will be described in Section 

2.2.1, we proposed a method for estimating Pd14 as follows. 

For a binary digital image shown in Fig. 4 (the black 

grids represent soil particles and the white grids represent 

pores), designate randomly two points P1(x1, y1) and P2(x2, 

y2) along direction angle θ (θ = 0°, 90°, 180°, and 270° for i 

= 1, 2, 3, and 4, respectively) with a distance of P1P2 = r. 

The distance r is assumed to be a uniformly distributed 

random number whose value is in the range of zero and the 

maximum value of the equivalent diameter of soil particles. 

If the two points P1 and P2 both lies in the solid phase in the 

binary digital image, let Nh = Nh + 1, where Nh is a counter 

with an initial value of zero. Repeat this simulation for Ns 

times. If the value of Ns is very large (e.g., 106), the 

directional growth probability Pdi can be estimated using 

Eq. (3) 

d h siP N N=
 

(3) 

 

2.2 Calculation of auto-correlation length of soils 
 

2.2.1 2-point correlation function 
The correlation between different parts of a 

heterogeneous material can be represented by n-point 

correlation functions, such as 2-point or 3-point correlation 

function (Velasquez et al. 2010, Falchetto et al. 2014, Moon 

et al. 2014). The n-point correlation function measures the 

probability of finding n points of a heterogeneous material 

located on the same phase of that material. For example, the 

2-point correlation function (S2) of a two-phase porous 

material measures the probability that two points separated 

by a certain distance (r) are both located in the solid phase 

or pore phase. Wang (2017) demonstrated that the 

difference of the ACLs evaluated using the 2-point and 3-

point correlation function were negligible, so only the 2-

point correlation function is adopted in this paper.  
The estimation of the 2-point correlation function can  
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Fig. 4 Schematic diagram for estimating directional 

growth probability parameter (Pdi) 
 
 

also be performed based on Fig. 4. However, Fig. 4 is now 

considered as a micro-structure numerical model of a 

heterogeneous soil. From Fig. 4, the relationship between 

the 2-point correlation function S2 and the distance r can be 

obtained at several different distance by an iterative 

algorithm. The steps for estimating the 2-point correlation 

function (S2(r)) is as follows. 
(1) Designate the range of distance r and the step length 

dr. The range of distance r is suggested to increase from rmin 

= 0 to rmax = min {M, N}/2, where M and N is the number of 

pixels along x and y coordinate of the numerical model, 

respectively (Moon et al. 2014). The step length dr 

determines the number of distance (Nr) in the range of [rmin, 

rmax] and the smoothness of the S2(r) curve. A smaller step 

length corresponds to a smoother S2(r) curve. 
(2) For the ith iteration, let r = rmin + dr * (i−1). 

Designate randomly two points P1(x1, y1) and P2(x2, y2) 

along direction angle θ with a distance of P1P2 = r. The 

direction angle θ is a uniformly distributed random number 

whose value lies between 0° and 360°. If points P1 and P2 

both lies in the same phase in the numerical model, let Nh = 

Nh + 1, where Nh is a counter with an initial value of zero. 
(3) Repeat Step 2 for Ns times, where Ns is very large 

number (e.g., 106). Then, the 2-point correlation function 

for distance r can be estimated as follows 

2 hits s( )S r N N=
 

(4) 

(4) Repeat Step 2~3 for all values of r in the range of 

[rmin, rmax]. Then, the relationship between S2 and r at Nr 

different values of r can be estimated. 
 

2.2.2 Auto-correlation length 
Based on the generated micro-structure model, the auto-

correlation function of both the solid phase and the pore 

phase can be computed. Because many soil properties (such 

as hydraulic conductivity, saturation and density) are 

correlated with soil porosity, only the correlation function 

(S2) of the pore phase were calculated. And then, the 2-point 

auto-correlation function (R2) of pore phase can be 

calculated by Eq. (5) as follows (Li et al. 2009) 

2

2 p

2 2

p p

( )
( )

S r n
R r

n n

−
=

−
 

(5) 

Table 1 Relationship between scale of ACL and auto-

correlation model parameter 

Model Expression ACL 

SNX R(r) = exp(−r/b) 2b 

SQX R(r) = exp[−(r/b)2] π0.5b 

CSX R(r) = exp(−r/b)cos(r/b) b 

SMK R(r) = (1+r/b)exp(−r/b) 4b 

BIN R(r) = 1−r/b (r < b); R(r) = 0 (r ≥ b) b 

 
 

By curve fitting for the data points of [R2(r), r] using 
some auto-correlation functions, the ACLs can be evaluated 
easily from the curve fitting parameters of auto-correlation 
functions. Five popularly used auto-correlation models 
(single exponential (SNX), squared exponential (SQX), 
cosine exponential (CSX), second-order Markov (SMK), 
and binary noise (BIN)) are listed in Table 1 (Jaksa et al. 
1997, Phoon et al. 2003). For each correlation function 
model, parameter b can be obtained by curve fitting, and 
then the corresponding value of ACL can be estimated 
according to column 3 in Table 1. 
 

 

3. Case study 
 

Five clay soil samples were sampled in an engineering 
site in Hefei, China. These soil samples were yellowish-
brown clay which were located 10 m below the ground 
level. The basic soil properties are listed in Table 2, where 
w0 is water content, ρ is density, Gs is soil specific gravity, 
np is porosity, and Ip is plasticity index. 

After carrying out the SEM tests for each soil sample, 
the three QSGS parameters and their statistics (mean and 
coefficient of variation (COV)) are listed in Table 3. It can 
be seen that the COVs of parameters np, Pc and Pd14 are all 
less than 0.2, which means that the variation of these 
parameters is small. Therefore, the means of parameters np, 
Pc and Pd14 listed in Table 3 were adopted for generating the  

 
 

Table 2 Basic properties of soil samples 

No. w0 (%) ρ (g.cm-3) Gs np Ip 

1# 25.1 1.96 2.71 0.42 28.3 

2# 24.0 2.01 2.75 0.41 30.7 

3# 22.8 2.05 2.65 0.37 22.0 

4# 22.6 2.03 2.64 0.38 31.0 

5# 23.3 2.00 2.66 0.39 33.7 

 

Table 3 Values of QSGS parameters 

No. np Pc Pd14 

1# 0.42 0.008 0.122 

2# 0.41 0.010 0.160 

3# 0.37 0.008 0.119 

4# 0.38 0.010 0.144 

5# 0.39 0.008 0.185 

Mean 0.39 0.01 0.15 

COV 0.05 0.10 0.19 
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numerical micro-structure model of the clay. As suggested 

by Wang et al. (2007), we assumed Pd58 = 0.25Pd14 for 

generating isotropic micro-structure of soils. For the 

numerical realization of soil micro-structure shown in Fig. 

2, the data points of [R2(r), r] and the fitted curves using the 

five auto-correlation models listed in Table 1 are shown in 

Fig. 5. The ACLs and the corresponding determination 

coefficients (R2) are listed in Table 4. It can be seen that the 

value of R2 are all greater than 0.93 for the five auto-

correlation models, which means that all the five auto-

correlation models are suitable for calculating the ACLs of 

soils. The COV of the ACLs using the five auto-correlation 

models is 0.10, which is very small. This represents that the 

type of auto-correlation functions has little influence on the 

values of ACLs of soils. 
 

 

4. Discussions  
 

The ACL estimated by proposed micro-structure 

simulation may be influenced by some factors such as mesh 

density and model size of the numerical model. Therefore, 

eight groups of mesh densities and eight groups of model 

sizes were analyzed, respectively. In each case, the mean  

 

 

 

values of parameters np, Pc and Pd14 listed in Table 3 and 

Pd58 = 0.25Pd14 are used for generating the micro-structures 

by using the QSGS algorithm. 
 

4.1 Influence of mesh density 
 

To study the influence of mesh density on the ACLs of 

soils, a square numerical model of side length 200 with 

eight mesh densities were studied. The numbers of grids of 

these models are 50×50, 100×100, 150×150, 200×200, 

250×250, 300×300, 400×400, 600×600, respectively. 

Correspondingly, the side length of each grid is 4, 2, 1.33, 

1, 0.8, 0.67, 0.5, and 0.33, respectively. The micro-

structures generated by the QSGS algorithm with different 

mesh densities are shown in Fig. 6. We can see that the 

difference among the images of micro-structures of sparse 

mesh densities (such as Fig. 7(a)-7(d)) are obvious. With 

 

 

Table 4 Auto-correlation lengths of soils 

Model SNX SQX CSX SMK BIN Mean COV 

ACL 7.71 7.92 7.91 6.70 9.00 7.85 0.10 

R2 0.93 0.93 0.94 0.98 0.93 / / 

 

Fig. 5 Curve fitting using five auto-correlation models 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 6 Soil structures with different number of grids: (a) 50×50, (b)100×100, (c)150×150, (d)200×200, (e)250×250, 

(f)300×300, (g)400×400 and (h)600×600 
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the increase of mesh density, the difference among the 

images of different micro-structures (such as Fig. 7(d)-7(h)) 

become negligible.  

The ACLs evaluated from Fig. 6 are shown in Fig. 7 for 

different mesh densities. The variation of ACLs with mesh 

density is a little large for all the five auto-correlation 

models when the mesh density is sparse (number of grids on 

each side of the numerical model is less than 200, or side 

length of each grid is greater than 1). With the increase of 

mesh density, the variation of ACLs becomes weaker and 

the values of ACLs tend to be stable. 
 

4.2 Influence of model sizes 
 

Based on the study of the influence of mesh density on 

the ACL of soils, the mesh density of side length of 1 was 

used for investigating the influence of model size on the  

 

 

 

 

ACL of soils. Then, eight model sizes (30×30, 60×60, 

100×100, 150×150, 200×200, 300×300, 400×400, 

600×600) with this mesh density were generated using the 

QSGS algorithm. Five of these numerical micro-structure 

models are shown in Fig. 8. We can find there are no 

obvious difference among these micro-structures because 

all these models are generated using the same QSGS 

parameters. 
The ACLs estimated from the eight numerical models 

with different model sizes are shown in Fig. 9. The ACLs 
increase quickly when the model length is small, and then 
they decrease a little until the model length is 300. The 
ACLs become nearly stable when the model length is larger 
than 300. Therefore, a model size of 300 × 300 with a grid 
size of 1 × 1 is suitable for the calculation of the ACL of 
soil property. The stable value of the ACL is about 7.3 for 
the five auto-correlation models. 

 

Fig. 7 Variation of ACL with different mesh densities 

 
(a) (b) (c) (d) (e) 

Fig. 8 Soil structures with different model sizes: (a) 100 × 100, (b) 200 × 200, (c) 300 × 300, (d) 400 × 400 and (e) 600 × 600 

 

Fig. 9 Variation of ACL with different model sizes 
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5. Conclusions 
 

A micro-structure based simulation method is proposed 

for estimating the auto-correlation length (ACL) of soils. 

The proposed method combines the scanning electron 

microscope (SEM) test and the digital image processing 

(DIP) technique for obtaining the QSGS parameters, and 

the QSGS algorithm is used to generate the micro-structure 

of soils. And then, the auto-correlation length (ACL) of 

soils can be estimated by 2-point correlation function 

method. 

The results in this paper show that the proposed method 

can generate reasonably the micro-structures of soils, and 

the ACL of soils can be computed easily based on the 

generated micro-structures of soils. A model size of 300 × 

300 with a grid size of 1 × 1 is suitable for the calculation 

of the ACL of clay soil. However, further studies to confirm 

or amend this finding are warranted. 
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