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1. Introduction 
 

The constitutive behavior of granular soil during plastic 

loading is nonassociated and state dependent (Yoshimoto et 

al. 2016, Chenari et al. 2018, Guliyev 2018, Kian et al. 

2018, Oztoprak et al. 2018, Park et al. 2018, Sonmezer et 

al. 2018, Wu et al. 2018). Many different approaches, 

including the classic elastoplastic theory (Liu and Gao 

2016, Liu et al. 2017 Tian and Yao 2017), hypoplastic 

model (Shi and Herle, 2016, 2017) and generalized 

elastoplastic theory (Pastor et al. 1990) etc., were 

introduced to capture this complex deformation mechanism. 

In these theories, the nonorthogonality between the plastic 

flow direction and yielding surface was usually modelled by 

introducing an additional assumption of a different plastic 

potential, which however could bring more parameters 

which may lack clear physical significances and thus 

impede its further application. 

To overcome this limitation, a novel fractional 

viscoplasticity was proposed (Sumelka 2014, Sumelka and 

Nowak 2016), where the non-coaxiality between the 

loading and plastic flow directions can be easily simulated 

by conducting fractional derivative of the yielding function, 

where the additional plastic potential is no longer needed. 

Fractional plasticity can be used to describe the materials 

which have the behaviors of induced anisotropy and volume 

change in the plastic range. Therefore, this model can be 

applied for concrete, rock and granular soil by using proper  
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strength criteria (Masoumi et al. 2015, Bui et al. 2016, 

Wang et al. 2018a, b, 2019). Then, a series of pioneering 

studies on establishing the fractional plasticity model for 

granular soils have been done by Sun and his co-workers 

(Sun and Shen 2017, Sun et al. 2017, Sun and Xiao 2017). 

In their studies, the fractional order was found to be capable 

of capturing both the state-dependence and the evolving 

plastic flow direction during shearing (Sun et al. 2017). 

However, the present fractional-order elastoplastic models 

for granular soils are all established at the triaxial 

compression state rather than the 3D stress state, so the 

stress-strain relationship under the true 3D stress condition 

cannot be described, which limits the further engineering 

application of these models, for example in railway 

engineering (Kumara and Hayano 2016, Mosayebi et al. 

2016, Nimbalkar and Indraratna 2016, Nimbalkar et al. 

2018). Hence, there is an urgent need to extend the 

fractional plasticity approach to cover more generalized 

stress conditions. 

There are several methods proposed to generalize the 

constitutive models from 2D stress state to 3D stress state, 

for instance, the g(θ) method (Pastor et al. 1990) and tij 

method (Nakai and Hinokio, 2004). Besides, some specific 

stress spaces were introduced for the 3D generalization. For 

instance, the concepts of characteristic stress space (Lu et 

al. 2016, 2019) and transformed stress (TS) space (Yao and 

Wang, 2014). The concept of TS space was proposed by 

Yao and Wang (2014) to generalize the constitutive models 

for 3D loading conditions, which gained a lot of attention 

since emerging. Due to the integral definition of the 

fractional derivative, analytical solutions of the fractional 

derivative with respect to the Lode’s angle cannot be easily 

obtained. However, in the TS method, such analytical 

solution is no longer needed; only conducting 

differentiations of the transformed mean effective principal 

stress and deviator stress are enough for accurate modelling 

of the 3D behaviour of soil.  
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In this paper, a new elastoplastic model by combining 
the fractional plasticity and the TS method is established, 
where a novel 3D plastic flow rule is derived by conducting 
stress-fractional derivative of the yielding function in the 
TS space. Available true triaxial test results of the 
Lianghekou rockfill (Shi, 2008) are used to validate the 
performance of this new 3D fractional-order elastoplastic 
model. 
 

 

2. Fractional derivative 
 

In this study, the Caputo’s derivative (Podlubny 1998) 

of a yielding function, f, is used 
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where 
0 ( / )D  

 =   means the partial differentiation, 

and (0,2)  , is the fractional derivative order (Sun et al., 

2019). Note that there are a variety of definitions of the 

fractional derivative (Podlubny, 1998); however, for 

modelling the strain hardening and softening behaviour of 

soil using plasticity approach, the Caputo’s definition is 

preferred (Sun et al., 2017), because of its derivative of a 

constant equal to zero. σ is the loading stress. It should be 

noted that compressive stresses and strains are considered 

as positive while the extensive ones are negative; all the 

stresses in this paper are effective stresses unless otherwise 

specified. The Euler Gamma function is defined as 
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where v>-1, is the power index. As will be shown in the 

next section, with the use of a fractional oder (α≠1), a state-

dependent nonassociated plastic flow rule can be achieved. 
 

 

3. Transformed stress space 
 

According to Yao and Wang (2014), the TS method 

requires an arbitrary failure criterion. In this paper, the SMP 

criterion (Matsuoka et al. 1999) is used. Then, the TS space 

(
ij , i, j = 1, 2, 3) can be constructed by using the TS tensor 

ij . The SMP criterion in the general stress space ( ij ) will 

be transformed into the extended Mises criterion in the TS 

space. As shown in Fig. 1, the curve of the SMP criterion in 

the original π−plane can be transformed into a circle in the 

new transformed π−plane, which indicates that the effect of 

Lode’s angle in the TS space can be neglected.  

In addition, it can be observed from Fig. 2 that the 

yielding surface (f) of the modified Cam-clay (MCC) model 

in the TS space have the same shape with that of the MCC 

model using extended Mises criterion. Therefore, further 

fractional derivatives of f can be only carried out with 

respect to the mean effective principal stress and deviator  

 

Fig. 1 Transformation from the general space to the 

transformed space 

 

 

Fig. 2 Yielding surface of the MCC model in the TS 

space 
 

 

stress in the TS space. 

The transformation from the ij  space to the ij  

space (point T to point T  in Fig. 1) can be obtained via 

the deviator stress qc under the triaxial compression 

condition (Yao and Wang 2014), such that 

p p=
 (3a) 

cq q=
 (3b) 

orb b  = =
 

(3c) 

where p and θ are the mean effective principal stress and the 

Lode’s angle in the ij  space, respectively. The 

expressions of the transformed mean effective principal 

stress p , deviator stress q , and intermediate principal 

stress coefficient b  in the TS space have the same forms 

as those in the general stress space 
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where ijs  is the deviator stress tensor in the ij  space; 

and ij  is the Kronecker delta. Based on the SMP criterion 

(Matsuoka et al. 1999), qc can be expressed as 
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where I1, I2, and I3 are the stress invariants in the ij  

space, which can be expressed as 

1= iiI 
 (6a) 

2

2

1 1
= ( )

2 2
kk ij jiI   −

 
(6b) 

3

3

1 1 1
= ( )

3 2 6
ij jk ki rs sr mm nnI       − +

 
(6c) 

Then, the TS tensor ( ij ) can be obtained as 
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Based on the mathematical relationship between ij  

and ij , the 3D constitutive model can be established 

directly in the TS space and then transferred in the ordinary 

stress space during calculation. 
 
 

4. 3D fractional model 
 

The total strain ɛij and its increment Δɛij can be divided 

into two parts, such that 

= +e p

ij ij ij    
 

(8) 

where the superscripts e and p indicate the elastic and 

plastic components, respectively. Following the fractional 

plasticity (Sun and Shen 2017, Sun et al. 2017), the plastic 

strain increment is determined by using the stress-fractional 

derivative of f, such that 
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where Λ is the non-negative plastic multiplier. 

( )/ ijf     indicates the direction of nonassociated 

plastic flow. As shown in Fig. 3, the solid line n which is 

orthogonal to f denotes the loading direction, while the flow 

direction (dashed line m) is not orthogonal to f due to the 

ability of the fractional derivative to adjust the gradient 

direction. The extent of non-coaxiality is determined by α. 

When α = 1, the plastic flow rule will be associated. 

The well-known MCC yielding function (Schofield and 

Wroth 1968) is defined as 

2 2 2 2

0 0f M p q M p p= + − =
 

(10) 

 

Fig. 3 The non-coaxiality between the loading and flow 

directions 

 

 

where M ( 6sin / (3 sin )c c = − ) is the critical-state stress 

ratio; ϕc denotes the critical-state friction angle at triaxial 

compression. To obtain the value of ϕc, at least three 

independent triaxial compression tests on granular soils, 

under different confining pressures, needs to be carried out. 

Then, one can plot the critical state data points in the p−q 

plane, from which the value of M can be obtained. Then, the 

value of ϕc can be obtained by using 

 arctan 3 (6 )c M M = + . 0p  is the intercept between f 

and the abscissa in the p q−  plane. Then, the following 

constitutive relation can be achieved (Sun and Xiao 2017) 

1
=p
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where ∏ denotes the hardening modulus. mij and nkl denote 

the flow direction and loading direction, respectively. 

According to Yao and Wang (2014), nkl can be defined as 
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where / klf    based on the TS method is defined as 
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where the definition of /c tq I   and /t klI    can be 

found in the appendix. Furthermore, mij can be defined as 

(Sun et al. 2017) 
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where / ijf    can be derived by conducting the 

fractional derivative of f 
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As shown in Eqs. (16) and (17), the flow direction is 

influenced by α. A non-associated flow rule can be obtained 

even without using an additional plastic potential. 

Meanwhile, many studies pointed out that the material state 

can affect the flow direction. Therefore, the following 

expression of α which describes the state-dependence of 

nonassociated plastic flow is used (Sun and Xiao 2017) 

e =  (19) 

where β > 0, is a material constant. In classical plasticity, 

the first-order derivative of the yielding function is used to 

obtain a normal vector where the associated plastic flow 

direction is implied. This viewpoint can help us to 

understand the meaning of β, which represents the state-

dependent non-associativity in plasticity. The state 

parameter, ψ=e−ec (Been and Jefferies 1985), where e and 

ec are the void ratios at the current and critical states, 

respectively. ( )c ae e p p = − , where eΓ, λ and ξ are 

three critical-state parameters in the e − p plane (Li and 

Wang, 1998). In addition, the following modified hardening 

modulus, ∏, proposed by Li and Dafalias (2000) is used 
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where /q p =  is the stress ratio in the TS space. h1 and 

h2 are material constants, which can describe the 

dependence of the hardening parameter on void ratios. The 

parameters h1 and h2 can be determined by fitting the 

relationship of soils with different initial conditions. After 

the calibration the values of h, the relationship between h 

and e can be obtained. Then, the constants h1 and h2 can be 

determined. The characteristic peak stress ratio, Mp=Me
-kψ, 

where k is a material constant. G is the shear modulus 
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Table 1 Model parameters 

Soil ϕc λ eΓ ξ β k  h1 h2 G0 v 

Rockfill 

G1 
46° 0.11 0.404 0.1 0.2 0.1 1.2 0.3 90 0.25 

Rockfill 

G2 
51° 0.024 0.314 0.3 0.6 0.3 0.6 0.1 90 0.25 

 

Table 2 Gradation parameters of two rockfills 

Soil Cu Cc d50 (mm) dmax (mm) dmin (mm) 

Rockfill G1 1.59 0.95 3.15 5 2 

Rockfill G2 22.67 12.25 6.10 10 0.075 

 

 

where G0 is a dimensionless elastic constant. Apart from the 

plastic deformation, the elastic deformation of soils should 

be also considered, such that 

e e

ij ijkl klC  = 
 (22) 

where the elastic compliance matrix Ce
ijkl is defined as 
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where v is the Poisson’s ratio. Then, by using Eqs. (11), and 

(22), the 3D fractional elastoplastic constitutive relationship 

can be obtained. In this study, there are totally ten 

parameters (ϕc, λ, eΓ, ξ, β, k, h1, h2, G0 and v). In this model, 

all the parameters can be determined by traditional triaxial 

tests. This is an advantage of the TS method which does not 

require additional parameters under true triaxial condition. 

All the parameters are inherited from triaxial condition. 

This concept has been comprehensively discussed in Yao et 

al. (2014) and thus not repeated here for simplicity. Details 

for obtaining each model parameter can be found in Sun 

and Xiao (2017), and thus not repeated here for simplicity. 

Table 1 lists the values of each model parameters used for 

numerical simulation. 

 

 

5. Model validation 
 

In this section, the performance of the 3D fractional 

elastoplastic model in simulating soil deformation is 

evaluated. Test results of the Lianghekou rockfill (Shi 2008) 

with two different gradations (i.e., G1 and G2) under 

different true 3D stress conditions are used. The particle 

distributions of the two rockfills are shown in Fig. 4. Model 

predictions of each test result can be found in Figs. 5 and 6. 

It was reported (Shi 2008) that the size of the cuboid 

true triaxial sample was 70 mm × 70 mm × 35 mm. All the 

tests were carried out under the loading path of Δσ3= 0 with 

varying b values. As can be observed, test results under 

three different values of b were used for model prediction. 

The dry density (ρd) of rockfill G1 was reported to be 1.43 

g/cm3 while the minimum particle size and maximum 

particle size were 2 mm and 5 mm, respectively. The ρd of 

rockfill G2 was tested to be 1.91 g/cm3. It was reported that  
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Fig. 4 Particle size distribution (data sourced from Shi (2018)) 

 
 

(a) σ3= 100 kPa (b) σ3= 200 kPa 

Fig. 5 Comparisons between the test data of the rockfill G1 and the prediction of the proposed model 

 
 

(a) σ3= 200 kPa (b) σ3= 400 kPa 

Fig. 6 Comparisons between the test data of the rockfill G2 and the prediction of the proposed model 
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70% particles of rockfill G2 had sizes of 5 mm to 10 mm 

while the rest were less than 5 mm. The relations between 

the principal strains (εi) and the stress ratio (η=q/p) 

predicted by the proposed 3D model are indicated by solid 

lines, as shown in Figs. 5 and 6, while the true triaxial test 

results of Lianghekou rockfill are indicated by discrete 

symbols. Comparisons between the simulations and the test 

data show that the proposed 3D fractional elastoplastic 

model can well capture the stress-strain behaviour of 

different rockfill materials under different true triaxial 

loading conditions. In addition, compared with the MCC 

model, the proposed model can capture the stress-strain 

relationship more accurately. 

The influence of intermediate principal stress 

coefficients can be also predicted better than the MCC 

model. During loading under different σ3, b maintains 

constant, while b = 0, 0.5, and 0.75, respectively. It can be 

observed that η increases with the increase of the first 

principal strain (ɛ1), and only when it is at the triaxial 

compression state (b = 0), the values of the second principal 

strain (ɛ2) is negative, i.e., extensive, while the third 

principal strain (ɛ3) is extensive all the time. In addition, ɛ1 

is greater than ɛ2 and ɛ3 when b is small; but, with the 

increase of b, the ɛ1 becomes smaller than ɛ2 and ɛ3. 
 

 

6. Conclusions 
 

In this paper, a 3D fractional-order constitutive model 

based on the fractional plasticity theory and the TS method 

was proposed. The main findings in this study are 

summarized as follows: 

(1) A 3D state-dependent non-associated plastic flow 

rule was obtained without using an additional plastic 

potential. The plastic flow direction was determined by 

performing fractional derivative of the yielding function 

while the loading direction was determined by taking the 

first-order derivative of the yielding function. The property 

of non-associativity can be simulated by only using a 

yielding surface, due to the ability of the fractional 

derivative to adjust gradient directions. 

(2) The model can capture the state-dependence by 

combining the state parameter (β) and the fractional order 

(α). Based on the TS method, the hardening modulus was 

modified, so that it can reflect the property of hardening 

under 3D stress state. Meanwhile, all the model parameters 

used in this model can be determined by traditional triaxial 

tests. 

(3) The performance of this model was verified through 

comparisons between the model predictions and true triaxial 

test results of two rockfill materials, from which a good 

model performance was observed. 

(4) At current stage, the cyclic loading cannot be 

simulated in this model, as the loading and unloading 

behaviours should be defined by both the left-sided and 

right-sided fractional derivative. Meanwhile, the extension 

and rotational loading of this model also needs to be carried 

out to improve the ability of simulating more constitutive 

behaviours. Furthermore, the work of the combination of 

the proposed model and some business software should be 

done in the future study. 
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Appendix 
 

According to Yao and Wang (2014), /c tq I   (t = 1, 2, 

3) can be derived as 

( )
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(A3) 

while /t klI    is expressed as 
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where k, l = 1, 2, 3. For more details of Eqs. (A1)-(A6), one 

can refer to Yao and Wang (2014). 
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