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1. Introduction 
 

The stability of soil slope has drawn a wide attention 

across the geotechnical community. To solve the problem, 

numerous methods have been proposed, which can be 

classified into the following three types.  

(1) Limit equilibrium (LE).  

LE is the traditional method to assess the slope stability, 

which consists of the Bishop method, Janbu method, and so 

on. With LE, a slip surface is assumed and the soil mass 

above the surface can be divided into a series of slices. 

Global static equilibrium along various surfaces will be 

checked. By the introduction of the notion of the safety 

factor, the most dangerous surface permits to be sought.  

LE is attractive and popular due to its simple calculation 

procedure and the ability to gain effective results. However, 

there lies a limitation that it does not consider the stress-

strain relation of soils (Chen 2003). And some statical 

assumptions, which are necessary to avoid indeterminate 

condition will lead to the imprecise results. Besides, results 

from such analyses are sometimes ambiguous due to the 

different assumptions (Michalowski 1998). Thus it is 

difficult to assess the accuracy of such solutions by LE 

(Leshchinsky 2015).   
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(2) Numerical simulation technique.  

With the development of the computer, the numerical 

simulation methods have been widely used. Such methods 

supply better and comprehensive information, such as 

stresses, movements, progressive failure, and so on, which 

are not possible by LE (Sloan 2013, Aksoy et al. 2016, 

Keawsawasvong and Ukritchon 2016, Bhattacharya and 

Roy 2016, Babanouri and Sarfarazi 2018).  

However, the time in modeling and computing is much 

larger than that in LE, and the convergence is not an easy 

process, too. For some complicated cases, the results are 

very sensitive to the size of the elements, the tolerance of 

the analysis and the number of iteration (Cheng et al. 2007), 

which enforces the need for caution in applying this 

approach in the assessment of complex slopes. 

(3) Limit analysis (LA).  

LA has been developed in a more rigorous way than LE 

with respecting the plasticity theory (Chen 1975). And LA 

can be simpler since it does not require special constitutive 

laws and the complex material parameters associated with 

the application of the numerical analyses. 

With LA, there are two approaches to bracket the limit 

solutions of structures: the static approach and the 

kinematic approach. The former one, which gives a lower 

bound of the limit solution, needs to determine a statically 

admissible stress field. And the latter one, which gives an 

upper bound of the limit solution, needs to search a 

kinematical admissible velocity field (Chen and Liu 1990, 

Yang and Li 2018, Zhang et al. 2018, Xu and Yang 2019). 

The static approach is seldom used since the admissible 

stress fields are uneasy to construct. Conversely, it is 

simpler to define a kinematical admissible velocity field, 

which makes the kinematical approach more widespread.  

In the application of the kinematical approach, the 

failure surface is commonly described by a logarithmic 

spiral curve, which is in accordance with the associated 

flow rule (Michalowski 1995, Kumar 2000, Aminpour et al. 
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2017, Li and Yang 2018a, Li and Yang 2019a). However, 

due to the tedious calculation process, it is inconvenient to 

apply such curve in the cases with non-homogeneous 

properties (Kumar 2006, Nian et al. 2008). 

To solve the problem, Mollon et al. (2013) proposed an 

innovative kinematic approach based on a ‘point-to-point’ 

technique. This discretization technique was then 

successfully applied in slope engineering by Qin and Chian 

(2017), and the results were proved to be in good agreement 

with previous achievements.  

To further validate the discretization technique, the 

present study focuses on its implementation in complex 

slopes (layered slopes or benched slopes). In addition, the 

authors try to illustrate and clarify some aspects of the wide 

applicability of the limit analysis based on the discretization 

technique.  

This paper was organized as follows. A brief 

introduction of the discretization mechanism and the 

calculation of the work rates are firstly presented. Then the 

calculation of the safety factor, which is incorporated into a 

numerical procedure, is introduced. This is followed by the 

presentation of the extended discretization mechanisms for 

different types of complex slopes. Finally, several cases of 

complex slopes are discussed and conducted. 
 

 

2. Collapse mechanism analysis 
 

2.1 Collapse mechanism generation 
 

In this paper, the discretization mechanism is utilized for 

the stability estimations of complex slopes. This section 

aims at presenting the main principle for the generation of 

this mechanism. It is detailed as follows. 

The proposed discretization mechanism is illustrated in 

Fig. 1. The slope height H and slope angle β are the 

necessary parameters to describe the slope geometry. A 

coordinate system is established with the slope toe C being 

the origin.  

The mechanism is assumed to rotate rigidly around the 

rotational center O with the angular velocity ω. And the 

entire mechanism is fully defined by two parameters r0 and 

θ0, where r0 is the length of OC and θ0 is the angle between 

x axis direction and line OC.  

In this mechanism, the slip surface AC is discretized by 

a series of straight segments PiPi+1. It is worth mentioning 

that each segment PiPi+1 should make an angle φi with the 

velocity vector iv  in order to enforce the associated flow 

rule. Thus the generation process aims to define all the 

discretization point Pi.  

A ‘point to point’ technique was used herein to 

determine the discretization points along the slip surface, 

which means that each point is derived from the previous 

one. The generation process starts at point C, namely the 

first point P0 on the slip surface, and terminates to the last 

point Pn on the slope crest.  

In order to make all the discretization points distributed 

evenly, the angle between OPi and OPi+1 is considered as a 

constant δθ. The value of δθ also influences the accuracy of 

the failure mechanism. A smaller value of δθ makes more 

precise result, but the computation process is also more  

 

Fig. 1 Discrete failure mechanism of slopes 
 

 

time-consuming. Herein δθ is set to be equal to 0.1◦, which 

was recommended as a great combination of accuracy and 

time cost (Sun et al. 2017).  

In summary, the mathematical formulation from point Pi 

to point Pi+1 can be described as  
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where xi and yi are the abscissa and ordinate of the point Pi, 

xi+1 and yi+1 are the abscissa and ordinate of the point Pi+1, 

xO and yO are the abscissa and ordinate of the point O, it can 

be defined as  
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(2) 

The generation terminates when the generated points 

reach the slope crest. If the ordinate of the last discrete point 

is greater than the slope height H, i.e., yi>H, the last 

generated point is replaced by the junction between the last 

discrete segment and the slope crest using linear 

interpolation method. 
 

2.2 Calculation of the work rates 
 

In upper bound theorem, the stability conditions were 

determined by the work equation, which states that the 

external work rate W is no more than the energy dissipation 

D (Yang and Li 2018, Li and Yang 2018b, Li and Yang 

2019b). In the present study, the external work rate is 

provided by the weight of the collapsed block ABCA, and 

the internal energy dissipation only occurs along the slip 

surface AC due to the rigid block assumption. 

The gravity work rate can be achieved by the summation 

of the work rate per discretization block BPiPi+1. As shown 

in Fig. 2, the gravity work rate of block BPiPi+1 can be 

written as  

 
(3) 

where γ is the unit weight, Si is the triangle BPiPi+1 area, RGi 

is the distance between the barycenter PGi of triangle BPiPi+1 

and the rotating center O, θGi is the angle between OPGi and 

the horizontal direction. Thus the gravity work rate of the  
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Fig. 2 Analysis of the discrete block BPiPi+1 

 

 

failure mechanism can be defined 

cosi Gi GiW S R = −   
(4) 

Similarly, the energy dissipation per infinitesimal unit is 

added along the velocity discontinuity and permits to obtain 

cosi i i iD c L R =   
(5) 

where ci and φi are the cohesion and internal friction angle 

of point Pi, Li is the length of an elementary segment PiPi+1, 

Ri is the distance between point O and point Pi.  

 

2.3 Computation flow of the safety factor 
 

The calculating examples illustrated in the present study 

assess the slope stability using the safety factor Fs, which is 

also recommended in many design codes. Fs is commonly 

determined by the shear strength reduction method, which 

can make the slope achieve a limit state by reducing given 

shear strength parameters. The reduced parameters cf and φf  

can be defined as (Griffths and Lane 1999, Chen et al. 

2003, Nian et al. 2008)  

f s

f sarctan(ta / )
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n

c c F
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

=  

(6) 

Normally, the nonlinear safety factor equation can be 

given when the reduced strength parameters are introduced 

into constraints imposed by equating the external work rate 

to the energy dissipation. However, with discretization 

technique, such function is unavailable because the work 

rates of the discretization mechanism are calculated by 

summation. Thus, a novel numerical procedure is proposed 

to determine the value of Fs after the mechanism 

generation. It can be expressed as  

Step 1: Set the search range of parameters. The search 

ranges of θ0, r0 and Fs are [ , ]  , [0.5 ,10 ]H H  and 

1 2[ , ]s sF F  respectively. 

Step 2: Assign the Strength Reduction Factor (SRF) to

1 2SRF ( ) / 2s sF F= + , and reduce the strength parameters c 

and φ by SRF. Then introduce the modified parameters cf 

and φf into the equation which the external work rate equals 

the energy dissipation. Search the least value of the absolute 

difference between W and D: min W D−  where the two 

parameters were performed.   
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Fig. 3 Flow chart of the optimization 

 

 

Step 3: Evaluate the value of δFs and the absolute 

difference between Fs2 and Fs1. If 1 2abs( ) δs s sF F F−  , 

the searching process will end, and the safety factor Fs is 

equal to SRF. Otherwise, the procedure enters step 4. δFs is 

a prescribed parameter which determines the accuracy of 

the solutions, namely 0.01 in this study.  

Step 4: Estimate the value of min W D− , if

min =0W D− , SRF is an upper bound solution of the 

safety factors and then Fs2=SRF. Otherwise Fs1=SRF.  

Then, the procedure enters step 2 and the next iteration. 

It is employed iteratively in order to determine the least 

upper bound solution of Fs. 

In the search program of step 2, the inherent error makes 

the value of min W D−  always greater than zero even in 

a velocity admissible mechanism, while min W D−  is 

supposed to be equal to zero theoretically. Hence a 

threshold value ε is introduced to perform the evaluation in 

step 4. To our experience, it can be set to 
35kN m for 

oδ 0.1 = . 

The detailed computation flow chart of safety factor is 

described in Fig. 3. 
 

 

3. Stability analyses for complex slopes 
 

3.1 Non-homogeneous slopes cases 
 

The soil exhibits non-homogeneity in its properties due 

to the geological and environmental effects (Pan and Dias 

2016, Khezri et al. 2016, Xu et al. 2018). The non-

homogeneity of soils has two common forms: 

(1) The strength parameters are distributed linearly with 

depth as shown in Fig. 4(a) (Nian et al. 2008);  

(2) The strength parameters vary in different soil layers 

as shown in Fig. 4(b) (Kumar 2006). 

The discretization technique has been proven to be valid 

in the first case (Sun et al. 2017), therefore the validation of  
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(a) 

 
(b) 

Fig. 4 Two types of nonhomogeneous slopes 

 

 

Fig. 5 Discrete failure mechanism of the layered slope 
 
 

the second case is focused on herein. The presentation of 

the mechanism generation and the work rates computation 

are shown as follows. 

    A slope with various soil layers is illustrated in Fig. 5. 

There exist n soil layers, which are separated by layer line 

lj, where [1, ]j n . The values of the internal friction angle 

φj and the cohesion cj of each layer are different. And it is 

further assumed that the value of the unit weight is constant.   

The normality rule enforces the slip surface making an 

angle φ with the velocity vector. Thus the slip surface 

generation is conducted layer by layer in this layered slope. 

More concretely, in soil layer 1#, the generation starts at 

point A0, proceeds with the constraints that PiPi+1 makes an 

angle φ1 with νi, and terminates when the point Pi+1   

above line l1. Then the interpolation method, which is 

mentioned in the above section, is carried out to gain the 

end point (point B1) of the slip surface in layer1#. 

Afterward, the surface generation in layer 2# begins from 

the point B1 and so on. The construction of the entire slip 

surface terminates when the endpoint C is achieved.   

The work rate of gravity is related to the soil density, of 

which distribution is uniform herein. Therefore the 

calculation of the gravity work rate can be performed 

according to Eq. (4). Differently, the dissipation work rate 

along the slip surface is involved with the value of φj and cj. 

Hence the energy dissipation of entire slip surface is 

provided by the summation of that in each layer. The 

expression is  

 

Fig. 6 Discrete failure mechanism of the multi-stage 

convex slope 

 

 

Fig. 7 Block division of convex slopes 
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where ij is the amount of discrete segments for each layer.  

 

3.2 Multi-stage slopes cases 
 

Two typical forms of slopes with irregular geometries 

are defined in the present study, i.e., the convex slope in 

Fig. 6 and the benched slope in Fig. 8 (Gao et al. 2013, 

Xiao et al. 2015). For simplicity, the soil is considered to be 

homogenous in this section. 

A convex slope with n stages is described in Fig. 6. The 

slope height is H and the proportion of each stage is αj, 

where [1, ]j n . The slope surface of each stage is inclined 

at an angle βj with the horizontal direction. A0C is the slip 

surface. 

The generation process of slip surface is identical with 

that in a homogeneous slope. However, due to the complex 

geometries, the calculation method of work rates is diverse 

from that of the simple slope. 

As shown in Fig. 7, the sliding soil mass is divided into 

two blocks, namely A0AnCA0 and A0A1A2An−1AnA0. The 

first block can be treated as a simple slope as shown in Fig. 

1, while the second block is a polygon bounded with n+1 

straight lines. Thus the total gravity work rate of the convex 

slope W is contributed by the two items. More details can be 

found in Appendix 1. Moreover, the energy dissipation is 

easily arrived by the Eq. (5).   

Another frequent type of irregular slopes, the benched 

slope is more popular in practical engineering. As 

demonstrated in Fig. 8, the height of each stage is αjH and 

the slope angle of each stage is βj, where [1, ]j n . The  

c

z

c0

z

φ0 φ

o

1

1

C

θH

θ0

An

An-

A2

A1

A0 β
φ1 c1,

φ2 c2,

φn cn,
1Bn-

B2

B1

l1

l2

ln-

H
y

x
1

#

2
#

n#

A2

A1

A0

1An-

An

θH

θ0

o

β1

y

x

β2

βn

C

Hα1

Hα2

Hαn

A0

1
2

A2

A1

An C

1An-

230



 

Discretization technique for stability analysis of complex slopes 

 

Fig. 8 Discrete failure mechanism of the multi-stage 

benched slope 

 

 
(a) 

 
(b) 

Fig. 9 The block division of the multi-stage benched slope 
 
 

length of each bench Aj−1Bj−1 is denoted by cj−1. A0C is the 

slip surface. 

As shown in Fig. 9(a), the gravity work rate of convex 

slopes cannot be achieved by the way of connecting point 

A0 and point An. Thus the block division approach will be 

carried out as depicted in Fig. 9(b), the platform line AjBj is 

extended to the slip surface A0C with the point of Dj. The 

collapse block is divided into n blocks by the line AjDj. 

Thus the gravity work rate of the entire block W can be 

considered as 

1

n

j

j

W W
=

=
 

(8) 

where Wj is the gravity work rate of the block j. 

The gravity work rate of the block 1 can be solved easily 

by treating this block as a simple slope. However, note that 

the shape of the other blocks is different from the block 1. 

For these blocks, the calculation process of Wj needs to be 

modified. More details can be found in Appendix 2. The 

energy dissipation can also be given by Eq. (5). 
 

 

4. Discussions of numerical examples 
 

In this section, the results of the several cases using  

 

Fig. 10 Comparison of the critical slip surface for 

example 1 

 

Table 1 Soil properties for example 1 

Layer φ[◦] c[kPa]  γ[kN/m3] 

1 15 20.4 18.82 

2 30 30.4 18.82 

3 15 20.4 18.82 

 

Table 2 Comparison of the safety factor for example 1 

Number Calculation methods Fs 

1 Bishop method 1.308 

2 Janbu method 1.325 

3 This paper 1.269 

 

 

discretization method are compared with the previous 

results, in order to validate the effectiveness of the 

discretization mechanism in the analysis of the complex 

slopes. 

 

4.1 Layered slopes 
 

Example1：Inclined layered slope 

The geometry of the layered slope with 3 inclined layers 

is shown in Fig. 10 and the soil properties are given in Table 

1. It is noted that the shear strength parameters of layer 1 

and layer 3 are entirely the same while layer 2 has higher 

values of friction angle and cohesion. The height of the 

slope is 12m, and the slope surface inclines at 45° with the 

horizontal line. Both of hierarchical lines are determined by 

tanβ=1/5, where β is the angle between the inclined layers 

and the horizontal direction.  

As listed in Table 2, the safety factor of the present 

method is 1.269, which is lower than the value obtained by 

the Bishop and Janbu methods. The differences with respect 

to the Bishop method and the Janbu method are 3.07% and 

4.41% respectively. 

Fig. 10 presents the comparisons of slip surfaces with 

these methods. The three sliding surfaces are consistent in 

the first layer, while in the second and third layers, the one 

by the discretization method is different from the slip 

surfaces specified by other two methods.  

The reason for the discrepancy can be explained as 

follows. In the discretization mechanism, the angle between 

slip surface and the horizontal direction is equal to θi+ φi – 

π/2. The friction angle of layer 2 is higher than  
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Fig. 11 Comparison of the critical slip surface for example 2 

 

Table 3 Soil properties for example 2 

Layer φ[◦] c[kPa] γ[kN/m3] 

1 20 7.2 19.5 

2 23 5.3 19.5 

3 38 0 19.5 

 

Table 4 Comparison of the safety factor for example 2 

Number Calculation methods Fs 

1 
Bishop method 
Spencer method 

GLE method 

1.405 
1.375 

1.374 

2 Multi-wedge method 1.378-1.393 

3 This paper 1.381 

 
 

the ones of layers 1 and 3. Thus, the slip surface becomes 

steeper in layer 2 and slows down with the decrease of the 

friction angle from layer 2 to layer 3. 

The slip surfaces which were obtained by the Bishop 

and Janbu methods are circular, while the one provided by 

the discretization method appears less ‘regular’. It can be 

noted that the discretization-based slip surface is consistent 

with the variation of the friction angle, which indicates that 

the discretization mechanism is more realistic and suitable 

for non-homogeneous slope analysis. 

Example 2：Irregular layered slope  

Fig. 11 presents the trail profiles of an irregular layered 

slope with complex characteristics (Slide Verification 

manual 2003). The geometrical data consists of H=10 m 

and tanα=1/2, where α is the slope angle. There are three 

layers in this slope. For each layer, the unit weight remains 

constant while the strength parameters are different (Table 

3). Table 4 and Fig. 11 present the comparisons of the safety 

factors and the critical slip surfaces, as given by the 

discretization mechanism, the multi-wedge method 

(Anthony 1999) and LE (Slide Verification manual 2003). 

As seen in Table 4, the discretization-based safety factor 

is almost the same as the existing solutions, except for that 

by the Bishop method. This consistency demonstrates that 

the discretization mechanism is efficient. Besides, it can be 

observed in Fig. 11 that the failure surface agrees well with 

these ones obtained by the other methods. However, there 

still lie some nuances. 

The slip surface by the discretization method is not a 

single line but is composed of serval non-standard curves. 

Such slip surface is consistent with the variations of shear 

strength parameters. Note that the friction angle difference 

between the layer 2 and layer 3 is relatively large (15◦), the  

 

Fig. 12 Comparison of the critical slip surface for 

example 3 

 

Table 5 Comparison of the safety factor for example 3 

Number Calculation methods Fs 

1 Bishop method 2.212 

2 Janbu method 2.220 

3 This paper 2.203 

 

 

slip surface specified by present method has an obvious 

transition of the failure surface from layer 2 to layer 3.  

The present method is more advanced for layered slope 

stability analysis due to the competence of not only 

providing a kinematical admissible solution but also making 

the slip surface consistent with the friction angle variation. 

 

4.2 Multi-stage slopes 
 

This section focuses on the possible improvement of the 

discretization mechanism for multi-stage slopes. The 

comparisons of two different examples will be offered. 

Example 3：Three-stage benched slope  

Fig. 12 considers a homogeneous benched slope with 

three stages. The height and width of each bench are 4m, 

and the slope angle of each stage is 45◦. The cohesion and 

friction angle are 28 kPa and 25◦ respectively, and the unit 

weight is kept at 18.50 kN/m3. The discretization results 

were compared with those existing methods, which are 

shown in Table 5 and Fig. 12. 

   Safety factors in Table 5 show the results based on 

different methods are close. The present method gave a 

safety factor of 2.203. This value is slightly lower than 

these ones given by the Bishop and Janbu methods, which 

were estimated equal to 2.212 and 2.220 respectively. It 

indicates that the present method permits to calculate the 

safety factor of multi-stage benched slopes. Besides, as 

shown in Fig. 12, the discretization-based slip surface 

agrees well with those of LE. This case proved that the 

discretization method can give accurate solutions for a 

multi-stage slope. 

Example 4：Complex slope 

An irregular three-stage slope is shown in Fig. 13 

according to Xiao et al. (2015). The height of the slope is 

15 m, the slope angles for the lower part and the upper part 

are 45◦ respectively, while the middle part angle α is defined 

by tanα=1/2. The soil properties are the unit weight γ=20 

kN/m3, the cohesion c=10 kPa, and the friction angle φ=20◦.   
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Fig. 13 Comparison of the global critical slip surface for 

example 4 

 

 

Fig. 14 Comparison of the local critical slip surfaces for 

example 4 

 

Table 6 Comparison of the safety factor for example 4 

Case Calculation methods Fs 

Global slip 

surface 

PSO based LE 
Swedish circle method 

This paper 

1.118 
1.145 

1.154 

Local slip 

surface of 

caseⅠ 

PSO based LE 

Log-spiral mechanism 

This paper 

1.076 

1.106 

1.109 

Local slip 
surface of 

caseⅡ 

PSO based LE 

Log-spiral mechanism 
This paper 

1.156 

1.272 
1.272 

 

 

Slope failure does not always occur progressively. 

Sometimes the soil reaches an ultimate state in a different 

location initially and then extends to other places (Cheng et 

al. 2007, Xiao 2015). Namely, except for one defined 

critical slip surface, the slope could also slide along other 

surfaces. Thus the complex slope geometry could result in 

multiple slip surfaces.  

As shown in Figs. 13 and 14, a global critical slip 

surface and two potential local slip surfaces can be 

identified. From Fig. 13, it can be seen clearly that although 

there is not a perfect agreement in the description of the 

critical slip surfaces, the same trend is obtained. 

Additionally, the present slip surface is located between the 

ones by the PSO and the Swedish circle methods, which 

demonstrates that the present method is reasonable. Two 

potential slip surfaces were analyzed as presented at 

location I and location II in Fig. 14. Both local slip surfaces 

are similar to those obtained from the other methods, with 

being more nearer to those by the log-spiral mechanism. 

The consistency further validates the accuracy of the 

method presented in this study. 

The comparisons of the calculated safety factors are 

presented in Table 6. For local slip surfaces, the difference 

of Fs can be up to 10.03% between the discretization 

method and the PSO method. However, the log-spiral 

mechanism and the discretization method give similar 

results. For the case of global slip failure, the value of Fs 

achieved by three methods are also close. 

The above two multi-stage slope examples indicate that 

the discretization mechanism is rational in multi-stage 

slopes. 
 

4.3 Natural slopes 
 

This section analyzed a natural slope landslide of 

Tianshenqiao Hydro-power Project which is located on the 

right bank of the Nanpanjiang River, Guangxi Province in 

China (Chen and Shao 1988, Donald and Chen 1997, 

Malkawi et al. 2001).  

The geometrical and geological profile is shown in Fig. 

15. There are 7 layers and the geotechnical parameters used 

in the slope stability analysis are listed in Table 7.  

The comparisons of the optimized results (safety factor) 

are presented in Table 8. Chen and Shao (1988) 
 

 

Table 7 Soil properties for the natural slope 

Layer φ[◦] c[kPa] γ[kN/m3] 

1 21.79 19.6 18.13 

2 21.79 19.6 18.13 

3 24.79 0.0 18.13 

4 20.79 29.38 18.13 

5 10.18 34.29 17.75 

6 24.2 0 18.62 

7 45.0 39.3 23.54 

 

Table 8 Comparison of the safety factor 

Number Calculation methods Fs 

1 Spencer’s Method 0.863 

2 EMU 0.882 

3 Monte Carlo 0.712 

4 This paper 0.793 

 

 

Fig. 15 Comparison of the failure surfaces for natural 

slope: Failure surface I. Actual, II. Spencer’s Method 

(Chen and Shao, 1988), III. EMU (Donald and Chen, 

1997), IV. SAS-MCT (Malkawi et al. 2001) and V. 

Present discretization method 

4
5
°

4
5
°

PSO based limit equilibrium method
Swedish circle method
This paper

5

5

5

2

1

γ=20kN/m

c=10kPa

φ=20°

3

PSO based limit equilibrium method
Log-spiral mechanism
This paper

Ⅰ

Ⅱ

Ⅰ

Ⅱ

Ⅲ

Ⅳ

Ⅴ

1
2

3

4

5

6

7
5 100 (m)
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analyzed this slope with Spencer’s Method and obtained the 
safety factor as 0.863. It was later discussed by Donald and 
Chen (1997) using the computer program Energy Method 
Upper bound (EMU) and the optimized result is 0.882. And 
the safety factor obtained by Malkawi et al. (2001) using 
Stability Analysis of Slopes and Monte Carlo Techniques 
(SAS-MCT) is equal to 0.712. Basing on the discretization 
mechanism, this slope was analyzed in this paper and the 
factor of safety is 0.793, which is in the range of 0.712 to 
0.882. 

Besides, the actual failure surface and critical slip 
surfaces optimized by various methods are also displayed in 
Fig. 15. It can be seen that the present slip surface have the 
same trend with the actual one and the surfaces obtained by 
the other methods, which passes all the layers except the 
layer 7. And it is located between the slip surfaces 
optimized by the SAS-MCT and the Spencer’s Method. 
Moreover, the friction angle of the layer 5 is 10.18°, which 
is significantly lower than the one of layer 6 (24.2°). So 
there is a distinct transition on the surface from layer 6 to 
layer 5 due to the consideration of the strength parameters 
in the generation of the slope failure surface. 

Both of the comparisons of safety factors and the failure 
surfaces between this paper and the existed researches 
demonstrate the effectiveness and practicability of the 
present discretization method in the analysis of natural 
slope stability. 

 

 

5. Conclusions 
 

This paper aims at validating the discretization 

mechanism in the complex slopes, which contains the 

multi-layer slopes with varying strength parameters, the 

multi-stage slopes with complex geometries and natural 

slopes. 

The generation of discretization mechanisms and the 

establishment of work rates equations for complex slopes 

were described. The computational flow chart of safety 

factor was also detailed. Then through several complex 

examples with the existing results, the validation was 

carried out. The present methods can be demonstrated by 

the good agreements in both safety factors and slip surfaces. 

In addition, the slip surfaces of layered slope are not 

single lines but are composed of several non-standard 

curves, which are more realistic from the point of the view 

of plastic theory. The discretization mechanism has the 

potential to be an effective tool in analyzing the stability of 

complex geotechnical structures in scenarios of varied strata 

and the complicated geometries. Since it not only can assure 

the kinematically admissible solution, but also can avoid the 

tedious mechanism generation process. 

The discretization method opens a wide application of 

kinematical analysis for slopes with non-homogeneity and 

complex geometries. And it can also be used in other 

geotechnical structures, such as foundations and retaining 

walls. 
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Appendix 1 
 

As shown in Fig. 7, the external work rate for the multi-

stage convex slope can be written as 

1 2W W W= +
 (9) 

(i) W1 refers to the rate of the gravity work of the block

0 0A A CAn
. It can be calculated by the given method of 

the simple slope, i.e., Eq. (4).  

(ii) W2 denotes the gravity work rate of the block

0 1 2 1 0A A A A A An n−
, namely the polygons with n+1 lines, 

and it can be written as 

2 2 G2 G2cosW S R = −
 (10) 

where RG2 is the distance between the barycenter PG of the 

block 
0 1 2 1 0A A A A A An n−

 and rotation center O, and the 

coordinates of the barycenter PG can be defined as 
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(11) 

where xi and yi is the abscissa and ordinate of the point Aj. 

S2 is the area of the polygon. The block 

0 1 2 1 0A A A A A An n−
 herein can be divided into n−1 

triangles 0 1A A Aj j+ . Adding the triangle’s area together 

permits to obtain the value of S2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 2 
 

As shown in Fig. 16, line 1A Bj j−  is extended to the 

slip surface at point 1E j− . Then block -1A E D Aj j j j  and 

block 1 1 1 1B E D Bj - j j - j -−  are yielded. Both of them can be 

treated as the simple slope. Thus the gravity work rate of 

block j can be obtained by subtracting the block 

1 1 1 1B E D Bj - j j - j -−  from the block -1A E D Aj j j j . For the 

sake of convenience, the gravity work rates of the of blocks 

-1A E D Aj j j j  and 1 1 1 1B E D Bj - j j - j -−  are abbreviated as Aj 

and 1B j - , respectively. The work rate of block j permits to 

be obtained as 

2 12 A BW W W= −
 

(12) 

 

 

 

Fig. 16 Principle of the gravity work rate calculation for 

block j 
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