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1. Introduction 
 

Many factors could affect the slope stability (Zhang et 

al. 2013, 2015a, b and Peng et al. 2018), and groundwater is 

one of the most important natural factors (Xu et al. 2010, 

Piccinini et al. 2014, Luo and Zhang 2016, Zhang et al. 

2016). In actual engineering, landslides are often caused as 

a result of the quick rise and poor drainage of groundwater. 

With the existence and flow of groundwater, the resisting 

force of a slope would be not only reduced, but its sliding 

force is also increased, thereby resulting in a significant 

decline in slope stability (Vandamme and Zou 2013). With 

respect to the effect on the resisting force of the slope, the 

normal stress on the slip surface is reduced under the 

buoyancy of groundwater so as to decrease the shear 

capacity of the slip surface. For the sliding force of the 

slope, the downward trend of the slope becomes more 

obvious under the infiltration force of groundwater. To 

study the above effects of groundwater on slope stability, 

the pore water pressure on the slip surface has been 

involved to calculate the seepage of groundwater in several 

me t ho d s ,  s u c h  a s  t he  l i mi t  eq u i l ib r i u m ( LE)  
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method (Jia et al. 2015, Lu et al. 2015) and limit analysis 

(LA) method (Zhang et al. 2016).  

Using the pore water pressure on the slip surface to 

show the seepage effect of groundwater is a practical 

method in the slope stability analysis (Kostic et al. 2015, 

Jelusic et al. 2016, Li and Yang 2016, Deng et al. 2017). As 

the calculation of the pore water pressure depends on the 

shape and location of groundwater table, it is necessary to 

determine the seepage field of groundwater (Ghiassian and 

Ghareh 2008). However, the complex groundwater seepage 

field is usually obtained by numerical simulation with a 

complicate calculation process, and these obtained results 

need to be verified by the actual data for judging its 

applicability. To simplify this analysis process, a previous 

study used the product of a uniform coefficient (called as 

the pore water pressure coefficient) and the soil gravity to 

calculate the pore water pressure on the slip surface (Sun 

and Zhao 2013). This simplified calculation requires a 

uniform linear proportional relationship on two vertical 

heights (one is the vertical height between the groundwater 

table and slip surface, and another is that between the 

groundwater table and slope surface), which maybe not 

accurate with the actual situation. Therefore, it does not 

accurately reflect the role of groundwater seepage. Here, a 

simplified model is suggested to establish the groundwater 

table using some straight lines instead of curved lines so 

that the analytical solution for the seepage field of 

groundwater can be easily obtained. In fact, some in-situ 

monitoring sites are arranged in an actual slope to obtain the 

groundwater table (Yan et al. 2015, Pirone et al. 2015), and 

it is approximately determined by linearly connecting these 
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monitoring sites. Hence, it is feasible to analyze the seepage 

field of groundwater using this simplified model. Under this 

simplified model, the calculation of pore water pressure is 

no longer simply regarded as the product of pore water 

pressure coefficient and soil gravity, and thus the more 

reasonable results could be obtained. Moreover, the pore 

water pressure would be considered as two parts, namely 

the buoyancy and infiltration force of groundwater, which 

could be can be calculated analytically in the simplified 

model. Meanwhile, the location of groundwater table can be 

described by some parameters in the simplified model of 

groundwater seepage, such as the highest position of 

groundwater table. 

In addition, the shear strength of soil is also an 

important factor related to the slope stability. The shear 

strength of a natural geotechnical body, including the 

geotechnical body below the groundwater, generally has a 

nonlinear relationship with the normal stress acting on the 

geotechnical body (Gao et al. 2016, Wang et al. 2016). It is 

only an approximate simplification to replace the nonlinear 

strength criterion with a linear strength criterion, and the 

problem of slope stability analysis would become easier 

under the linear strength criterion. As a simple and practical 

method, the LE method has been widely adopted by 

designers to analyze slope stability. However, in the 

traditional LE methods, it is difficult to obtain the analytical 

solution of slope stability using the nonlinear strength 

criterion. 

In this work, the simplified model of groundwater 

seepage is adopted to analyze its effect on slope stability 

with use of the buoyancy and infiltration force of 

groundwater on the sliding body. Meanwhile, the shear 

failure of soil on the slip surface is considered to obey the 

general nonlinear Mohr-Coulomb (M-C) strength criterion. 

Then, on the basis of the stress analysis on the slip surface, 

the LE solutions for two-dimensional (2D) and three-

dimensional (3D) slopes under groundwater seepage are 

deduced. By comparison and analysis on examples, the 

feasibility of the proposed method is verified. Furthermore, 

with the highest position of groundwater table as the 

variables, the slope stability charts under different 

groundwater tables are drawn. By applying these charts, the 

stability of slope under the specify groundwater table could 

be quickly got, and thereby the drainage design in the slope 

would be guided to satisfy the requirement of slope safety. 

Moreover, the optimal parameters for the drainage design 

could be also obtained from these charts. 
 

 

2. LEM for stability analysis of a slope under 
groundwater seepage 
 

2.1 LEM for 2D slope stability 
 

As shown in Fig. 1, for a slope with a general shape, the 

groundwater in the slope is assumed to be flow out at the 

slope toe. For the highest position of groundwater table, it 

has the horizontal distance (lw) and vertical distance (hw) 

from the slope vertex. Establishing the xz coordinate system 

with the slope toe as the origin, the equations of the slope 

surface, slip surface, and groundwater table are z = g(x), z =  

 

Fig. 1 Model of stability analysis of a 2D slope under 

groundwater seepage 
 

 

s(x), and z = f(x), respectively. A and B are the upper and 

lower sliding points of slip surface, respectively. In the case 

of a vertical micro-slice with width dx, it is divides into two 

parts by the groundwater table. For the part above the 

groundwater table, the forces acting on it include: the 

gravity wudx, the horizontal and vertical seismic forces 

kHwudx and kVwudx, and the horizontal and vertical loads 

qxdx and qzdx on the slope surface. Compared with the part 

above the groundwater table, the part below the 

groundwater table would be affected by the buoyancy and 

infiltration force of groundwater. Thus, on this part, the 

forces include: the gravity wbdx, the horizontal and vertical 

forces kHwbdx and kVwbdx, the infiltration force pdx, and the 

normal and shear stresses σdx/cosα and τdx/cosα on slip 

surface. In the above parameters, kH and kV are the 

horizontal and vertical seismic force coefficients, 

respectively, p is the infiltration pressure, σ and τ are the 

normal and shear stresses on slip surface, respectively, and 

α is the horizontal inclination angle tangent to the slip 

surface in the vertical micro-slice.  
Here, the slope sliding is considered as the shear failure 

of slip surface, which is subject to the general nonlinear M-
C strength criterion. For the traditional LE method, it is 
difficult to obtain the analytical solution of slope stability 
under the nonlinear strength criterion. However, the LE 
stress method, established by Deng et al. (2015, 2016a, 
2016b), can be used to analyze the slope stability with the 
nonlinear strength criterion. Thus, this work derives the LE 
solution of slope stability under groundwater seepage using 
the stress assumptions from Deng et al. (2015, 2016a, 
2016b). 

In the LE stress method, the normal stress σ on the slip 

surface is assumed to be 
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where σ0
2D

 is the initial normal stress on the 2D slip surface, 

which is derived according to the force equilibrium 

conditions with neglecting the increment of inter-slice 

forces on the two sides of a vertical micro-slice; λ1, a 

dimensionless variable, is the correction coefficient of 

initial normal stress; wu = γ(g – f); wb = (γsat – γw)(f – s); γ is 
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the natural unit weight of soil; γsat is the saturation unit 

weight of soil; γw is the unit weight of water; px and pz are 

the components of infiltration pressure along the x and z 

directions, respectively; 
21
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  ; fx is the first derivative of groundwater 

table equation f(x) with respect to the x-axis; sx is the first 

derivative of slip surface equation s(x) with respect to x-

axis; and sx = tanα.  

In the general nonlinear M-C criterion, the shear 

strength is 

m

t

f c

1

0 )1(



 

 

(2) 

 where σ is the normal stress of soil; τf is the shear 

strength of soil under the normal stress σ; c0 is the initial 

cohesion with c0 ≥ 0; σt is the uniaxial tensile strength with 

σt ≥ 0; and m is the nonlinear parameter with m ≥ 1. 

For m = 1 in Eq. (2), it would represent the linear M-C 

strength criterion. Then, Eq. (2) can be re-expressed by τf = 

c + σtanφ, where c is the cohesion of soil, φ is the internal 

friction angle of soil, c = c0, and tan φ = c0 / σt.  

When the slope is in the LE state, the slope factor of 

safety (FOS) is defined as the ratio of the resisting force on 

slip surface to the sliding force. For a vertical micro-slice, 

the FOS can be further simplified as the ratio of the shear 

strength on slip surface to the shear stress. Thus, using Eq. 

(2), the shear stress on slip surface can be obtained as 
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where τ is the shear stress on slip surface; and Fs is the FOS 

of slope.  

From Eq. (3), the first derivative of shear stress τ with 

respect to the normal stress σ on slip surface can be 

obtained as 
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Then, expanding Eq. (3) by the Taylor series with the 

initial normal stress σ0 as a reference value and substituting 

Eqs. (4) into the expansion equation, Eq. (3) can be re-

expressed as  
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where H(σ−σ0
2D

) is the higher-order error term. 

In Eq. (5), the higher-order error term has correlates 

with the first two terms on the right-hand side of the 

equation. Thus, the calculation of H(σ – σ0
2D

) can be 

replaced by linearly amending this two terms. Then, with 

substitution of Eq. (1a) and introduction of two new 

variables, the shear stress is assumed as 
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where λ2 and λ3 are the correction coefficients of shear 

stress on the slip surface, both of which are dimensionless 

variables. 

As shown in Fig. 1, the force equilibrium conditions in 

the x and z directions and the moment equilibrium condition 

of all the forces about the point (xc, zc) in the sliding body 

can be determined as 
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By substituting Eqs. (7a)-(7b) into Eq. (7c) and 

simplifying, the following formula can be obtained as 

 

(8) 

From Eq. (8), it is noted that the choice of the moment 

centre point in the sliding body has no effect on the 

establishment of the LE equations. 

Then, by substituting Eqs. (1a) and (6a) into Eqs. (7a)-

(7b) and (8), respectively, the following linear equations for 

the variables λ1, λ2, and λ3 can be obtained as 
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According to Eq. (9), the variables (λ1, λ2, and λ3) would 

be solved. Thereafter, with substitution of these variables 

into Eqs. (1)-(6), the normal stress σ and shear stress τ on 

the slip surface can be obtained.  

Based on the above definition, the slope FOS is 

regarded as the ratio of the resisting force on slip surface to 

the sliding force for the shear failure of a slope. Thus, the 

FOS of a 2D slope can be solved using the ratio of the total 

resisting force along the entire slip surface to the total 

sliding force, and its formula is  
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2.2 LEM for 3D slope stability 
 

As shown in Fig. 2(a), in the stability analysis of a 3D 

slope with slope height H and slope angle β, the symmetry 

surface of 3D symmetric sliding body (or the main slip 

surface of 3D asymmetric sliding body) is called the neutral  

 
(a) 3D sliding body 

 
(b) Main sliding direction of 3D sliding body 

 
(c) 3D vertical micro-column 

Fig. 2 Model of stability analysis of a 3D slope under 

groundwater seepage 
 
 

plane. Taking the slope toe in the neutral plane as the origin, 

an xyz coordinate system is established. Then, z = g(x, y), z 

= s(x, y), and z = f(x, y) are the equations of slope surface, 

3D slip surface, and groundwater table, respectively, where 

the positive x-axis points into the slope, the positive z-axis 

is opposite to gravity, and the positive y-axis is determined 

according to the right hand rule.  

In Fig. 2(a) and 2(b), to describe the characteristics of a 

3D sliding body, the width of 3D sliding body along the y-

axis is W, and the sliding body is divided into two parts 

with the neutral plane as the interface. The widths of left 

and right parts are w1 and w2, respectively. Additionally, 

points A, B, C and D are the upper, lower, left, and right 

border endpoints of 3D sliding body, respectively, where 

points A and B are in the neutral plane, and the length of 
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line CD represents the width of 3D sliding body. 

In contrast to the simple 2D sliding body, the 3D sliding 

body slides down substantially along the main sliding 

direction. For a symmetric sliding body, the main sliding 

direction is parallel to the symmetry plane (or the neutral 

plane) because of the symmetry of sliding body. For an 

asymmetric sliding body, the main sliding direction is not 

parallel to the neutral plane but is at an angle ρ to the 

neutral plane. Another coordinate system, i.e., x′y′z, is then 

established with the main sliding direction of 3D sliding 

body as the x′-axis. Meanwhile, the x′y′z coordinate system 

has the same origin as the xyz coordinate system, and the 

positive direction of y′-axis is also determined by the right 

hand rule. Moreover, the main sliding direction of 3D 

sliding body is determined by the angle ρ, which can be 

defined as the inclination angle of the total shear forces on 

3D slip surface in the xz plane.  

Compared to the original xyz coordinate system, rotating 

the original coordinate system to align with the main sliding 

direction of sliding body has the advantage that in the x′y′z 

coordinate system, only three global LE conditions of 3D 

sliding body, i.e., the force equilibrium condition in the x′ 

and z directions and the moment equilibrium condition 

around one point in the y′ direction, are required to solve the 

LE stability of 3D slope. Thus, the complexity of 3D slope 

stability analysis is reduced, and the calculation speed is 

improved. Furthermore, the stability of 2D and 3D slopes 

would be solved by the universal LE equations.  

As shown in Fig. 2(c), the vertical 3D micro-column 

A1B1C1D1A2B2C2D2 is selected from the 3D sliding body. 

The micro-column has widths dx and dy in the x and y 

directions, respectively. αx and αy are the inclination angles 

of slip surface A1B1C1D1 in the xz and yz planes, 

respectively, where αy is positive in the clockwise direction 

along the y-axis and is otherwise negative. Using these 

parameters, the area of slip surface A1B1C1D1 can be 

calculated as Δdxdy, where 
221 yx ss  , sx = tanαx, and 

sy = tanαy. Consistent with the vertical 2D micro-slice, the 

vertical 3D micro-column A1B1C1D1A2B2C2D2 is also 

divided into two parts by the groundwater table.  

In the vertical micro-column under general conditions, 

for the part above the groundwater table, the forces acting 

on it have: the gravity wudxdy, the horizontal and vertical 

seismic forces kHwudxdy and kVwudxdy, and the loads 

qxdxdy, qydxdy, and qzdxdy on the slope surface. Moreover, 

on the part below the groundwater table, the forces include: 

the gravity wbdxdy, the horizontal and vertical seismic 

forces kHwbdxdy and kVwbdxdy, the infiltration forces 

p
xz

dxdy and p
yz

dxdy, the normal stress σΔdxdy  on slip 

surface, and the shear stresses τ
xz

Δdxdy and τ
yz

Δdxdy on slip 

surface. In these parameters, p
xz

 and p
yz

 are the components 

of infiltration pressure in the xz and yz planes. Meanwhile, 

and τ
xz

 and τ
yz

 are the components of shear stress on slip 

surface in the xz and yz planes, respectively.  

Consistent with the 2D slope stability analysis, the LE 

stress method assumes the normal stress on the 3D slip 

surface to be 
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where σ0
3D

 is the initial normal stress on 3D slip surface; 

nσ
x
, nσ

y
, and nσ

z
 are the x-, y-, and z-axis direction cosines of 

normal stress on slip surface, respectively; nσ
x
=-sx/Δ; nσ

xy
=-

sy/Δ; nσ
z
=1/Δ; px

xz
 and pz

xz
 are the components of infiltration 

force p
xz

 along the x- and z-axis directions, respectively; 
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; 

fx is the first partial derivative of groundwater table 

equation f(x, y) with respect to the x-axis; py
yz

 and pz
yz

 are 

the components of infiltration force p
yz

 along the y- and z-

axis directions, respectively; 
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and fy is the first partial derivative of groundwater table 

equation f(x, y) with respect to the y-axis.  

Similar to the 2D slope, the initial normal stress σ0
3D

 on 

slip surface, shown in Eq. (11), is derived according to the 

force equilibrium conditions when the increment of inter-

column forces on the two sides of vertical micro-column is 

assumed to be zero. 

According to the above definition of the angle ρ, it can 

be solved using the shear stresses τ
xz

 and τ
yz

 on slip surface. 

For shear stresses τ
xz

 and τ
yz

, they can be also approximately 

deduced according to the force equilibrium conditions as 

the increments of inter-column forces on the two sides of 

vertical micro-column are neglected. However, in the 

derivation process of shear stresses, the normal stress on the 

slip surface should be σ of Eq. (11a) to make the obtained 

result more reasonable. Thus, the angle ρ is given as 
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(12) 

The main sliding direction of a 3D sliding body, on the 

basis of which the x′y′z coordinate system is established, is 

determined by the angle ρ. Hence, the angle between the 

planes x′z and xz is also ρ. Thereby, nσ
x’

 and nσ
y’

, which are 

the x′- and y′-axis direction cosines of normal stress σ on 

slip surface, respectively, can be calculated as 
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(13a) 
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(13b) 

To easily solve for the normal stress σ and the slope 

FOS (Fs), the visual shear force on slip surface is oriented 

parallel to the main sliding direction of 3D sliding body, 

i.e., the visual shear stress τ on slip surface being parallel to 

the x′z plane. This assumption is widely used in the 

traditional 3D LE methods. Thereby, the y′-axis direction 

cosines (nτ
y′
) of the visual shear stress τ on slip surface can 

be calculated as 

0
yn  

(14) 

For the x′- and z-axis direction cosines of the visual 

shear stress τ on slip surface in a 3D vertical micro-column, 

they are named by nτ
x′
 and nτ

z
, respectively. Then, these 

cosines of the normal stress and visual shear stress (nτ
x′
, nτ

y′
, 

nτ
z
, nσ

x’
, nσ

y’
, and nσ

z
) have the following relationships as 
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By combining Eqs. (13), (14) and (15), the cosines nτ
x′
  

and nτ
z
 can be respectively solved as 
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Consistent with the 2D slope stability analysis, the 

virtual shear stress τ in the 3D slope can be also calculated 

using Eq. (3) for the slope sliding due to shear failure of slip 

surface. Thereby, the calculation of the virtual shear stress τ 

is assumed as 
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(17c) 

Thereafter, to facilitate the establishment of the LE 

equations of a 3D sliding body in the x′y′z coordinate 

system, the x and y coordinates in the 3D vertical micro-

column are transformed into their x′ and y′ coordinates, 

which are expressed as 

 sincos yxx 
 (18a) 

 cossin yxy   (18b) 

According to the above analysis, only three LE 

conditions of a 3D sliding body need to be satisfied in the 

x′y′z coordinate system, i.e., the force equilibrium 

conditions of all forces acting on a 3D sliding body in the x′ 

and z directions and their moment equilibrium conditions 

around the point (xc, yc, zc) in the y′ direction. Then, they are 

given as 
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By substituting Eqs. (19a) and (19b) into Eq. (19c), Eq. 

(19c) can be simplified into 
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Consist with the 2D analysis, it is also noted from Eq. 

(20) that the choice of the moment centre point in the 3D 

sliding body has no effect on the establishment of the LE 

equations. 
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By substituting Eqs. (11a) and (17a) into Eqs. (19a)-

(19b) and (20), respectively, the linear equations of the 

three variables λ1–λ3 can be obtained as 

ij jij dc  
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By solving Eq. (21), the variables (λ1, λ2, and λ3) could 

be obtained. However, according to Eq. (21), the calculation 

of the parameters (cij and di) in the Eq. (21) is related to the 

angle ρ. Therefore, the angle ρ should be determined before 

solving for the variables (λ1, λ2, and λ3). Thus, let the initial 

value of angle ρ be ρ
(0)

 = 0, and these variables (λ1, λ2, and 

λ3) then is solved using Eq. (21). Thereafter, by substituting 

the obtained λ1 into Eq. (12), a new ρ would be calculated. 

If｜ρ - ρ
(0)︱≦ε (here ε = 0.01°), the obtained values of ρ, 

λ1, λ2, and λ3 are the final results. If｜ρ - ρ
(0)︱ > ε, let ρ

(0)
 = 

ρ, and ρ, λ1, λ2, and λ3 are recalculated. Thereby, the looping 

iteration of ρ is required to solve for the variables (λ1, λ2, 

and λ3) in the 3D slope stability.  

After the final results of λ1, λ2, and λ3 are obtained, the 

normal stress σ and visual shear stress τ on 3D slip surface 

can be calculated by substituting them into Eqs. (11) and 

(17). 

Since the virtual shear stress is assumed to be parallel to 

the main sliding direction of 3D sliding body, the 3D slope 

FOS can be also solved using the ratio of the total resisting 

force on slip surface to the total sliding force, which is 

consistent with the definition of 2D slope FOS. Then, the 

3D slope FOS is calculated as 
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3. Comparison and analysis of slope examples 
 

3.1 2D slope examples 
 

Taking a 2D homogeneous slope as an example, the 

influence of groundwater seepage on slope stability is 

considered. To verify the feasibility of the proposed 

method, the results of the proposed method are compared 

with those of the traditional LE methods. The slope height 

and slope angle are assumed to be H and β, respectively. 

Moreover, the natural unit weight of soil, saturation unit 

weight of soil, and unit weight of water are γ, γsat, and γw, 

respectively, where γw = 10 kN/m
3
. In the slope, the soil 

parameter are given as c0, σt, and m under the nonlinear M-

C strength criterion, and they would be usually named by 

the cohesion c and internal friction angle φ if the linear M-C 

strength criterion (i.e., m = 1 in Eq. (1)) is adopted. Here, 

for the groundwater table, it is simplified as a straight line, 

which describes that the groundwater flows from the 

highest position of groundwater table to the slope toe. lw 

and hw are the horizontal and vertical distances of the 

highest position of groundwater table from the slope vertex, 

respectively. Then, according to different combinations of 

slope parameters, parameters describing groundwater table, 

and soil parameters, 32 slope examples are formed. Thus, 

the stability of these slope examples is analyzed by the 

traditional LE Swedish method (Fellenius 1936), the 

Morgenstern-Price (M-P) method (Morgenstern and Price 

1965), and the proposed method. The calculated results are 

listed in Table 1. In Table 1, two kinds of slip surface (i.e., 

circular slip surface and arbitrary curved slip surface) are 

adopted, and the generation of the arbitrary curved slip 

surface is from the method of Deng et al. (2017). It is well 
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known that the Swedish method is a non-rigorous method 

for being only suitable for a circular slip surface, and the M-

P method has a rigorous solution without the limitation on 

the type of slip surface.  

Table 1 shows that: (1) compared to the simple LE 

Swedish method, the proposed method satisfies all the 

global LE conditions of a sliding body so that a rigorous LE 

solution is obtained, and it could be also applied with the 

arbitrary curved slip surface (including the circular slip 

surface); and (2) the proposed method produces similar 

results to those of the rigorous LE M-P method, but the 

proposed method can analyze the slope stability under the  

 

 

nonlinear strength criterion.  

 

3.2 3D slope examples 
 

3D slope example 1: as shown in Fig. 3, is a 3D 

homogenous slope, with slope height H = 40 m, slope angle 

β = 45°. The soil parameters γ = 22 kN/m
3
, γsat = 24 kN/m

3
, 

c = 30 kPa, and φ = 30° for the slope subject to the linear 

M-C strength criterion. Moreover, γw = 10 kN/m
3
 for the 

unit weight of water. For this slope, a 3D spheroid is 

assumed as the sliding body. Then, by establishing an xyz 

coordinate system consistent with Fig. 2, the equation of 3D  

Table 1 Comparison of the results of 2D slope stability analysis  

Examples 

Slope 
parameters 

Groundwater table 
parameters 

Soil parameters Minimum FOS of slope 

H (m) β (°) hw (m) lw (m) 
γ 

(kN/m3) 

γsat 

(kN/m3) 

c0 
(or c) 

(kPa) 

arctan(c0/σt) 

(or φ) (°) 
m 

Circular slip surface 
Arbitrary curved 

slip surface 

Swedish 
method 

M-P 
method 

Current 
method 

M-P 
method 

Current 
method 

1 10 30 2 20 17.8 20 25 20 1.0 1.309 1.544 1.558 1.535 1.496 

2 10 30 2 20 17.8 20 25 25 1.0 1.474 1.733 1.747 1.726 1.682 

3 10 30 2 20 17.8 20 25 30 1.0 1.648 1.933 1.947 1.928 1.878 

4 10 30 2 20 17.8 20 25 35 1.0 1.838 2.151 2.163 2.147 2.091 

5 10 30 2 20 17.8 20 35 20 1.0 1.591 1.883 1.902 1.867 1.813 

6 10 30 2 20 17.8 20 35 25 1.0 1.762 2.08 2.100 2.067 2.012 

7 10 30 2 20 17.8 20 35 30 1.0 1.942 2.288 2.307 2.277 2.219 

8 10 30 2 20 17.8 20 35 35 1.0 2.138 2.512 2.531 2.503 2.441 

9 10 45 2 12 17.8 20 25 20 1.0 1.145 1.231 1.292 1.219 1.259 

10 10 45 2 12 17.8 20 25 25 1.0 1.258 1.362 1.425 1.351 1.391 

11 10 45 2 12 17.8 20 25 30 1.0 1.380 1.500 1.565 1.489 1.531 

12 10 45 2 12 17.8 20 25 35 1.0 1.512 1.649 1.716 1.639 1.682 

13 10 45 2 12 17.8 20 35 20 1.0 1.433 1.532 1.614 1.511 1.563 

14 10 45 2 12 17.8 20 35 25 1.0 1.552 1.665 1.753 1.650 1.706 

15 10 45 2 12 17.8 20 35 30 1.0 1.678 1.811 1.898 1.795 1.851 

16 10 45 2 12 17.8 20 35 35 1.0 1.813 1.966 2.055 1.951 2.009 

17 10 30 2 20 17.8 20 25 20 1.5 1.043 — 1.254 — 1.182 

18 10 30 2 20 17.8 20 25 25 1.5 1.130 — 1.359 — 1.291 

19 10 30 2 20 17.8 20 25 30 1.5 1.220 — 1.467 — 1.395 

20 10 30 2 20 17.8 20 25 35 1.5 1.314 — 1.579 — 1.506 

21 10 30 2 20 17.8 20 35 20 1.5 1.323 — 1.594 — 1.489 

22 10 30 2 20 17.8 20 35 25 1.5 1.420 — 1.709 — 1.607 

23 10 30 2 20 17.8 20 35 30 1.5 1.519 — 1.826 — 1.728 

24 10 30 2 20 17.8 20 35 35 1.5 1.621 — 1.950 — 1.852 

25 10 45 2 12 17.8 20 25 20 1.5 0.973 — 1.092 — 1.044 

26 10 45 2 12 17.8 20 25 25 1.5 1.037 — 1.169 — 1.123 

27 10 45 2 12 17.8 20 25 30 1.5 1.103 — 1.248 — 1.204 

28 10 45 2 12 17.8 20 25 35 1.5 1.173 — 1.330 — 1.285 

29 10 45 2 12 17.8 20 35 20 1.5 1.264 — 1.413 — 1.340 

30 10 45 2 12 17.8 20 35 25 1.5 1.334 — 1.495 — 1.426 

31 10 45 2 12 17.8 20 35 30 1.5 1.405 — 1.580 — 1.515 

32 10 45 2 12 17.8 20 35 35 1.5 1.480 — 1.670 — 1.607 
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ellipsoid is given as 
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where a and b are the shape parameters of 3D ellipsoid, and 
(x0, 0, z0) is the center coordinates of the circular slip 
surface with radius a in the neutral plane of 3D sliding 
body.  

In Eq. (23), the parameter b can be determined on basic 
of the parameters x0, z0, a, H, β, and W (i.e., the width W of 
3D sliding body) as 

For x0 < -z0tanβ and x0 < 0,  
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To compare the results with other methods, the slope 

without the groundwater table is given, and the 3D ellipsoid 

is also used with the parameters of the sliding body as x0 = 

40 m, z0 = 40 m, and a = 40 m at the specific position. 

Then, the FOS of a 3D slope for W / H =1, 2, 4, 6, and 8 is 

calculated, and the results are listed in Table 2. Table 2 

shows that the proposed method has the close results with 

the 3D simplified Janbu method (Hungr 1989), 3D Spencer 

method (Zhang 1988), and 3D M-P method (Cheng and Yip 

2007), thereby verifying the feasibility of the proposed 

feasibility. Moreover, similar to the 3D ordinary column 

method (Hovland 1997), only three LE conditions of a 3D 

sliding body are adopted in the proposed method. However, 

the proposed method obtains the global LE conditions of a 

3D sliding body from the special Cartesian coordinate 

system, which is established on the basis of the main sliding  

 

Fig. 3 3D slope example 1 

Table 2 Comparison of the results of 3D slope stability analysis 

W/H 
Slope FOS 

3D ordinary column method 3D simplified Janbu method 3D Spencer method 3D M-P method Improved 3D FOS method Current method 

1 1.152 1.252 1.343 1.368 1.480 1.219 

2 1.142 1.172 1.237 1.261 1.340 1.192 

4 1.142 1.162 1.219 1.232 1.292 1.177 

6 1.153 1.142 1.210 1.218 1.260 1.173 

8 1.154 1.142 1.209 1.214 1.260 1.172 

 

Fig. 4 Results of 3D slope stability analysis for a dynamic change in groundwater 
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direction of 3D sliding body. Thus, the rigorous 3D LE 

solutions can be solved by the proposed method. In 

addition, the improved 3D FOS method (Wang and Deng 

2003) has a larger FOS than the proposed method for the 

reason that it considers the appearance of sliding between 

the adjacent 3D vertical columns. In fact, a relative 

displacement between the adjacent 3D vertical columns 

may be not obvious when the slope slides due to shear 

failure of slip surface. Therefore, compared with the 

improved 3D FOS method, the results obtained by the 

proposed method are more conservative. 

For the slope with the consideration of groundwater 

table, the effect of a dynamic change in the groundwater 

table on slope stability is studied. To easily describe the 

groundwater seepage in a 3D slope, it is assumed that the 

groundwater flows out from the slope toe, and the 

groundwater table between its highest position and the slope 

toe is simplified into a plane, which is the same with the 

simplified seepage model for a 2D slope. For the highest 

position of groundwater table, lw and hw are its horizontal 

and vertical distances from the slope vertex, respectively. 

Meanwhile, no hydraulic gradient acts on this simple 3D 

slope along the y-axis direction, that is, the seepage does not 

occur along the width direction of a 3D sliding body. Then, 

the above 3D rotating ellipsoid with the same parameters is 

also adopted as the sliding body to analyze the slope 

stability. Thus, when W = 20 m, the curves of the minimum 

FOS of 3D slope vs. the parameter (lwtanβ) / H are plotted 

for hw / H = 0.1, 0.2, 0.3, 0.4, and 0.5 in Fig. 4.  

Fig. 4 shows that: (1) the slope stability would be 

reduced under the groundwater seepage, and the slope tends 

to be more likely instability with the high groundwater 

table; and (2) a change in the groundwater table would has 

the small effect on the slope stability under the condition of 

the low hydraulic gradient of groundwater, and the 

hydraulic gradient is expressed by (H – hw) / (H / tanβ + lw).  

3D slope example 2: as shown in Fig. 5, the 3D slope 

with a weak interlayer has slope height H = 12.25 m and 

slope ratio 1:2, i.e., slope angle β = 26.565°. The weak 

interlayer is located below the slope toe with the vertical 

distance hd = 0.75 m, and its thickness is h = 0.5 m. The soil 

parameters are γ = 18.84 kN/m
3
, γsat = 21 kN/m

3
, c = 28.5 

kPa, and φ = 20° for the slope subject to the linear M-C 

strength criterion. γw = 10 kN/m
3
 for the unit weight of  

 

 

water. For the weak interlayer, which is also subject to the 

linear M-C criterion, it has γ = 18.84 kN/m
3
, γsat = 21 

kN/m
3
, c = 0.0 kPa, and φ = 10°. Similar to the 3D slope in 

example 1, the 3D rotating ellipsoid as the sliding body is 

also adopted in this example. However, the presence of a 

weak interlayer makes it easier for the slope to slide along 

its surface. Thus, when the 3D rotating ellipse is below the 

weak interlayer, it would be replaced by the surface of weak 

interlayer, thereby forming a 3D composite slip surface. 

Taking the width of 3D sliding body W = 40 m as an 

example shown in Fig. 5, the minimum slope FOS, the 

critical slip surface, and the normal stress on the slip surface 

are respectively calculated for the two cases, i.e., the slope 

without groundwater and the slope under groundwater 

seepage. For the slope under groundwater seepage, the 

groundwater table is simplified using the same model as in 

3D slope example 1. Here, hw = 0.4H and lw = 1.2H / tanβ. 

By analyzing the slope stability, the minimum slope FOS is 

equal to 2.400 for a slope without a groundwater table, and 

it is 2.055 for the slope under groundwater seepage 

conditions. Thus, the slope stability under groundwater 

seepage is significantly reduced, and it also shows that the 

groundwater is an important natural factor resulting in slope 

instability.  

Fig. 5 illustrates that the normal stress on the slip 

surface is obviously reduced by the buoyancy force of 

groundwater, and as a result the resisting force of slope is 

also decreased. Meanwhile, the infiltration force of 

groundwater increases the sliding force of slope so as to 

reduce significantly the slope stability. In addition, the slope 

under groundwater seepage has a larger failure range than 

that without the groundwater table.  
 

 

4. Charts for optimization of the design of slope 
drainage 
 

The above analysis shows that the slope stability is 
significantly reduced with the existence of groundwater 
seepage. Hence, in the actual engineering scenarios under 
groundwater table, the drainage is required by arranging 
some pipes (i.e., drainage pipe) in the slope to improve the 
slope stability. In other words, it is very important for 
drainage design in slope under the groundwater seepage. 
For the drainage pipe, the plastic pipe commonly used in  

  
(a) Slope without groundwater table (b) Slope under groundwater seepage 

Fig. 5 Contrast on the results of critical slip surface and normal stress on slip surface in 3D slope example 2 
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the engineering could be adopted, and some drain holes 
would be set around its shell. Moreover, the mesh geo-
textile is wrapped at the end of the pipe and around the shell 
of the pipe to prevent the silt from entering the pipe. 
Meanwhile, the drain pipe is arranged obliquely downward 
within the slope so that the water inside the pipe can 
quickly flow out under the action of its gravity. With regard 
to the spacing of the drainage pipes, it can be ensured that 
the groundwater above the drainage pipes and between the 
two adjacent drainage pipes should be effectively and 
promptly discharged.  

In addition, compared with the non-linear strength 

criterion, the linear M-C strength criterion is still widely 

used by designers for the slope stability analysis. The 

reason is that only two shear strength parameters included 

in the linear M-C strength criterion can be quickly and 

simply obtained by the laboratory experiments and the 

failure behavior of slope sliding can be also approximately 

simulated with the use of them. Therefore, it is practical to 

draw the stability charts of slope with the linear M-C 

strength criterion for optimizing the design of drainage. 

Then, the stability charts of slope are drawn with slope 

height H = 10 and slope angle β. In the slope, the soil 

parameters are γ = 17.8 kN/m
3
 and γsat = 20 kN/m

3
. γw = 10 

kN/m
3
 for the unit weight of water. Here, it is thought that 

the groundwater table would descend to the designed  

 

 

position under the work of the drainage system after the 

drainage pipes are arranged in the slope. Thus, to facilitate 

designing the position of drainage pipes, the groundwater 

around the pipes would be drained by them, and finally a 

new stable groundwater table is formed in the slope. 

Meanwhile, the new groundwater table can be 

approximately described using the above simplified model, 

in which the groundwater undergoes the linear flow from 

the highest position of groundwater table to the slope toe 

after drainage. Then, the designed highest position of 

groundwater table is determined by the parameters lw and 

hw. Thereby, the drainage design of slope is considered as 

the design of parameters describing the groundwater table, 

and the purpose of arranging the drainage pipe in the slope 

is to descend the groundwater table to the designed position.  
 In the work of Sun and Zhao (2013), the curve of tanφ 

vs. c/(γH) for the slope in the critical state was plot to form 
the simple and practical stability charts, and it could be also 
used to get the stability charts under the different 
groundwater table for optimizing the drainage design. In the 
stability charts, a slope in the critical state has the minimum 
FOS of 1.000, which is used to judge whether the slope is in 
a stable state. For example, for one point above the curve of 
tanφ vs. c/(γH), its minimum FOS would be greater than 
1.000 and the slope is in a stable state, otherwise, the slope 
state is unstable with the minimum FOS being less than 

 
(a) lwtanβ / H = 0.0 

 
(b) lwtanβ / H = 0.2 

 
(c) lwtanβ / H = 0.4 

Fig. 6 Stability charts for optimizing slope drainage design with slope angle β = 30° 
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1.000. In addition, when a specific slope is given with 
different strength parameters, its minimum slope FOS can 
also solved by a simple linear proportional relationship in 
the stability charts, which is shown in Fig. 6(a) for the 
example of β = 30°, hw / H = 0.2, and (lwtanβ) / H = 0.0 with 
curve s1s2.  

Here, Figs. 6, 7, and 8 is suitable for hw / H = 0.2 ~ 0.8 
and (lwtanβ) / H = 0.0 ~ 0.4, and the application range of 
slope angle (β) is 30° ~ 60°. 

To verify the applicability of these charts for the 
optimization of slope drainage design, the slope 

 

 

 

parameters are given as slope height H = 10 m and slope 
angle β = 45°. In the slope, the soil parameters are γ = 17.8 
kN/m

3
, γsat = 20 kN/m

3
, c = 18 kPa, and φ = 20°. γw = 10 

kN/m
3
 for the unit weight of water. Meanwhile, the slope 

under groundwater seepage is in the unstable state. To 
improve the slope stability, the drainage pipes are arranged 
in the slope to descend the groundwater table, and the 
minimum slope FOS would be required to reach 1.200. 
Thus, according to the given slope and soil parameters, the 
drainage parameters, i.e., the highest position of 
groundwater table, are inversely calculated for the  

 
(a) lwtanβ / H = 0.0 

 
(b) lwtanβ / H = 0.2 

 
(c) lwtanβ / H = 0.4 

Fig. 7 Stability charts for optimizing slope drainage design with slope angle β = 45° 

Table 3 Comparison of the calculated results 

Case 

Slope 

parameters 
Soil parameters 

Drainage 

parameters Designed minimum FOS of 

slope 

Calculated minimum FOS of 

slope 
H(m) β(°) γ(kN/m3) γsat(kN/m3) γw(kN/m3) c(kPa) φ(°) lwtanβ/H hw/H 

1 10 45 17.8 20 10 18 20 0.0 0.576 1.200 1.202 

2 10 45 17.8 20 10 18 20 0.2 0.509 1.200 1.207 

3 10 45 17.8 20 10 18 20 0.4 0.415 1.200 1.202 
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corresponding minimum slope FOS of 1.200. The results 
are listed in Table 3. Furthermore, the slope stability with 
the designed drainage parameters is re-analyzed, and the 
results are also presented in Table 3.  

Table 3 shows that it is feasible to design the drainage 

parameters of slope using these charts in Figs. 6-8, and the 

designed minimum slope FOS is very close to the 

calculated value. Thus, with the use of the charts in Figs. 6-

8, it could not only quickly get the slope stability under 

groundwater seepage but obtain the optimal parameters of 

drainage design for the slope with specific safety 

requirements.  

 

 

5. Conclusions 
 

In this work, the slope stability under the groundwater 

seepage is studied. Here, to obtain easily the infiltration and 

buoyancy forces of the groundwater on the sliding body, its  

 

 

seepage model is reasonably simplified. Then, by 

combining the stress analysis on the slip surface, the LE 

solutions for the stability of 2D and 3D slopes under 

groundwater seepage are derived with the general nonlinear 

M-C strength criterion. By comparing the results on some 

slope examples, the feasibility of the proposed method is 

verified. Furthermore, the research shows that:  

(1) Under the condition of the low hydraulic gradient of 

groundwater, a change in the groundwater table would have 

the small effect on the slope stability.  

(2) For the slope under groundwater seepage, its 

stability is significantly reduced for the reason of the 

decease in the normal stress on slip surface from the effect 

of buoyancy force and the increase in the sliding force of 

slope from the effect the infiltration force, and its failure 

range would also become larger.  

(3) The drawn stability charts can be used to quickly 

obtain the slope stability under groundwater seepage and 

also to optimize the drainage parameters for the slope with 

 
(a) lwtanβ / H = 0.0 

 
(b) lwtanβ / H = 0.2 

 
(c) lwtanβ / H = 0.4 

Fig. 8 Stability charts for optimizing slope drainage design with slope angle β = 60° 
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