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1. Introduction 
 

In a FG material, all material properties may change 

from one side to another side by means of a prescribed 

distribution (Ebrahimi and Barati 2017). These two sides 

may be ceramic or metal. Mechanical characteristics of a 

FG material can be described based on the percentages of 

ceramic and metal phases. The material distribution in FG 

materials may be characterized via a power-law function 

(Barati et al. 2016, 2017). FG materials are not always 

perfect because of porosity production in them (Chen et al. 

2015). Existence of porosities in the FG materials may 

significantly change their mechanical characteristics. For 

example, the elastic moduli of porous FG material is 

smaller than that of perfect FG material. Up to now, many 

authors focused on wave propagation, vibration and 

buckling analyzes of FG structures having porosities 

(Wattanasakulpong and Ungbhakorn 2014, Yahia et al. 

2015, Hadji et al. 2015, Atmane et al. 2015, Barati 2017, 

Mirjavadi et al. 2019). 

    At nano scale, size effects are prominent and must 

be evaluated in order to accurate analyzes of nano-scale 

structures. Therefore, classical elasticity is not adequate for 

analyzes of nano-scale structures. A refined elasticity theory 

called nonlocal theory of Eringen (1983) may be used for 

static and dynamic analysis of structures at nano-scale. 

Most of researches on static and dynamic analysis of 

structures at nano-scale deals with nonlocal elasticity 

having one scale parameter. Nonlocal elasticity containing 

scale parameter called nonlocal parameter is previously 

employed in many investigations on nano-sized beams and 

plates (Berrabah et al. 2013, Zhang et al. 2014, Belkorissat  
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et al. 2015, Zemri et al. 2015, Bouderba et al. 2016, Li et 

al. 2016, Li and Hu 2017, Ebrahimi and Barati 2018, Barati 

and Zenkour 2018a, b). These researches show a significant 

change in mechanical behavior of nano-structures when the 

scale parameter is involved. 

The present article is concerned with post-buckling 

investigation of nano-scaled beams constructed from porous 

functionally graded (FG) materials taking into account 

geometrical imperfection shape. Therefore, two types of 

nanobeams which are perfect and imperfect have been 

studied. Porous FG materials are classified based on even or 

uneven porosity distributions. A higher order nonlinear 

refined beam theory is used in the present research. Both 

perfect and imperfect nanobeams are formulated based on 

this refined theory. A detailed study is provided to 

understand the effects of geometric imperfection, pore 

distribution, material distribution and small scale 

influences. 

 

 

2. FG materials having porosities 
 

The material distribution in FG materials may be 

characterized via a power-law function (Barati et al. 2016, 

2017). FG materials are not always perfect because of 

porosity production in them. Existence of porosities in the 

FG materials may significantly change their mechanical 

characteristics. Depending on the type of porosity 

distribution, the elastic moduli for porous FG material can 

be expressed in the following power-law form having 

material gradient index p as 
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Fig. 1 A FG nanobeam with porosities 
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where m and c corresponds to the metal and ceramic sides, 

respectively; ξ is the porosity volume fraction. A porous FG 

nanobeam with length L is shown in Fig. 1. 

   By defining exact location of neutral axis, the 

displacement components based on axial u, bending wb and 

shear ws displacements may be introduced as 
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Here, third order shear function is employed as 
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According to the non-linear refined beam model, 

governing equations may be obtained via the procedure 

presented by Barati and Zenkour (2018a) as 
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in which Nx, Mb and Ms are axial, bending and shear 

moments respectively and 
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Here, a refined elasticity theory called nonlocal theory 

of Eringen (1983) may be used for static and dynamic 

analysis of beams at nano-scale. Most of researches on 

static/dynamic analyzes of a structure at nano-scale deals 

with nonlocal elasticity having one scale parameter (µ). 

Nonlocal elasticity containing a scale parameter is 

employed based on the following stress-strain relation 
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where εxx and γxz are axial and shear strains respectively. 

The axial, bending and shear moments in Eqs. (5)-(7) can 

be expressed in the following form with the help of Eqs. (9) 

and (10) as 
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(15) 

Then, inserting Eqs.(11)-(14) into the governing 

Eqs.(5)-(7) results in this system of equations considering 

geometric non-linearity and imperfection 
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Based on the procedure introduced by Barati and 

Zenkour (2018a), the axial displacement can be calculated 

as 

* *
2 2

0
2

0
1

( ) ( )1 1
( ) ( )

2 2

x x
b s b sw w w w

dx dx
x x

u c x c
 + 

= −


+
+

+


+ 
 
(18) 

* *
2 2

0
2

0
1

( ) ( )1 1
( ) ( )

2 2

x x
b s b sw w w w

dx dx
x x

u c x c
 + 

= −


+
+

+


+ 
 
(19) 

in which  
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where P is applied axial load. By calculating the first 

derivative of axial displacement, Eqs.(17) and (18) may be 

re-written as 
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3. Solution technique 
 

Here, a solution of the above non-linear equations based 
on the non-linear buckling of a porous nanobeam has been 
provided. At this step, the lateral/shear deflections must be 
assumed as 
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where (Wbm, Wsm) are buckling amplitudes; Xm is a function 

in order to introduce boundary edges which are 
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The imperfection displacements (with amplitude W*) 

may be introduced as (Emam 2009) 
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After placing Eq. (23) into Eqs. (21)-(22), 

implementation of Galerkin’s approach yields 
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Based on above discussion, the function Xm may be 

selected as 

S-S:   X𝑚(𝑥) = sin(
𝑚𝜋

𝐿
𝑥) (28) 

C-C:   X𝑚(𝑥) = 0.5(1 − cos(
2𝑚𝜋

𝐿
𝑥)) (29) 

The presented results are based on the following 

dimensionless nonlocal parameter 
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L
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4. Results and discussions 
 

This section is concerned with post -buckling 

investigation of nano-scaled beams constructed from porous 

FG materials taking into account geometrical imperfection 

shape. Hence, two types of nanobeams which are perfect 

and imperfect have been studied. Porous FG materials are  
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classified based on even or uneven porosity distributions. 
Both perfect and imperfect nanobeams are formulated based 
on a higher order refined beam theory. A detailed study is 
provided to understand the effects of geometric 
imperfection, pore distribution, material distribution and 
small scale effects on buckling of FG nanobeams. To this 
end, two material phases are selected as: 

• 𝐸𝑐 = 380 GPa, 𝜌𝑐 = 3800 𝑘𝑔/𝑚3, 𝑣𝑐 = 0.3  

• 𝐸𝑚 = 70 GPa, 𝜌𝑚 = 2707 𝑘𝑔/𝑚3, 𝑣𝑚 = 0.3 

Fig. 2 indicates the impact of pore parameter on non-

linear buckling curves of geometrically imperfect/perfect 

porosity-dependent nano-sized beams when L=10h and 

W*/h=0.1h based on even pore dispersion. Different 

 

 

 

amounts of pore parameter have been selected (ξ=0, 0.1 and 

0.2). In the case of ideal (perfect) nano-sized beams, the 

beginning point ( / 0W h = ) denotes the bifurcation buckling 

point. However, for the state of imperfect nano-sized 

beams, no critical point exists, because the nano-sized 

beams are rested in their initial configurations. One can find 

that the non-linear buckling loads become greater by 

increasing in non-dimensional maximum deflection 

highlighting the intrinsic stiffening influence related to 

geometrical non-linearity. Then, one can find that increasing 

in pore parameter yields a lower buckling load in the case 

of ideal or imperfect nano-sized beams. The reason comes 

from the reduction of nano-sized beam stiffness with the  

  
(a) S-S (b) C-C 

Fig. 2 Nonlinear buckling path of the nanobeam against normalized deflection for different uniform pore parameters 

(L/h=10, p=1, µ=0.2) 

  

(a) p=1 (b) p=2 

 

(c) p=5 

Fig. 3 Nonlinear buckling path of the nanobeam against normalized deflection for various pore distributions (L/h=10, 

µ=0.2, ξ=0.2). 
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incorporation of porosities. 

Pore dispersion impact on post-buckling curves of 

porosity-dependent graded nano-sized beams is depicted in 

Fig. 3 when µ=0.2. Obtained data reveal that a nano-sized 

beam containing un-even pore dispersion has a larger non-

linear buckling load than that containing even pore 

dispersion. Such behavior reveals that the nano-sized beam 

having un-even pores may achieve a greater beam stiffness 

than that containing even pore dispersion. Thus, pore 

dispersion possesses a notable impact on buckling 

properties and must be involved in buckling analysis of 

nano-sized beams. Based on previous explanations, pores 

may be randomly diffused all over the cross section of 

nano-sized beam in the case of even pore dispersion. But, 

they may vanish at cross section corners in the case of un-

even pore dispersion.  

Fig. 4 indicates the post-buckling curves of 

perfect/imperfect porosity-dependent graded nano-sized 

beam with respect to non-dimensional amplitude based on 

various nonlocality constants at L/h=10, p=1 and ξ=0.2. 

Even-type pore dispersion has been adopted. Post-buckling 

results for macro-size beams will be achieved by selecting µ 

=0. Obtained data reveal that nonlocality constant gives a 

decrement in stiffness and also a lower post-buckling load 

in the case of ideal and imperfect nano-sized beams. Hence, 

non-local model of a nano-sized beam may results in 

smaller values for buckling load than a local beam.  

Impacts of slenderness ratio (L/h) on post-buckling 

curves of a porosity-dependent nano-sized beam having 

simply-supported boundary edges are shown in Fig. 5 when 

µ=0.2, ξ=0.2. Even-type pore dispersion has been adopted. 

One can conclude from the figure that nano-sized beams are 

less flexible at smaller values of slenderness ratio. Thus, 

presented post-buckling loads get larger by decreasing in 

slenderness ratio at a prescribed non-dimensional maximum 

deflection.  

    Geometric imperfection (W*/h) impacts on post-

buckling curves of porosity-dependent graded nano-sized 

beams with even-type pore dispersion have been indicated 

in Fig.6 at µ=0.2 and ξ=0.2. It is found that the initial state 

of nano-sized beam possesses a major impact on post-

buckling properties. According to previous paragraphs, the 

critical buckling load vanishes by introducing initial  

 

 

Fig. 5 Nonlinear buckling path of the nanobeam against 

normalized deflection for different slenderness ratios 

(µ=0.2, ξ=0.2, p=1) 

 

 

Fig. 6 Nonlinear buckling path of the nanobeam against 

normalized for different imperfection parameters 

(L/h=10, µ=0.2, ξ=0.2, p=1). 
 

 

geometric state. In fact, for perfect state (W*/h=0), the 

nano-sized beam buckles at first. After that, nano-sized 

beam stiffness gets larger by increasing in non-dimensional 

maximum deflection. However, for imperfect state 

(W*/h≠0), one cannot find any critical load before the initial 

configuration of the nano-sized beam.  
 

 

5. Conclusions 
 

The main purpose of this paper was analyzing non-

  

(a) S-S (b) C-C 

Fig. 4 Nonlinear buckling path of the nanobeam against normalized deflection for different nonlocal parameters (L/h=10, 

ξ=0.2, p=1 
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linear buckling response of a nonlocal porous FG beam 

based upon a non-linear refined thick beam formulation. 

The diffusion of pores inside FGM had two patterns. It was 

understood that increasing the nonlocal parameter led to 

reduction in the post-buckling load. The pore parameter or 

pattern of pore distribution had a great impact on post-

buckling path of nano-sized beam. Post-buckling load for 

the state of uneven pore diffusion was bigger that of even 

porosities. Moreover, geometric imperfection had a notable 

impact on post-buckling response of porous nano-sized 

beam near the deflected configuration. 
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