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1. Introduction 
 

Analysis of stresses and displacements is important 

when a circular opening is excavated in isotropic rock 

masses. The distributions of stress and displacement 

provide reference for tunnel design. The problem can be 

regarded as axisymmetric and the solutions can be solved 

based on the Mohr-Coulomb (M-C), Hoek-Brown (H-B) 

and generalized H-B criteria with the elastic-perfectly 

plastic, elastic-brittle-plastic and strain-softening models as 

well as associated or non-associated flow rule, respectively. 

Many researchers have focused on this aspect and have 

made great contributions and solved many engineering 

problems (e.g., Antonio 2016, Apostolos 2017, Alessandra 

et al. 2017, Boonchai et al. 2017, Chakeri and Unver 2014, 

Cui et al. 2016, Deb and Das 2014, Do et al. 2015, Goh and 

Mair 2014, Hadi et al. 2016, Han et al. 2013, Huang et al. 

2016, Huang et al. 2017, Ieronymaki et al. 2017, Ibrahim 

2014, Iraji and Farzaneh 2016, Lam et al. 2014, Maghous et 

al. 2015, Nguyen et al. 2015a, b, Pan and Dias 2016, Pinyol 

and Alonso 2012, Park and Tonavanich 2008, Park and Kim 

2006, Park 2014, Lee and Pietruszczak 2008, Ranjbarnia et 

al. 2016, Rao et al. 2017, Showkati et al. 2016, Shin et al. 

2012, Talmon and Bezuijen 2013, Ullah et al. 2013, Vu et 

al. 2017, Wan et al. 2017, Wang et al. 2017, Xiao and Liu 

2017, Zhang et al. 2014, Zhou et al. 2016, Zou and Li 2015,  
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Zou and He 2016, Zou and Zuo 2017a, Zou et al. 2018, 

2019a, b, c, d, e), few theoretical solutions have been 

reported in technical literature, especially those for strain-

softening surrounding rock. 

This study presents a new numerical procedure to 

calculate the distributions of stresses analytically and 

displacements numerically for circular opening excavated in 

strain-softening rock masses with M-C and H-B criteria. 

 

 

2. Theory and methodology 
 

2.1 Assumptions 
 

Several assumptions have been made to determine the 

distributions of stresses and displacements. A circular 

opening of radius b is excavated in a continuous, 

homogeneous, isotropic, initially elastic rock mass, 

subjected to an initial hydrostatic stress. There is an internal 

support pressure at the tunnel surface. A plastic zone occurs 

around the tunnel when pi is less than a critical value. The 

plastic zone is divided into the softening zone and residual 

zone. The distributions of stresses and displacements in the 

plastic region should be solved numerically. The rock 

masses adhere to M-C and generalized H–B failure criteria 

under the plane strain condition. The strain-softening 

constitutive model that follows a non-associated flow rule is 

employed (as shown in Fig. 1). The elastic strain in the 

plastic and softening regions of the surrounding rock 

accords with Hooke’s law. When the plastic zone develops, 

the strength parameters drop gradually. The strength and  
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Fig. 1 Strain-softening material behavior model 

 

 

deformation parameters, as well as the dilation angle of 

rock mass, deteriorate with the development of plastic 

deformation after the post-strength surface shrinks. The 

material parameters of rock masses are determined 

according to the bilinear function of plastic shear strain. 

Compressive stress and direct strain are regarded as positive 

throughout the process. 

In Fig. 1, σ1 and σ3 are the major and minor principal 

stresses, respectively. ε1 and λε1 are the major principal 

elastic strain and the component of the maximum principal 

strain at the interface between the softening and residual 

regions. ε1 is the maximum elastic strain. 

 

2.2 Evolution of the strength and deformation 
parameters 
 

The strength and deformation parameters of the strain-

softening rock mass are evaluated based on plastic 

deformation and controlled by the deviatoric shear strain 

(Alonso et al. 2003). 

p p

1 3  pγ
 

(1) 

where, ε1
p
 and ε3

p
 are the major and minor plastic strains, 

respectively. 

The physical parameters of the surrounding rock are 

described according to the bilinear function of plastic shear 

strain as follows (Alonso et al. 2003). 
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where, ω represents a strength parameter, such as m, s, c, φ, 

and σc; and γp
*
 is the critical deviatoric plastic strain from 

which the residual behavior is first observed and should be 

identified through experimentation. The subscripts p and r 

represent the peak and residual values, respectively. ψp and 

ψ4 are the peak and residual values of the dilation angle of 

the rock, respectively; γp is the softening parameter. When 

γp
*
=∞ and γp

*
=0, the elastic-plastic model and elastic-brittle-

plastic model are retrieved, respectively. 

 

2.3 Failure criterion 
 

The following failure criterion is adopted by 

( , , ) ( , )r p r r pF H         
 

(4) 

where, σθ and σr are the radial and circumferential principal 

stresses, respectively. 

For H-B failure criterion, H can be expressed as 
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(5) 

where, σc is the uniaxial compressive strength H-B of rock; 

m, s and a are the strength parameters of H-B criterion. 

For M-C failure criterion, H can be expressed as 

( , ) ( ( ) 1) ( )      r p p r pH N Y
 

(6) 

where N and Y are strength parameters defined in terms of 

friction angle φ(γp) and cohesion c(γp). 
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2.4 Critical supporting pressure 
 

When the internal supporting pressure is less than 

critical value pic, the plastic region occurs . For M-C and H-

B rock masses, pic can be calculated (Kennedy and Lindberg 

1978), respectively, as follows 
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when ap=0.5, the analytical solution of pic can be expressed 

as 
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(11) 

where 2 cos / (1 sin )p p p pY c    , 

(1 sin ) / (1 sin )p p pN     , and ( ) / 4p cpm  . When ap 

≠0.5, the solution of pic can be found numerically by using 

Newton-Raphson method. 

 

2.5 Flow rule 
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3
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The non-associated flow rule is used for determination 

of plastic strain. The relation between the radial and 

circumferential plastic strain increments can be expressed 

as 

( )p p

r pd k d    
 

(12) 

where, k(γp) is known as the coefficient of dilation and can 

be expressed as 
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If k(γp) = 1, no plastic volume change takes place when 

the plastic region develops. 
 

 

3. Solutions of stress and displacement 
 

3.1 Determination of plastic region 
 

Unlike other numerical approaches, in this study, radial-

increment-approach and stress solving technique are similar 

to the approach in Zou et al. (2017), while the total strain 

and displacement for each annulus can be obtained by finite 

difference method for each concentric annuls. The elastic 

strain increment can be calculated by use of Hooke’s law. 

Combining the plastic flow rule, the plastic strain 

increment, ( )

p

i  and ( )

p

r i , can be given by approximating 

the compatibility equation. Thus the total strain and 

displacement for each annulus can be obtained by finite 

difference method. 

 

3.2 Increments of stress and strain 
 

As shown in Fig. 2, the plastic zone is divided into 

concentric rings by radius. The increment of radius Δr, the 

inner radii of each annulus and the radial stress with M-C, 

H-B and general H-B failure criteria can be expressed, 

respectively, as follows (Zou et al. 2017). 
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From Eqs. (16), (17) or (18), the radial stress increment  

 

Fig. 2 Plastic region with a finite number of annuli 

 

 

at the jth annulus can be obtained as follows 

( ) ( ) ( 1)r j r j r j     
 

(19) 

It should be noted that the initial radial stress equals the 

critical supporting pressure, (0) icp  . Thus, 
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Then the circumferential stress increment can be stated 

as 
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(21) 

In order to calculate the strain increments and 

displacements, the strain-displacement relation and 

compatibility equation are given by 
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The strain components consist of elastic and plastic 

parts as follows. 
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So that equation (24) can be rewritten as 
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Approximating the differential Eq. (26) and using Eqs. 

(11) and (12), the following equation can be obtained. 
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where, ( ) ( ) ( 1)( ) / 2j j jr r r   , and 

( 1) ( 1) ( 1)(1 sin ) / (1 sin )j j jk       . Using Hooke’s law, 
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Corresponding ( )

p

r j  is then given by Eq. (12). The 

softening parameter can be updated as 
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Then the total strain at jth annulus is obtained as 
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Using strain-displacement relation, the displacement at 

r(j) can be 

 

 

( ) ( ) ( )j j ju r  
(31) 

Step by step, all displacements and stresses in plastic 

annuli can be obtained from the outmost annulus to the 

innermost one with the boundary conditions: ( )r n = pi and 

( )nu = 0u . GRC can be obtained by combining Eqs. (20) and 

(32), and the real plastic radius can be found by using linear 

interpolation. The flow chart for the sequence of the 

proposed approach is shown in Fig. 3. 
 

 

4. Verification and application 
 

4.1 Verification 
 

In order to validate the proposed approach, results with 

the proposed approach and those in Brown et al. (1983), 

Park et al. (2008) and Lee and Pietruszczak (2008) are 

compared (as shown in Fig. 4.). The rock properties 

appearing in Lee and Pietruszczak (2008) are as follows: 

b=3 m, E=5700 MPa, v=0.25, σcp=30 MPa, σcr=25 MPa,  
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Fig. 3 Flow chart of the sequence of calculations 
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(a) For H-B and M-C criteria 

 
(b) For generalized H-B criterion 

Fig. 4 GRC using different approaches for different 

failure criteria 
 

 

Fig. 5 Convergence-confinement curve with field 

measuring data 
 

 

p0=15 MPa, mp=2.0, mr=0.6, sp=0.004, sr=0.002, ap=0.5, 

ar=0.5, ψp=15
◦
, ψr=5

◦
, γp

*
=0.01. To compare the results 

based on the generalized H-B and M-C failure criterion, the 

technique of equivalent M-C and generalized H-B strength 

parameters was adopted and the equations for the friction 

angle (ϕ) and cohesive (c) are given by Hoek et al. (2002). 

Then, for M-C failure criterion, the strength parameters are 

as follows: cp=2.52 MPa, φp=26.36
◦
, cr=1.52 MPa, 

φr=16.57
◦
. 

GRCs are illustrated for M-C and H-B failure criteria in 

Fig. 4, respectively. It can be seen from Fig. 4 that the 

results of the proposed approach are in well agreement with 

those of Lee and Pietruszczak (2008). For H-B failure 

criterion, the displacements in Park et al. (2008) and Brown 

et al. (1983), (u/b)(2G)/(p0−pic), are respectively 29.5% and 

67.5% lower than that of the proposed approach; the 

displacement in Lee and Pietruszczak (2008) 0.9% lager 

than that in the proposed procedure when the internal 

supporting pressure pi=0. 

For M-C failure criterion, the displacement at the tunnel 

wall are 20.6% lower than that for H-B failure criterion by 

using the equivalent parameter values as the internal 

supporting pressure is 0. Meanwhile, the displacements in 

this study and Lee and Pietruszczak (2008) are the same 

value, 9.99. For generalized H-B failure criterion, the 

results in Fig. 4(b) are in agreement with those in Lee and 

Pietruszczak (2008). When ap=ar=0.5, the generalized H-B 

failure criterion becomes H-B failure criterion and the same 

results are shown in Fig. 4(a). 

 

4.2 Application of design 
 

To confirm the validity and accuracy of the proposed 

approach, the results of the proposed approach and field 

measuring data in Hanlingjie tunnel are compared. Basic 

information of Hanlingjie tunnel can be seen in Zou et al. 

(2017). According to the geological investigation, 

laboratory experiments and inverse calculation, the basic 

parameters of surrounding rock are obtained by the local 

test and shown as follows: b=5.5 m, E=4 GPa, v=0.35, 

p0=4.8 MPa, σcp=10 MPa, σce=6 MPa, mp=2.23, sp=0.0013, 

ap=0.51, mr=0.86, sr=0.0002, ar=0.52, ψp=13
◦
, ψr=5

◦
, 

γp
*
=0.008. Based on these parameters, the convergence-

confinement results of the proposed approach and field 

measurement data are shown in Fig. 5. It can be observed 

that the results in the proposed approach and Lee and 

Pietruszczak (2008) are basically consistent with field 

measurement data. 
 
 

5. Numerical calculation and discussion 
 

5.1 Influence of annulus number n 
 

(1) For H-B criterion 

To investigate the influence of annulus number n on the 

results of the proposed approach, an elastic-brittle-plastic 

analysis is performed. In this analysis, the closed solutions 

in Park and Kim (2006) are compared to the results of the 

proposed approach. The rock properties appearing in Park 

and Kim (2006) are taken as input data: b=5 m, p0=30 MPa, 

pi=5 MPa, E=5 GPa, v=0.25, σcp=σcr=30 MPa, mp=1.7, 

sp=0.0039, mr=1.0, Sr=0.0. Two dilation angles, ψ=0
°
 and 

ψ=30
°
, are adopted to investigate the effect of plastic 

volume change. Since the differences is slight, three 

different annulus numbers, n=20, 100 and 500, are 

considered in both situations. The results are shown in Figs. 

6 and 7. 

It can be seen from Fig. 6 that the larger annulus number 

n is, the more accurate the solutions are; and the maximum 

displacement difference occurs on the excavation surface, 

r/b=1. When ψ=0
°
, for n=500 the difference is 0.25%. When 

ψ=30
°
, for n=500 the difference  is 0.70%. This indicates 

that the dilation angle lowers the accuracy of the 

displacement. 
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(a) ψ=0
°
 

 

(b) ψ=30
°
 

Fig. 6 Displacements for different annulus number n in 

M-C rock mass 

 

 

(a) ψ=0
°
 

 

(b) ψ=30
°
 

Fig. 7 Displacements for different annulus number n in 

H-B rock mass 

 

(a) ψp=ψr=5
°
 

 

(b) ψp=ψr=0
°
 

Fig. 8 GRC for different procedures using different 

dilation angles 

 

 

(2) For M-C criterion 

To investigate the influence of annulus number n for M-

C criterion, a set of data appearing in Lee and Pietruszczak 

(2008) are employed as input data. The data are b =5 m, 

p0=3 MPa, pi=0 MPa, E=10 GPa, υ=0.2, φp=30
°
, φr=26

°
, 

cp=0.5 MPa, cr=0.2 MPa. The same as H-B rock mass, two 

dilation angles, ψ=0
°
 and ψ=30

°
, are adopted to study the 

effect of the plastic volume change. Three annulus numbers, 

n = 20, 100 and 500, are applied here for both conditions. 

The results are shown in Fig. 7. 

It can see form Fig. 7 that the annulus number n has 

larger effect on the displacements in the plastic region when 

the rock mass is more dilatant. When ψ=0
°
, for n=500 the 

maximum difference is 0.31%. When ψ=30
°
, for n=500 the 

maximum difference is 1.03%. This means that the 

calculated displacements are close enough to exact ones. 

 

5.2 Influence of dilation on GRC between different 
approaches 
 

There are several studies for the strain softening model 

in Hoek-Brown rock mass, including Brown et al. (1983), 

Lee and Pietruszczak (2008), and Park et al. (2008). 

Dilation is a significant factor influencing the results of the 

proposed procedures. Therefore, the GRC in this studies are 

compared using different dilation angles. A set of data in 

Section 4.1 are employed. But two sets of dilation angles 

are adopted here: (1) ψp=ψr=5
°
, (2) ψp=ψr=0

°
. The results 

are shown in Fig. 8. 
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Fig. 8 shows that the results of the proposed approach 

are in well agreement with those in Lee and Pietruszczak 

(2008). When ψp=ψr=5
°
, the displacements in Park et al. 

(2008) and Brown et al. (1983) are 11.9% and 67.2%, 

respectively, lower than the displacement in this study as 

pi=0. The displacement in Lee and Pietruszczak (2008) is 

0.2% larger than the displacement in this study as pi=0. 

When ψp=ψr=0
°
, the displacements in Park et al. (2008) 

and Brown et al. (1983) and are 1.6% and 61.6%, 

respectively, lower than the displacement in this study as 

pi=0. The displacement in Lee and Pietruszczak (2008) is 

0.2% larger than the displacement in this study as pi=0. It 

should be noted that when ψp=15
°
 and ψr=5

°
  in Section 

4.1, the difference between the displacements in Park et al. 

(2008) and this study is 29.5%. When ψp=ψr=5
°
, the 

difference decreases into 11.9%. When ψp=ψr=0
°
, the 

difference decreases into 1.6%. While the differences of the 

solutions between Brown et al. (1983), Lee and 

Pietruszczak (2008) and this study are relatively stable. It 

can be summarized that the dilation has a significant 

influence on Park et al. (2008) solutions. 

 

5.3 Discussion on the calculation efficiency 
 

The proposed procedure is programmed into a Matlab 

code. When the code is executed on a desktop computer 

with Core i5 CPU of 3.1 GHz clock speed, the runtime 

required to get each solution(displacement) presented in 

Section 5.1 is only 14.4 ms for n=500. Whereas, Lee and 

Pietruszczak (2008) spends 15.3 ms when applying their 

approach by using the same parameters. We can see that the 

procedure in this study is 6% faster than Lee and 

Pietrucszczak’s (2008). The difference lies in the different 

stress computation speed though the approach of this study 

and Lee and Pietruszczak (2008) use the same means to 

obtain the strain. The procedure in this study obtains the 

analytical stress solutions. However, Lee and Pietrucszczak 

(2008) used the finite difference method to get stress 

solutions. The proposed procedure is also 8% faster than 

that in Lee and Piertruszczak(2008) when calculating GRC. 

Nevertheless, it is more complex to obtain the plastic radius 

using the proposed procedure. Due to the extensive 

application of GRC, the complicacy is acceptable and the 

proposed procedure is rather economical. 
 

 

6. Conclusions 
 

A new numerical procedure is proposed for calculating 

the stresses and displacements of a circular opening. In the 

proposed procedure, the plastic region is divided into a 

finite number of concentric annuli, whose thickness is 

uniformly determined by a small radius increment. The 

stresses for each annulus can be obtained analytically. The 

strain increments for each annulus can be calculated 

numerically from the finite difference approximation of the 

compatility equation by invoking the flow rule and Hooke’s 

law. By assuming different plastic radii, GRC and the 

evolution curve of plastic radii and internal supporting 

pressures can be obtained conveniently. Then the real 

plastic radius can be calculated by using linear interpolation 

in the evolution curve. 

Some numerical and engineering examples are 

performed to demonstrate the accuracy and validity of the 

proposed procedure. 
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