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1. Introduction 
 

Studying the coupled vibration of pile-soil interaction 

systems is of great significance for geomechanics, soil 

dynamics and civil engineering. In recent decades, more 

attention has been directed to the dynamic vibration of piles 

embedded in soil subjected to vertical excitation(Han Das 

2011, Biswas 2013, Sinha 2015). In the dynamic system of 

pile-soil interaction, a number of simplified models have 

been developed by researchers, which require less 

numerical consumption compared with the FE models in 

frequency domain. The Winkler model has been extensively 

employed due to its simplicity, in which soil layers are 

represented by equivalent spring-dashpot elements (Shadlou 

2014). However, the Winkler model has limitations when 

describing the mechanisms associated with wave 

propagation within the pile-soil system (Nogami 1987, Han 

1992, Anoyatis 2012). Novak et al. (1978) presented a 

plane-strain model and considered the soil as a series of 

linear visco-elastic thin layers with hysteretic-type 

damping. In fact, the wave propagation in the horizontal 

direction is not considered in the plane strain model. 

Subsequently, Mylonakis (2001) investigated possible  
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reasons for unsatisfactory performance of Novak's model. 

Thus, Hu et al. (2004)
 
extended the pile-soil system by 

accounting for both the radial and vertical displacement of 

the surrounding soil layer, in which the surrounding soil is 

modeled as a three-dimensional axisymmetric continuum. 

Wu et al. (2014, 2016)
 
developed a new pile-soil model to 

take account of the wave propagation effect based on a 

fictitious soil pile method. Furthermore, the effect of liquid-

saturated media on the pile-soil interaction has been 

investigated by several researchers (Fattah 2017). Zhou et 

al. (2009), Zheng et al. (2015)
 
and Cai and Hu (2010) 

examined the dynamic behavior of a foundation in a 

saturated media subjected to transient vertical loading by 

adopting Biot’s theory. Based on the theory of porous 

media, proposed by De Boer et al.(1990), some substantial 

developments have also been made by Liu et al.(2009), 

Yang and Pan (2010) and Cui et al. (2016, 2018). 

The soil surrounding the pile in the above studies of the 

pile-soil system is assumed to be a radially homogeneous 

medium. In practice, however, there may exist a disturbed 

zone in the soil with radial inhomogeneity immediately 

surrounding the pile due to construction disturbance (Novak 

1990, Dotson 1990, Vaziri 1993, Ghazavi 2013). Novak and 

Sheta (1980) investigated the vertical and torsional 

vibration of a footing in radially inhomogeneous soil by 

developing a simple massless boundary zone model. 

Subsequently, Veletsos and Dotson (1986, 1988) proposed 

an extended boundary zone model accounting for the inertia 

effect of the mass and investigated the vertical and torsional 

vibration of foundations in this weakened inhomogeneous 

media. In order to eliminate the wave reflection from the 

interface with the boundary zone, Han and Sabin (1995) 
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proposed a simplified model for this weakened boundary 

zone without any reflective effect, in which the material 

modulus and damping coefficient were assumed to vary 

parabolically. In addition, EI Naggar (2000) proposed a 

method of investigating the strengthening effect on the 

complex stiffness function of the soil layer by dividing the 

boundary zone into concentric annular sub-zones. However, 

Yang et al. (2009) found that EI Naggar’s model had 

limitations when estimating the complex stiffness, which 

assumed each sub-zone to be modeled as multiple springs 

connected in series. Hence, Wang et al. (2012) proposed a 

new model to consider the continuity of displacement and 

stress at the sub-zone interface by combining it with the 

complex stiffness method. Subsequently, Li et al. (2016)
 

extended Wang’s model to analyze the vertical vibration of 

a large-diameter monopile in radially inhomogeneous 

material.  

Recently, different types of pipe piles have been 

extensively applied in civil engineering. Unlike solid piles, 

both the effects of the outer and inner soil on the pile shaft 

should be considered to analyze the dynamic interaction 

behavior of the pile and soil. Some substantial 

developments of piles embedded in radially homogeneous 

soils have been made by some investigators. For example, 

Ding et al.(2011) derived an analytical solution for the 

vibration characteristics of large-diameter pipe piles in a 

visco-elastic soil under vertical excitation. This was used to 

investigate the effect of vibratory modes on the high-

frequency wave components of low strain testing 

considering the material damping as viscous type. 

Subsequently, Zheng et al. (2016a, b) derived an analytical 

solution for the vertical dynamic response along the cross-

section of pipe piles in homogeneous visco-elastic soil 

accounting for the three-dimensional wave effect and 

viscous-type damping. Moreover, Ding et al. (2014, 2015) 

proposed a new model to describe the wave propagation in 

a large-diameter pipe pile under an axial point load by using 

Winkler's model with a viscous-type damping in the 

surrounding soil. As for studies on the dynamic behavior of 

pipe piles in radially homogeneous soil, Li et al. (2017) 
 

derived an analytical solution for the dynamic impedance at 

the head of large-diameter pipe piles in a soil with radial 

inhomogeneity by using a hysteretic-type damping model.  

It is noted that most of the aforementioned studies 

employ hysteretic-type damping to represent the material 

damping, which is independent of frequency, and it has 

limitations in describing the dynamic response of related 

problems subjected to non-harmonic loads in the time 

domain. In contrast, the viscous-type damping is suitable 

for describing the dynamic response of pile vibrations 

subjected to generalized modes of dynamic load in the time 

domain(Nogami 1976, Militano 1999). 
Based on an extensive review of the literature, it is 

evident that little work has been devoted to the dynamic 
response of pipe piles in a visco-elastic soil with radial 
inhomogeneity accounting for viscous-type damping. The 
main purpose of this paper is to propose a new mechanical 
model for the vertical dynamic response of a pipe pile 
considering the radial inhomogeneity of longitudinally 
layered visco-elastic soil by extending Novak’s plane-strain 
model and complex stiffness method based on viscous-type 

damping. In addition, the corresponding analytical solutions 
for the dynamic impedance, the velocity admittance and the 
reflected signal of the wave velocity at the pile head are 
determined and verified by the comparison with existing 
solutions. An extensive parametric analysis has also been 
performed to discuss the effects of shear modulus, viscous 
damping coefficient, the coefficient of degree of 
disturbance, the weakening or strengthening range of the 
surrounding soil and the longitudinal soft or hard 
interbedded layer on the velocity admittance and the 
reflected signal of the wave velocity at the pile head. 
 

 

2. Mechanical model 
 

The following assumptions are employed in this paper. 

(1) The pile is linear elastic with a circular cross-section 

and the soil beneath the pile toe is simplified as a Kelvin-

Voigt model. 

(2) The outer surrounding soil of the interaction system 

consists of two annular zones, an inner disturbed zone and 

an outer undisturbed zone with semi-infinity.  

(3) The inner annular zone of disturbed soil is divided 

into a series of sub-zones. For a given layer, the soil 

properties within different annular sub-zones are radially 

inhomogeneous. 

(4) The frequency-dependent viscous-type damping is 

used to describe the inside and outside soil of pipe pile. 

The plug effect is not considered in the model, which is 

suitable for cast-in-situ pipe pile. 

The deformations of the pile and surrounding soil are 

small. The equilibrium of shear stress and the continuity of 

displacement are both satisfied at the interfaces between 

pipe pile, adjacent annular zones and sub-zones of the 

surrounding soil. 

The mechanical model of the pile-soil interaction system 

is shown in Fig. 1(a) and 1(b). The pile-soil system is 

divided into m layers or segments numbered 1, 2, . . ., i, . . ., 

m from the toe of the pile to the pile head. The thickness of 

the ith soil layer is li, and the depth of the upper interface of 

the ith soil layer is hi. The inner and outer radius of the ith 

pile segment are ri0, ri1, respectively. The radius and radial 

thickness of the disturbed zone within the ith soil layer are 

ri(n+1) and bi, respectively. The inner disturbed zone is 

subdivided into n concentric sub-zones numbered 1, 2, ..., j , 

..., n along the radial direction. The radius of the interface 

between the (j-1)th and jth sub-zones within the ith soil 

layer is represented by rij.  

The undisturbed zone of the surrounding soil is 

homogeneous, isotropic and visco-elastic with viscous-type 

damping. Within the disturbed zone of the ith layer, Gij(r) 

and ηij(r) are given by the expressions (1) and (2). 
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where Gij, ηij are the shear modulus and viscous damping 

coefficient of the jth annular sub-zone within the ith layer, 

respectively. fi(r) denotes the parabolic variation of the 

material properties within the disturbed zone of the ith layer 

(Han 1995, EI Naggar 2000, Wang 2012). The shear 

modulus and viscous damping coefficient of each sub-zone 

are considered to be homogeneous, and can be determined 

by Eqs. (1) and (2). 

The mechanical coefficients of the Kelvin-Voigt model 

are represented by δp and kp,. The uniform distributed 

excitation at the pile head is denoted by p(t). 

Based on Novak’s plane-strain model (Novak 1978), the 

governing equation for the jth inner annular sub-zone of 

disturbed zone within the ith layer of outer soil is given by 

Eq. (3).  

1 1 1
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(3) 

where uij
S1

(r,t) represents the vertical displacement of the 

jth annular sub-zone within the ith layer of the disturbed 

soil. Gij, ηij and ρij denote the shear modulus, the viscous 

damping coefficient and the mass density of the jth annular 

sub-zone within the ith layer of the disturbed zone, 

respectively. 

Similarly, the governing equation for the ith layer of 

inside soil can be expressed as  
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(4) 

where  tru
S

i ,0 denotes the vertical displacement of inner 

soil within the ith layer. ρi0, Gi0 and ηi0 are the mass density, 

the shear modulus and the viscous damping coefficient of 

the ith layer of inner soil. 

The governing equation for the ith pile segment is 

expressed as  

 

 

0 12 2
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(5) 

where ui
p
(z,t) denotes the vertical displacement of the ith 

pile segment. ρi
P
, Ei

P
 and Ai

P
 are the mass density, the 

Young’s modulus and the cross-sectional area, respectively, 

of the ith pile segment. 0S

if  and 0S

if are the shear stresses 

exerted by the inner soil and surrounding soil on the ith pile 

segment, respectively. 

The following assumptions are also used in this paper. 

The displacement continuity and shear stress 

equilibrium at the interface between the pile shaft and the 

inner soil are written as  

 0

0 0( , ) ,
S P

i i i iu r t u r t
 

(6a) 

 0 0

0i

S S

i i r rf r 
 

(6b) 

The displacement at the outermost zone of the outer soil 

diminishes at infinity within the ith layer can be expressed 

as  

 
1

1
lim ( , ) 0

S

i n
r
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(7) 

The displacement continuity and shear stress 

equilibrium conditions at the interface between the pile 

shaft and the surrounding soil are given as  

 1

1 1 1( , ) ,
S P

i i i iu r t u r t
 

(8a) 
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11 i
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(8b) 

The boundary condition at the pile head is 

0
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( )

P

P P m

m m

z

u z t
E A p t

z






 

(9) 

where Em
p
 and Am

p
 are the Young’s modulus and the cross-

sectional area of the mth pile segment, respectively. 

The boundary condition at the pile toe is 

  
(a) (b) 

Fig. 1 Mechanical model 
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(10) 

where E1
p
 and A1

p
 are the Young’s modulus and the cross-

sectional area of the first pile segment, respectively. 

 

 

3. Solutions of the governing equations 
 

3.1 Vibration of the surrounding soil 
 

Applying the Laplace transform to Eq. (3) yields 
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(11) 

where 1 ( , )
S

ijU r s is the Laplace transform of 1 ( , )
S

iju r t . 

After rearranging the terms in Eq.(11), then Eq.(12) is 

obtained as 
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. 

The general solution of Eq.(12) can be obtained as 
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(13) 

where 1

0 ( )
S

ijI q r  and 1

0 ( )
S

ijK q r  are the modified Bessel 

functions of the first and second kinds of zero order, 

respectively. 
1S

ijA  and 
1S

ijB  are undetermined coefficients. 

According to the boundary conditions and the continuity of 

displacement at the interfaces between sub-zones, the 

recursion formula of the vertical stiffness can be easily 

given by  
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, 

the corresponding derivation for 1S

ijKK  is expressed in the 

Appendix I. 
 

3.2 Vibration of the inner soil 
 

Applying the Laplace transform to Eq. (4) yields 
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(15) 

where 0 ( , )
S

iU r s is the Laplace transform of 0 ( , )
S

iu r t . 

After rearranging the terms in Eq.(15), then Eq.(16) is 

obtained as 
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The general solution of Eq. (16) is given by  
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(17) 

where 0S

iA  and 0S

iB are undetermined coefficients. 

The displacement of inner soil is a limited value if r=0, 

namely,   
0

,0

r

S

i tru . Hence, 0S

iA =0. 

Then, Eq.(17) can be reduced to 
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(18) 

Applying the Laplace transform to Eq. (6a) and 

combining with Eq. (18) leads to 
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(19) 

where Ui
P
(r,s) is the Laplace transform of ui

P
(r,s).  

 

3.3 Vibration of the pipe pile 
 

Performing the Laplace transform to Eq. (5) and 

combining with Eq.(14) and (19) gives 
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The general solution for Eq. (20) gives 
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where i i il  ,Ci
P
 and Di

P
 are undetermined coefficients. 

By using the recursion method of the transfer function, 

the complex impedance of the vertical displacement at the 

pile head is derived as  
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Zm
pʹ
 can be further rewritten as 

iP

m r iZ K K  
 

(23) 

where Kr and Ki denote the true stiffness and the equivalent 

damping, respectively. 
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The corresponding derivation for the complex 

impedance of the vertical displacement is expressed in the 

Appendix II.  

The frequency response function of the vertical 

displacement at the pile head can be easily given by  
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Given s=iω (i
2
=-1), the frequency response function of 

the vertical velocity at the pile head can obtained as  
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where Hv
ʹ
 is a dimensionless frequency response function of 

the vertical velocity at the pile head,
P P P

m m mV E  , cT  ,
P

c mT H V , m m

P

mt l V , m m ct t T . 

Taking a transient semi-sine wave (0≤t≤T) as the 

transient excitation applied on the pile head, the time-

domain function of the velocity response at the pile head 

can be derived by inverse Fourier transform 

max 2 2 2

p p p

max

p p p

( ) IFT[ ( ) ( )]

1 T
IFT[- (1 )]

v

i T

v

v

g t P i H i

Q H e
A V T

Q
V

A V



 



  





 

 


 

 

(26) 

where  2 2 2
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T
H eV e d
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 ; Qmax and T are 

the excitation amplitude and impulse width, respectively; 

Tʹ=T/Tc denotes the dimensionless impulse width; P(iω) is 

the Fourier transform of p(t).  
 

 

4. Results and discussions 
 

In this section, numerical results are presented to 

demonstrate the validity of the obtained analytical solutions 

and to investigate the vertical dynamic response of a pipe 

pile embedded in longitudinally layered visco-elastic soil 

with radial inhomogeneity. It is observed that stable 

solutions can be derived if the number of the annular sub-

zones n >10, by EI Naggar (2000) and Wang et al. (2012). 

To accurately describe the variation of radial inhomogeneity 

and reduce wave reflection from the interfaces of adjacent 

sub-zones, the number of the annular sub-zones n is taken 

as 20 in the following analyses. It follows the assumption 

that the shear velocity Vij varies linearly from the outer 

undisturbed zone to the first sub-zone of the disturbed zone 

along the radial direction for the ith layer. Hence, the 

corresponding soil shear modulus Gij=Vij
2
 ρij changes in a 

quadratic sense. The variation in the viscous damping 

coefficient ηij is also assumed to change quadratically from 

the outer undisturbed zone to the first sub-zone of the 

disturbed zone along the radial direction within the ith layer. 

In addition, the coefficient of degree of disturbance within 

the ith layer ξi is defined as 

)1(1)1(1   niiniii GG  =Vi1/Vi(n+1) (27) 

Unless otherwise specified, the following parameter 

values are used: ri0=0.38 m, ri1=bi=0.5 m, ρi
P
=2500 kg/m

3
, 

Ei
P
 =25 GPa; H=6 m, kp=1000 kN/m

3
, δp=100 kN.s/m

2
, 

ρij=2000 kg/m
3
, Vi(n+1)=50 m/s, ηi(n+1)=10 kN.s/m

2
, ξi =2.0, 

m=5, n=20. The shear modulus Gi0 and the viscous damping 

coefficient ηi0 of the inner soil are identical with the 

corresponding parameters of the first annular sub-zone 

within the ith layer. 

 

4.1 Comparison with existing solutions 
 

The complex impedance solution expressed in Eq.(23) 
can be reduced to describe the vertical vibration of a pipe 
pile in homogeneous soil by setting qi→1. Therefore, based 
on the same parameters, the solution of Zm

Pʹ
 can be verified 

by comparing it with the existing solution of Ding et al. 
(2009). It is illustrated in Fig. 2 that the present solution of 
complex impedance with different values of pile length H is 
in very good agreement with that proposed by Ding et al. 
(2009). The solution of Zm

Pʹ
 can also be reduced to describe 

the vertical vibration of a solid pile embedded in radially 
inhomogeneous soil by setting ri0→1. It is noted that a 
viscous-type damping is adopted for the present solution, 
which is different from the hysteretic-type damping used for 
the solution of Yang et al. (2009). To perfectly match the 
parameters, the effect of material damping is not considered 
in the following comparison with the existing solution of 
Yang et al. (2009)

 
as shown in Fig. 3. It is clear that the 

present solution with different values of pile length H 
agrees well with the solution of Yang et al. (2009). 
Therefore, the accuracy of the present solution is validated 
with these independent comparisons.  
 

4.2 Parametric study and discussion 
 

4.2.1 Effect of disturbance degree for radial 
inhomogeneity 

The surrounding soil of pipe pile is radially 
inhomogeneous due to construction disturbance. The 
coefficient of degree of disturbance within the ith layer ξi 
(i=1, 2, ... , 5) is defined by Eq. (27). It is indicated that the 
soil layer is weakened due to construction disturbance 
within the disturbed zone if ξi<1. While, the soil layer is 
strengthened within the disturbed zone if ξi>1. Different 
coefficients of degree of disturbance corresponding to 
weakening cases W1-W4 are given in Table 1. In particular, 
case W4 indicates that the surrounding soil is radially 
homogeneous without construction disturbance. Fig. 4 
shows the effect of soil weakening within the disturbed 
zone due to construction disturbance corresponding to cases 
W1-W4 listed in Table 1. It can be observed that the degree 
of weakening of the surrounding soil due to construction 
disturbance has an obvious effect on the dynamic response 
at the pile head. Specifically, with the degree of weakening 
of the disturbed zone increasing, the oscillation amplitudes 
and resonance frequencies of the velocity admittance, and 
the amplitudes of the reflected signal increase. 
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(a) True stiffness (b) Equivalent damping 

Fig. 2 Comparison of the complex impedance in reduced form (qi→1) with the solution in Ding et al. (2009) 

  
(a) True stiffness (b) Equivalent damping 

Fig. 3 Comparison of the complex impedance in reduced form (ri0→0) with the solution in Yang et al. (2009) 

  
(a) Velocity admittance (b) Reflected signal 

Fig. 4 Effect of soil weakening on the dynamic response at the pile head 

  
(a) Velocity admittance (b) Reflected signal 

Fig. 5 Effect of soil strengthening on the dynamic response at the pile head 
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Table 1 Coefficients of degree of disturbance corresponding 

to weakening cases W1-W4 

Case ξ1 ξ2 ξ3 ξ4 ξ5 

W1 0.60 0.55 0.50 0.45 0.40 

W2 0.80 0.75 0.70 0.65 0.60 

W3 1.0 0.95 0.90 0.85 0.80 

W4 1.0 1.0 1.0 1.0 1.0 

 

Table 2 Coefficients of degree of disturbance corresponding 

to strengthening cases S1-S4 

Case ξ1 ξ2 ξ3 ξ4 ξ5 

S1 1.0 1.0 1.0 1.0 1.0 

 

 

 

 

Different coefficients of degree of disturbance 

corresponding to the strengthening cases S1-S4 are given in 

Table 2. The coefficients of degree of disturbance for a 

homogeneous surrounding soil are applied in case S1. The 

effect of soil strengthening within the disturbed zone due to 

construction disturbance corresponding to cases S1-S4 is 

depicted in Fig. 5. It can be observed that the dynamic 

response at the pile head depends significantly on the 

degree of strengthening of the surrounding soil due to 

construction disturbance. In contrast, with the degree of 

strengthening of the disturbed zone increasing, the 

oscillation amplitudes and the resonance frequencies of the 

velocity admittance, and the amplitudes of the reflected 

signal decrease. 

  
(a) Velocity admittance (b) Reflected signal 

Fig. 6 Effect of the weakening zone of the surrounding soil on the dynamic response at the pile head 

  
(a) Velocity admittance (b) Reflected signal 

Fig. 7 Effect of the strengthening zone of the surrounding soil on the dynamic response at the pile head 

  
(a) Velocity admittance (b) Reflected signal 

Fig. 8 Effect of longitudinal interbedded layer on the dynamic response at the pile head 
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4.2.2 Effect of disturbance zone for radial 
inhomogeneity 

Fig. 6 shows the effect of the weakening zone of the 

construction disturbance on the velocity admittance and the 

reflected signal of wave velocity at the pile head. The 

corresponding coefficients of degree of disturbance for an 

inhomogeneous surrounding soil are applied in case W1. 

The weakening zone of the surrounding soil bi(i=1, 2, ... , 5) 

is taken as the values proportional to the outer radius ri1 of 

the pipe pile, in which bi=0 means that the surrounding soil 

is homogeneous in the radial direction. It can be seen that 

the oscillation amplitudes of the velocity admittance and the 

reflected signal increase with an increase in the weakening 

zone of the surrounding soil. In contrast, the change in the  

resonance frequencies of the velocity admittance can be 

pactically ignored when bi is increasing. Furthermore, the 

more the weakening zone of surrounding soil, the 

corresponding effect on the dynamic response is less at the 

pile head. 

Fig. 7 shows the effect of the strengthening zone of the 

surrounding soil on the velocity admittance and the 

reflected signal of wave velocity at the pile head. The 

corresponding coefficients of degree of disturbance for an 

inhomogeneous surrounding soil are applied in case S4. 

This indicates that the oscillation amplitudes of the velocity 

admittance and the reflected wave signal increase with a 

decrease in the strengthening zone of the surrounding soil. 

In contrast, the effect of the strengthening zone on the 

resonance frequencies of the velocity admittance can also 

be practically ignored. In addition, the larger the 

strengthening zone of the surrounding soil, the 

corresponding effect on the dynamic response is less at the 

pile head. 
 

4.2.3 Effect of longitudinal interbedded layer 
It is assumed that there exists a longitudinal interbedded 

layer (e.g. layer 3) in which the shear wave velocity is 

different from that in the corresponding sub-zone of the 

other layers, that is, the velocity ratio of shear wave is 

defined as ijj VV3 (i=1, 2, 4, 5; j=1, 2, ... , 20). If λ<1, 

layer 3 is a soft interbedded layer compared with the other 

layers; if λ>1, then a hard layer exists. Fig. 8 shows the 

effect of longitudinal soft or hard interbedded layer on the 

velocity admittance and the reflected signal of the wave 

velocity at the pile head. It can be seen that the longitudinal 

soft or hard interbedded layers have little effect on the 

resonance frequency of the velocity admittance and the 

reflected wave at the pile head. In contrast, the oscillation 

amplitudes of the velocity admittance decrease with the 

increasing λ. Moreover, it is also shown that the signal 

phase of the reflected wave from the soft interbedded layer 

(λ<1) is identical to that reflected from the pile toe. As for 

the case with a hard interbedded layer (λ>1), the reflected 

wave signal from the interbedded layer displays an opposite 

signal phase to that reflected from the pile toe. 
 

 

5. Conclusions 
 

A new mechanical model for the vertical vibration of a 
pipe pile embedded in longitudinally layered visco elastic 

soil with radial inhomogeneity is proposed by extending 
Novak’s plain strain model and complex stiffness method to 
consider viscous-type damping. The corresponding 
analytical solutions for the dynamic impedance, the velocity 
admittance and the reflected signal of the wave velocity at 
the pile head are also derived and subsequently verified by 
comparing it with existing solutions.  

The results of an extensive parametric analysis are then 
presented to investigate the effects of shear modulus, 
viscous damping coefficient, coefficient of degree of 
disturbance, weakening or strengthening zone of the 
surrounding soil and longitudinal soft or hard interbedded 
layers on the velocity admittance and the reflected signal of 
wave velocity at the pile head. The parametric analysis 
show that: 

• with increasing elastic modulus of the pipe pile, the 
oscillation amplitudes and the resonance frequencies of 
velocity admittance increase, but the amplitudes of the 
reflected wave signal decrease; 

• the larger the viscous damping coefficient, the less the 
oscillation amplitudes and the resonance frequencies of the 
velocity admittance, and the amplitudes of the reflected 
wave signal become; 

• the oscillation amplitudes and the resonance 
frequencies of velocity admittance, and the amplitudes of 
the reflected wave signal decrease with an increase in the 
coefficient of degree of disturbance (strengthening or 
weakening); 

• the oscillation amplitudes of the velocity admittance 
and the reflected wave signal increase with an increase in 
the weakening zone and a decrease in the strengthening 
zone of the surrounding soil, respectively. Furthermore, the 
effect of the disturbance (strengthening or weakening) zone 
on the resonance frequencies of the velocity admittance can 
be practically ignored. 

The proposed model and obtained analytical solutions 
provide extensive scope of application, compared with the 
relevant existing solutions. The present solutions can also 
be reduced to analyze the vertical vibration problem of a 
solid pile in a visco-elastic soil with radial inhomogeneity 
and pipe piles embedded in radially homogeneous visco-
elastic soil described in previously related studies. In 
addition, the obtained solution can be conveniently further 
extended to investigate the vertical vibration problem of a 
pipe pile embedded in finite soil layers or in poro-visco-
elastic half-space, by combining it with different functions 
of complex stiffness of the soil beneath the pile toe. 
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Appendix I Derivation for computing KKij
S1

 
 

Performing the Laplace transform to Eq.(7) and 

substituting into Eq.(13) yields 
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The vertical shear stress of the undisturbed zone within 

the ith layer can be expressed as 
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Thus, the vertical complex stiffness at the interface 

between the disturbed zone and the undisturbed zone within 

the ith layer can be conveniently given by  
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The shear stress of the jth annular sub-zone within the 

ith layer is expressed as 
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Therefore, the vertical complex stiffness at the outer 

boundary (  1i j
r r


 ) of the jth sub-zone within the ith layer 

are written as the following form 
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Following a similar procedure as above, the vertical 

complex stiffness at the inner boundary ijrr  of the jth 

sub-zone within the ith layer is obtained by 
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Appendix II Derivation for computing Zi
p
 

 

The dynamic impedance function of the vertical 

displacement at the pile toe is written as the following 

expression 
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where h0=H. 

Thus, the dynamic impedance of the vertical 

displacement at the pile head of the first pile segment is 

expressed as  
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Combining Eq. ( AP2-1) and (AP2-2) yields 
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. 

Similarly, the dynamic impedance function of the 

vertical displacement at the pile head of the ith pile segment 

is written as 
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where 
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