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1. Introduction 
 

Within a built-up environment, the construction safety 

of a deep excavation becomes more crucial with the ever-

increasing building density. It is of vital importance to 

predict and control the ground movement of a deep 

excavation during construction to ensure the minimal 

structural damage to nearby buildings and utilities. For 

excavations in ground that comprises of thick soft clays 

overlying stiff clay,braced walls are usually used to 

minimize ground movements. It is common to extend the 

wall 

length into the stiff clay layer to prevent basal heave 

failure and to reduce the movement of the wall toe. To 

ensure the serviceability limit state is satisfied, a common 

design criterion is to limit the maximum wall deflection to a 

fraction of the excavation depth, typically in the range of 

0.5% to 1.5% of He. Unnecessarily severe restrictions may 

lead to uneconomic design. Therefore, reliable estimates of 

wall deflections under working conditions are essential.  

Numerical tools such as the finite element method are 

increasing being used to analyze deep excavation problems. 

They can provide a better understanding of soil behaviour 

during construction, verify the performance of complex  
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excavations through comparison with field observations, 

and even predict future responses. Nevertheless, accurate 

prediction of deformations induced by deep excavations 

using numerical approaches is still rather complicated for 

engineers since apart from modelling the actual 

construction sequence and wall system parameters, reliable 

information on selection of constitutive models and the 

appropriate soil parameters are also required. Although 

comprehensive laboratory and field tests can be conducted, 

there are still some difficulties in the precise determination 

of some of the soil parameters such as the soil stiffness 

because of sample disturbance and testing errors. 

Furthermore, even with well-measured soil parameters, the 

estimated performance may still deviate from the field 

observation as a result of the inherent spatial variability and 

inadequacy of the simulation model itself (Zhao et al. 

2015). Therefore inverse analysis can play a vital role to 

estimate the relevant soil parameters for more reliable 

predictions of the expected wall and ground movements that 

are induced during excavation. Inverse analysis involves 

utilizing field measurements in order to obtain soil material 

parameters in contrast to the conventional forward 

approach. A forward analysis starts with the determination 

of a constitutive model and its associated parameters 

derived from laboratory and field testing or empirical 

relationships. These parameters are then adopted as inputs 

for numerical analysis to predict stresses, strains, 

displacements, etc. Previous applications of inverse 

analyses in geomechanics for soil parameter identification 
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include Gioda (1985), Zentar et al. (2001), Lecampion et al. 

(2002), Calvello and Finno (2004), Finno and Calvello 

(2005), Miranda (2007), Levasseur et al. (2008), Rechea et 

al. (2008), Yan et al. (2009), Papon et al. (2011), Chiu et al. 

(2012) and Moreira et al. (2013). Optimization algorithms 

including the gradient based, artificial neural networks and 

the genetic algorithms are commonly adopted to derive 

these parameters. 

When applying inverse analysis techniques to study the 

behaviour of an actual supported excavation, concerns arise 

about the proper representation of the real system, as well 

as the efficiency of the inverse analysis technique and its 

ability to find a unique set of parameters for a particular 

geological subsurface. Inverse analyses of supported 

excavation systems has been carried out by a number of 

researchers including Ou and Tang (1994), Calvello and 

Finno (2004), Finno and Calvello (2005), Levasseur et al. 

(2008), Levasseur et al. (2010), Hashash et al. (2010), 

Juang et al. (2013) and Moreira et al. (2013). 

Deep excavations in thick deposits of soft clay can cause 

excessive ground movements and result in damage to 

adjacent buildings. Numerical analysis using the finite 

element method to estimate wall deflections for braced 

excavations can often differ from the values measured in 

the field. This can be due to many uncertainties with regard 

to the true soil properties during the preliminary design 

phase. The use of inverse analysis based on field 

measurements of wall deflections is therefore a useful 

technique to infer the correct soil material response, which 

subsequently can be used to improve the numerical 

predictions for forward analysis of subsequent excavation 

stages and for future projects in similar soil conditions.  

Firstly a series of parametric studies were carried out 

using the plane strain finite element (FE) software Plaxis 

(Brinkgreve et al. 2006) in which the soft clay stress-strain 

behavior was modeled using the hardening small strain 

(HSS) constitutive relationship that considers the small 

strain effect. Analyses were carried out to examine the wall 

deflections with regard to a number of parameters including 

the excavation geometry, soil strength and stiffness 

properties, and the wall stiffness. Based on these results, a 

multivariate adaptive regression splines approach was 

developed for inverse parameter identification of the soil 

relative stiffness ratio. A second MARS model was also 

developed for inverse parameter estimation of the wall 

system stiffness, to enable designers to determine the 

appropriate wall size during the preliminary design phase. 

Soil relative stiffness ratios and system stiffness values 

derived via this MARS method were found to compare 

favourably with a number of field and published records.  
 

 

2. MARS methodology 
 

Similar with the traditional nonlinear regression 

modelling techniques (Zhang and Goh 2015a, Zhang et al. 

2015, Zhang et al. 2016, Zhang and Goh 2016, Ji et al. 

2016), MARS is nonlinear and nonparametric method for 

fitting the relationship between a set of input variables and 

dependent variables in high dimensional data (Friedman 

1991). The method adopts a divide-and-conquer strategy in  

 

Fig. 1 Knots and linear splines for a simple MARS example 
 

 

which the training data sets are partitioned into separate 

piecewise linear segments (splines) of differing gradients 

(slope). No specific assumption about the underlying 

functional relationship between the input variables and the 

output is required. The end points of the segments are called 

knots. A knot marks the end of one region of data and the 

beginning of another. The resulting piecewise curves 

(known as basis functions), give greater flexibility to the 

model, allowing for bends, thresholds, and other departures 

from linear functions. An open source code on MARS from 

Jekabsons (2010) is used in carrying out the analyses 

presented in this paper. 

The MARS model f(X), is constructed as a linear 

combination of basis functions (BFs) and their interactions, 

and is expressed as 

0

1
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M
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m
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(1) 

where each λm(X) is a basis function. It can be a spline 

function, or the product of two or more spline functions 

already contained in the model (higher orders can be used 

when the data warrants it; for simplicity, at most second-

order is assumed in this paper). The coefficients  are 

constants, estimated using the least-squares method. 

BFs are splines (smooth polynomials), including 

piecewise linear and piecewise cubic functions. For 

simplicity, only the piecewise linear function is expressed. 

Piecewise linear functions are of the form max(0,x−t) with a 

knot occurring at value t. The equation max(.) means that 

only the positive part of (.) is used otherwise it is given a 

zero value. Formally, 

,
max(0, )

0,

x t if x t
x t

otherwise

 
  

  

(2) 

Fig. 1 shows a simple example of how MARS would 

use piecewise linear spline functions to attempt to fit data. 

The MARS mathematical equation is expressed as 

 (3) 

where BF1 = max(0, 16 – x), BF2 = max(0, x – 10), BF3 = 

max(0, x – 5.5) and BF4 = max(0,  5.5 – x). The knots are 

located at x = 5.5, 10 and 16. They delimit four intervals 

where different linear relationships are identified. 
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MARS generates basis functions by searching in a 

stepwise manner. It searches over all possible univariate 

knot locations and across interactions among all variables. 

An adaptive regression algorithm is used for selecting the 

knot locations. MARS models are constructed in a two-step 

procedure. The forward phase adds functions and finds 

potential knots to improve the performance. This continues 

until the model reaches some predetermined maximum 

number of terms, resulting in a purposely overfitted model. 

Subsequently, to prevent overfitting, the backward phase 

prunes the least effective terms based on the Generalized 

Cross-Validation (GCV) method. The GCV equation is a 

goodness of fit test that penalizes large numbers of BFs and 

serves to reduce the chance of overfitting. For the training 

data with N observations, GCV for a model is calculated as 

follows (Hastie et al. 2009) 
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(4) 

in which M is the number of BFs, d is the penalizing 

parameter, representing a cost for each basis function 

optimization and is a smoothing parameter of the procedure. 

Larger values for d will lead to fewer knots being placed 

and thereby smoother function estimates. According to 

Friedman (1991), the optimal value for d is in the range 2 ≦ 

d ≦ 4 and generally the choice of d = 3 is fairly effective. In 

this study, a default value of 3 is assigned to the penalizing 

parameter d. N is the number of observations, and f(xi) 

denotes the predicted values of the MARS model. At each 

deletion step a basis function is removed to minimize Eq. 

(1), until an adequate fitting model is found. MARS is an 

adaptive procedure because the selection of BFs and the 

variable knot locations are data-based and specific to the 

problem at hand. 

The MARS modeling is a data-driven process. After the 

optimal MARS model is determined, by grouping together 

all the BFs that involve one variable and another grouping 

of BFs that involve pairwise interactions (and even higher 

level interactions when applicable), the procedure known as 

analysis of variance (ANOVA) decomposition (Friedman 

1991) can be used to assess the contributions from the input 

variables and the BFs through comparing (testing) variables 

for statistical significance. Previous applications of MARS 

algorithm in civil engineering can be found in Attoh-Okine 

et al. (2009), Lashkari (2012), Mirzahosseinia et al. (2011), 

Zarnani et al. (2011), Samui (2011), Samui and Karup 

(2011), Zhang and Goh (2013, 2014, 2015, 2016a, b), Goh 

and Zhang (2014), Goh et al. (2016, 2017), Zhang and Goh 

(2018), Goh et al. (2018). 
 

 

3. Finite element analyses 
 

The database used for the MARS analyses were based 

on plane strain finite element forward analyses of the 

maximum wall deflection for multi-strutted diaphragm 

walls as described in detail in Zhang et al. (2015). Fig. 2 

presents the cross-sectional soil and wall profile considered. 

The parameters that were considered were: excavation  

 

Fig. 2 Cross-sectional soil and wall profile 

 

 
(a) cu/σʹv = 0.25 

 
(b) cu/σʹv = 0.29 

 
(c) cu/σʹv = 0.34 

Fig. 3 Effect of soil stiffness on wall deflection for He = 

20 m (γ= 17 kN/m
3
, B = 30 m, T = 30 m) 
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Fig. 4 Effect of soil shear strength ratio on wall 

deflection for d = 1.2 m (γ= 17 kN/m
3
, B = 40 m, E50/cu = 

200, T = 30 m) 

 

 

width B; excavation depth He; soft clay thickness T; soil 

unit weight γ; the system stiffness ln (𝑆) [𝑆 = 𝐸𝐼 
𝑤

ℎ𝑎𝑣𝑔
4⁄ ), 

as defined in Clough and O’Rourke (1990), where E is the 

Young’s modulus of wall material, I is the moment of 

inertia of the wall section, γw is the unit weight of water, and 

havg is the average spacing of the struts]; the relative soil 

shear strength ratio cu/σʹv, where cu is the undrained shear 

strength and σʹv denotes the vertical effective stress; and the 

relative soil stiffness ratio E50/cu, where E50 is the secant 

stiffness in standard drained triaxial test.  

A total of 1032 cases were considered, based on 

parameter combinations of the seven design variables. The 

influence of the soil stiffness ratio E50/cu on the maximum 

wall deflection is shown in Figure 3a-c for cases with γ= 17 

kN/m
3
, B = 30 m, and T = 30 m for cu/σʹv = 0.25, 0.29, and 

0.34, respectively. It is obvious that the wall deflection 

decreases with the increase of the relative soil stiffness ratio 

E50/cu. In addition, the influence of E50/cu is more 

significant for walls of lower thickness d.  The influence 

of the soil shear strength ratio cu/σʹv is presented in Fig. 4, 

for the cases with γ =17 kN/m
3
, B = 40 m, d = 1.2 m, E50/cu 

= 200 and T = 30 m. The results show the maximum wall 

deflection decreases with the increase of the soil shear 

strength ratio. 

Analyses indicated that the maximum wall deflections 

decrease almost linearly with decreasing ground water level 

and that the water table correction factor w can be 

approximated as 
w

= 1 − 0.1𝑙, where l is the depth of the 

ground water table below the ground surface (in meters) 

and 𝑙 ≦ 2. Thus, the wall deflection ℎ
∗
 can be derived 

from 

ℎ
∗ = h,M/

𝑤
 (5) 

in which h,M is the maximum of wall deflection for the 

case with the ground water table at the ground surface.  
 

 

4. MARS model for E50/cu  
 

Based on the forward analysis results described in the 

previous section, a MARS model has been developed for 

inverse analysis to estimate the soil relative stiffness ratio 

E50/cu as a function of seven input parameters: γ, B, He,  

 

Fig. 5 Observed vs. predicted 1:1 plots of E50/cu 

 

 

Fig. 6 Histogram of relative errors for the MARS E50/cu 

model 

 

 

cu/σʹv, ℎ
∗

, ln (𝑆) , and T. Herein the measured wall 

deflection ℎ
∗

 is used as an input parameter to back-

calculate E50/cu. 

The dataset was separated randomly into a training set 

of 775 patterns and a testing set of 257 patterns. The MARS 

model with the highest R
2
 value and less BFs for the testing 

data set is considered to be the optimal. The optimal MARS 

model adopted 28 BFs of linear spline functions. The 

observed versus predicted 1:1 plots of E50/cu are shown in 

Fig. 5. The developed model predicts slightly higher 

estimations for low E50/cu values and slightly lower 

estimations for higher values of E50/cu. Fig. 6 presents the 

histogram plots of the relative errors e (defined as the ratio 

of the difference between the MARS predicted and the 

target E50/cu to the target value, in percentage). It is obvious 

that most of the MARS estimations of the data patterns fell 

within 20% of the target values. In addition, it should be 

noted that MARS predictions still have a large range of 

variations with respect to the same group of targets. On the 

other hand, it can be acceptable since the target outputs are 

of category nature (types) while the estimations based on 

the developed model are numerical values. Some typical 

training and testing data sets together with the MARS 

predictions are listed in Tables 1 and 2, respectively. 

Table 3 displays the ANOVA decomposition of the 

developed MARS model. The first column lists the ANOVA 

function number. The second column gives an indication of 

the importance of the corresponding ANOVA function, by  
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Table 1 Some typical training data for MARS E50/cu identification model 

B (m) T (m) He (m) cu/σʹv ℎ
∗
 (mm) ln (𝑆)  (kN/m3) 

Target 
E50/cu 

MARS predicted 
E50/cu 

30 30 11 0.34 26 8.846 19.0 400 390 

30 30 11 0.34 35 7.313 19.0 400 405 

40 25 14 0.34 48 8.176 19.0 300 281 

30 25 20 0.34 70 7.313 17.0 300 280 

40 25 20 0.25 76 8.176 19.0 300 274 

30 30 20 0.29 77 8.176 19.0 300 286 

30 30 20 0.34 77 7.313 19.0 300 300 

40 25 20 0.25 98 7.313 19.0 300 281 

40 30 20 0.29 98 8.176 17.0 300 283 

30 30 11 0.29 54 7.313 19.0 300 303 

40 25 14 0.29 69 8.176 19.0 200 211 

40 35 20 0.34 100 8.176 19.0 200 201 

50 25 20 0.34 101 7.313 17.0 200 232 

30 30 20 0.34 101 8.176 15.0 200 229 

40 30 17 0.34 92 8.176 15.0 300 287 

40 30 20 0.21 115 8.846 19.0 200 215 

50 25 14 0.29 81 8.176 17.0 200 210 

40 35 14 0.34 81 6.097 19.0 300 313 

40 30 17 0.34 99 8.176 19.0 100 102 

40 30 17 0.21 107 8.846 19.0 200 225 

40 30 17 0.29 108 8.176 15.0 300 291 

30 30 20 0.25 134 8.176 15.0 200 224 

40 30 11 0.25 74 8.176 17.0 300 290 

40 30 20 0.34 135 7.313 15.0 300 260 

30 30 20 0.29 135 7.313 17.0 200 208 

30 30 20 0.34 298 6.097 15.0 100 101 

40 30 20 0.25 293 6.097 17.0 200 200 

50 35 14 0.29 204 6.097 17.0 200 219 

40 35 11 0.25 159 7.313 19.0 100 87 

50 25 11 0.25 150 7.313 17.0 100 95 

Table 2 Some typical testing data for MARS E50 /cu identification model 

B (m) T (m) He (m) cu/σʹv ℎ
∗
 (mm) ln (𝑆)  (kN/m3) 

Target 

E50/cu 

MARS predicted 

E50/cu 

30 30 11 0.29 37 8.176 19.0 400 395 

40 30 11 0.34 42 8.176 19.0 300 326 

40 25 17 0.34 65 8.176 19.0 200 207 

30 30 14 0.34 55 7.313 19.0 300 290 

60 30 14 0.29 76 8.846 17.0 200 246 

40 30 20 0.25 115 8.176 17.0 300 269 

30 30 17 0.25 98 8.176 19.0 200 230 

40 25 20 0.29 119 6.097 19.0 300 276 

30 30 17 0.34 112 7.313 15.0 300 263 

40 30 20 0.25 132 8.176 15.0 300 275 

40 25 17 0.34 114 7.313 19.0 100 114 

581



 

Wengang Zhang, Runhong Zhang and Anthony. T. C. Goh 

 

Table 3 ANOVA decomposition for MARS E50/cu model 

Function GCV STD #basis Variable(s) 

1 1711.6 23.61 2 B 

2 4915.2 58.34 2 T 

3 5724.9 54.83 2 He 

4 9107.5 54.66 2 cu/σʹv 

5 25614.0 134.44 2 δh
* 

6 12670.7 98.30 2 ln(S) 

7 2584.5 37.73 2  

8 1290.3 19.34 2 T & He 

9 1027.5 12.38 2 T & cu/σʹv 

10 944.8 8.98 2 T &  

11 955.4 9.62 2 He & ln (𝑆) 

12 1029.3 12.46 2 cu/σʹv & ln (𝑆) 

13 1289.3 17.04 1 ℎ
∗
 & ln (𝑆) 

14 983.2 10.42 1 ℎ
∗
 &  

15 1355.8 20.12 2 ln (𝑆) &  

 

 

Fig. 7 Relative importance of the input variables selected 

in the MARS E50/cu model 

 

 

listing the GCV score for a model with all BFs 

corresponding to that particular ANOVA function removed. 

The third column provides the standard deviation of this 

function. It also gives an indication of its relative 

importance to the overall model and can be interpreted in a 

manner similar to the standardized regression coefficient in 

a linear model. The fourth column gives the number of BFs 

comprising of the ANOVA function. The last column gives 

the particular input variables associated with the ANOVA 

function.  

Fig. 7 gives the plot of the relative importance of the 

 

Table 4 Basis functions and corresponding equations of 

MARS model for E50/cu 

BF Equation BF Equation 

BF1 max(0, ℎ
∗
 - 132) BF15 

BF2  max(0, ln (𝑆)  - 

7.313) 

BF2 max(0, 132 - ℎ
∗
 ) BF16 BF6  max(0, T - 30) 

BF3 max(0, ln (𝑆) - 7.313) BF17 BF6  max(0, 30 - T) 

BF4 max(0, 7.313 - ln (𝑆)) BF18 BF9  max(0, 54 - ℎ
∗
 ) 

BF5 max(0, He - 17) BF19 BF4  max(0,  - 17) 

BF6 max(0, 17 - He) BF20 BF4  max(0, 17 - ) 

BF7 max(0, 𝑐𝑢 𝑣
′⁄  - 0.25) BF21 

BF4  max(0, 𝑐𝑢 𝑣
′⁄  - 

0.29) 

BF8 max(0, 0.25 - 𝑐𝑢 𝑣
′⁄ ) BF22 

BF4  max(0, 0.29 - 

𝑐𝑢 𝑣
′⁄ ) 

BF9 max(0,  - 17) BF23 BF7  max(0, T - 30) 

BF10 max(0, 17 - ) BF24 BF7  max(0, 30 - T) 

BF11 max(0, T - 30) BF25 BF11  max(0,  - 17) 

BF12 max(0, 30 - T) BF26 BF11  max(0, 17 - ) 

BF13 max(0, B - 40) BF27 BF4  max(0, He - 14) 

BF14 max(0, 40 - B) BF28 BF4  max(0, 14 - He) 

 

 

input variables, which is evaluated by the increase in the 

GCV value caused by removing the considered variables 

from the developed MARS model. The results indicates that 

the three most important variables influencing the 

determination of 𝐸50 𝑐u⁄  are the calculated wall deflection 

ℎ
∗
, the system stiffness in logarithmic scale ln (𝑆), and the 

soil relative shear strength ratio cu/σʹv. 

Table 4 lists the BFs and their corresponding equations 

for the developed MARS model. It is observed from Table 4 

that interactions have occurred between BFs since exactly 

half of the basis functions are products of two spline 

functions (from BF15 to BF28). The presence of 

interactions suggests that these two models are not simply 

additive and that interactions play an important role in 

building accurate model for soil parameter identification. 

The equation of this optimal MARS model is given by 

 

(6) 

Table 2 Continued 

B (m) T (m) He (m) cu/σʹv ℎ
∗
 (mm) ln (𝑆)  (kN/m3) 

Target 

E50/cu 

MARS predicted 

E50/cu 

30 30 17 0.29 125 8.176 17.0 100 102 

30 30 17 0.34 167 6.097 19.0 100 87 

40 30 14 0.29 138 6.097 19.0 200 211 

30 25 11 0.29 110 6.097 17.0 200 207 

50 25 11 0.29 74 7.33 17.0 300 293 
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Fig. 8 Target and predicted E50/cu values by developed 

MARS model 

 

 

Fig. 9 Distribution of the predicted E50/cu values based on 

Eq. (6) for Bugis MRT 
 
 

5. Excavation history validations on E50/cu model 
 

To validate this proposed MARS model for soil 

parameter identification, a total of 12 well-documented 

excavation case histories from various countries as listed in 

Table 5 were analyzed. To visualize the quality of  

 

 

prediction, predicted stiffness ratio 𝐸50 𝑐u⁄  values by 

MARS model are compared with the target values for the 

12 cases listed in Table 5 and shown in Fig. 8. Fig. 8 also 

plots the range of 𝐸50 𝑐u⁄  by varying ℎ
∗
 by +15% and -

15%. Table 5 and Fig. 8 indicate that the developed MARS 

model is able to predict reasonably well the soil stiffness 

ratios for the case histories considered, even with 

considerable variability in the wall deflection 

measurements. 

Based on Eq. (6), Fig. 9 gives the plot of the probability 

density of 𝐸50 𝑐u⁄  for a typical case (Bugis MRT station) 

derived from Monte Carlo Simulation with 1 000 000 

iterations assuming that the coefficient of variation COV of 

both ℎ
∗
 and cu/σv are 0.15. Both ℎ

∗
 and cu/σv follow the 

normal distribution, the mean values of which are 150 and 

0.25, respectively. The other five input variables are 

deterministic and the values can be found in Table 5. As can 

be seen from Fig. 9, the variation of 𝐸50 𝑐u⁄  follows the 

normal distribution. The most probable 𝐸50 𝑐u⁄  value is 

147, very close to the target value of 150. 
 
 

6. MARS model for ln(S)  
 

A second MARS model was also developed for inverse 

parameter estimation of the wall system stiffness. This 

model will assist engineers to determine the appropriate 

wall size during the preliminary design phase. The same 

patterns as used for 𝐸50 𝑐u⁄  model are adopted for training 

and testing of the MARS ln (𝑆) model respectively. The 

optimal MARS model adopted 28 BFs of linear spline 

functions. For comparison, Fig. 10 plots the R
2
 values of the 

testing data sets for the MARS ln(S) model with different 

BFs (from 14 to 48). The observed versus predicted 1:1 

plots of ln (𝑆) are shown in Fig. 11. Fig. 12 presents the 

histogram plots of the relative errors. It is obvious that most 

of the MARS estimations of the data patterns fell within  

Table 5 Summary of excavation case histories validating MARS E50/cu model 

Case number and name B (m) T (m) He (m) 
𝑐𝑢

𝑣
′
 h,M  

(mm) 
ln(𝑆)  (kN/m3) w Target  

𝐸50

𝑐𝑢
  MARS predictions References 

1:Formosa 35 27 18.5 0.34 62 7.30 19.0 0.8 200 264 Ou et al. (1993) 

2:Taiwan Power Company 60 13.5 14.7 0.30 63 6.65 19.0 0.9 150 212 Moh and Song (2013) 

3: Shandao Temple 21.5 26.5 18.5 0.30 36.7 7.82 18.7 0.8 250 391 Fang (1987) 

4: Xinyi planning zone 41 27 14.45 0.34 78 7.02 18.7 0.8 150 192 Fang et al.(2004) 

5 Bugis MRT 21 35 18 0.25 135 8.18 16.5 0.9 150 164 Li (2002) 

6 Lavender 24 16 15.7 0.25 32 7.96 17.0 0.8 150 172 Lim et al. (2003) 

7 MRT line in Singapore 20 20 16 0.25 38.6 8.11 17.6 0.8 150 191 Goh et al. (2003) 

8 Muni Metro Turnback 16 20.5 13.1 0.22 48 7.31 16.5 0.8 250 273 Koutsoftas et al. (2000) 

9 Lurie 64 7.4 11.8 0.25 66 5.85 18.9 0.8 165 205 Kung et al. (2007) 

10 Yanchang Road 18.1 15.5 15.2 0.30 65 5.77 18.0 0.9 190 183 Wang et al. (2005) 

11 Pudian Road 20.4 15.5 16.5 0.30 71 6.12 18.0 0.9 190 132 Wang et al. (2005) 

12 Shanghai Bank building 43 19.3 15.2 0.30 67.4 6.57 18.6 0.9 190 250 Xu et al. (2005) 

As shown in Eq. (5),  h,M =  
ℎ

∗
 

𝑤
, h,M is the measured wall deflection, mainly used as inputs for validation 

purposes based on case histories; 

Herein target means that the values are from either lab/field tests and reported by the various authors or back analysis. 
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Table 6 Some typical training data for MARS ln(S) model 

B (m) T (m) He (m) cu/σv 𝐸50 𝑐u⁄  ℎ
∗
 (mm)  (kN/m3) 

Target 

ln(S) 
MARS predicted 

ln(S) 

40 25 20 0.34 100 95 19.0 8.176 8.319 

30 25 20 0.34 100 110 17.0 7.313 7.559 

30 30 20 0.34 100 115 17.0 8.176 8.120 

30 30 14 0.34 100 98 17.0 8.176 8.169 

40 25 20 0.34 200 68 19.0 8.176 8.109 

30 30 17 0.34 200 58 19.0 8.846 8.721 

30 30 20 0.25 200 86 19.0 8.846 9.153 

40 30 20 0.29 200 87 19.0 8.846 8.849 

40 30 20 0.21 200 115 19.0 8.846 9.029 

50 25 14 0.29 200 81 17.0 8.176 8.251 

40 25 20 0.34 300 57 19.0 8.176 8.092 

30 30 20 0.34 300 63 19.0 8.176 8.001 

30 25 20 0.34 300 70 17.0 7.313 7.499 

30 30 20 0.29 300 77 19.0 8.176 8.048 

40 25 17 0.25 300 72 19.0 8.176 8.235 

30 30 17 0.25 300 83 19.0 8.176 8.145 

30 30 11 0.29 300 54 19.0 7.313 7.315 

40 25 17 0.25 300 142 19.0 6.097 5.856 

40 30 11 0.21 300 93 17.0 8.176 8.030 

40 30 17 0.25 300 181 19 6.097 6.142 

30 30 14 0.34 300 151 15.0 6.097 5.951 

40 30 20 0.25 300 202 19.0 6.097 6.044 

30 30 11 0.34 400 26 19.0 8.846 8.699 

30 30 17 0.34 400 41 19.0 8.846 8.810 

40 30 20 0.34 400 75 19.0 7.313 7.332 

40 30 17 0.34 400 68 19.0 7.313 7.351 

30 30 11 0.29 400 45 19.0 7.313 7.260 

30 30 17 0.29 400 61 19.0 8.176 8.070 

40 35 17 0.25 400 123 19.0 7.313 7.399 

40 30 14 0.25 400 90 19.0 7.313 7.292 

Table 7 Some typical testing data for MARS ln(S) model 

B (m) T (m) He (m) cu/σv 𝐸50 𝑐u⁄  ℎ
∗

 (mm)  (kN/m3) 
Target 

ln(S) 

MARS predicted 

ln(S) 

30 30 20 0.34 100 106 19.0 8.176 8.151 

30 30 20 0.29 100 122 19.0 8.176 8.310 

40 25 17 0.34 100 114 19.0 7.313 7.012 

50 25 20 0.34 100 136 17.0 7.313 7.357 

30 30 20 0.29 200 75 19.0 8.846 8.904 

30 25 17 0.34 200 78 17.0 7.313 7.281 

50 25 17 0.29 100 151 17.0 7.313 7.381 

50 25 20 0.29 200 116 17.0 7.313 7.442 

40 30 11 0.34 200 64 19.0 7.313 7.441 

30 25 17 0.21 200 126 17.0 7.313 7.442 

30 25 20 0.29 200 150 17.0 6.097 5.955 
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Fig. 10 R
2
 for different number of BFs for ln(S) model 

 

 

Fig. 11 Observed vs. predicted 1:1 plots of ln(S) 

 

 

Fig. 12 Histogram of relative errors for MARS ln(S)  

model 

 

 

10% of the target values. Some typical training and testing 

data sets together with the MARS predictions are listed in 

Tables 6 and 7, respectively. 

Table 8 lists the BFs and their corresponding equations  

 

Table 8 Basis functions and corresponding equations of 

MARS ln(S) model 

BF Equation BF Equation 

BF1 max(0, 46 - ℎ
∗

) BF15 max(0, 118 - ℎ
∗

) 

BF2 max(0, cu/σv - 0.25) BF16 
BF13  max(0, 𝐸50 𝑐u⁄  

- 200) 

BF3 max(0, 0.25 - cu/σv) BF17 
BF13  max(0, 200 - 

𝐸50 𝑐u⁄ ) 

BF4 
max(0, 𝐸50 𝑐u⁄  - 

300) 
BF18 

max(0, ℎ
∗

 - 46)  

max(0, 𝐸50 𝑐u⁄  - 200) 

BF5 
max(0, 300 - 

𝐸50 𝑐u⁄ ) 
BF19 max(0, T - 30) 

BF6 
max(0, ℎ

∗
 - 46)  

max(0, He - 14) 
BF20 max(0, 30 - T) 

BF7 max(0,  - 17) BF21 BF13  max(0, T - 30) 

BF8 max(0, 17 - ) BF22 BF13  max(0, 30 - T) 

BF9 
max(0, ℎ

∗
 - 46)  

max(0, 30 - T) 
BF23 max(0, 190 - ℎ

∗
) 

BF10 max(0, B - 40) BF24 BF2  max(0, ℎ
∗

 - 74) 

BF11 max(0, 40 - B) BF25 BF2  max(0, 74 - ℎ
∗

) 

BF12 max(0, He - 17) BF26 
BF23  max(0, 200 - 

𝐸50 𝑐u⁄ ) 

BF13 max(0, 17 - He) BF27 BF5  max(0,  - 17) 

BF14 max(0, ℎ
∗

 - 118) BF28 BF5  max(0, 17 - ) 

 

 

for the developed MARS ln (𝑆) model. It is observed from 

Table 8 that interactions have occurred between BFs since 

exactly 12 out of the 28 BFs are products of two spline 

functions. The presence of interactions suggests that these 

two models are not simply additive and that interactions 

play an important role in building MARS ln (𝑆) model. 

The equation of this optimal MARS model is given by 

 

(7) 

 

 

7. Validations on 𝐥𝐧 (𝑺) model 
 

The same excavation case histories as used for 

validating the 𝐸50 𝑐u⁄  model are adopted for verifying the  

Table 7 Continued 

B (m) T (m) He (m) cu/σv 𝐸50 𝑐u⁄  ℎ
∗

 (mm)  (kN/m3) 
Target 

ln(S) 

MARS predicted 

ln(S) 

40 35 17 0.34 200 128 17.0 7.313 7.337 

40 25 17 0.29 300 63 19.0 8.176 8.004 

30 30 14 0.34 300 54 19.0 8.176 8.219 

40 25 20 0.34 300 94 19.0 6.097 6.075 

40 35 20 0.25 400 147 19.0 7.313 7.297 
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Fig. 13 Target and predicted ln(S) values by developed 

MARS model 

 

 

developed MARS ln (𝑆)  model. The MARS predicted 

ln (𝑆) values are compared with the target ones for cases 

listed in Table 9 and shown in Fig. 13. Table 9 and Fig. 13 

indicate that the developed MARS model is able to provide 

reasonable estimates of the wall stiffness for the case 

histories considered. 
 

 

8. Conclusions 
 

This paper presents two MARS models developed for 

identifying soil parameters and configuring system stiffness 

in braced excavations based on field observation of 

maximum wall deflections. The MARS 𝐸50 𝑐u⁄  model can 

relate the soil relative stiffness ratio to influencing 

parameters including the excavation geometries, soil shear 

strength ratio, unit weight, and the wall stiffness. The 

developed MARS ln (𝑆) model provides estimates of the 

suitable wall stiffness based on a user-defined allowable 

wall deflection, thus saves design time by eliminating 

unsuitable wall configurations early in the design process. 

Well documented case histories from various countries 

validating the reliability of the proposed MARS models are 

given for a wide variety of wall and soil conditions. 

It should be noted that the focus of this paper is on the  

 

 

proposed MARS methodology to identify soil parameters 

and configure system stiffness in braced excavations, and 

thus its application is limited to the soil deposits that can be 

modelled with the set of soil parameters used in this study. 

Furthermore, as the hypothetical cases to develop the 

MARS models assume a single layer of soft clay, 

consequently, the proposed method may not be applicable 

to excavations in heterogeneous or layered clay deposits or 

other ground types such as the sand and the stiff clays. 
 
 

Acknowledgements 
 

The corresponding author is grateful to the support by 

the National Natural Science Foundation of China (No. 

51608071), and the Advanced Interdisciplinary Special 

Cultivation program (No. 106112017CDJQJ208850). 

 

 

References 
 

Attoh-Okine, N.O., Cooger, K. and Mensah, S.  (2009), 

“Multivariate adaptive regression spline (MARS) and hinged 

hyper planes (HHP) for doweled pavement performance 

modeling”, Construct. Build. Mater., 23(9), 3020-3023. 

Brinkgreve, R.J.B., Broere, W. and Watermanm, D. (2006), 

PLAXIS version 8.5 Manual, AA Balkema, Rotterdam, The 

Netherlands. 

Calvello, M. and Finno, R.J. (2004), “Selecting parameters to 

optimize in model calibration by inverse analysis”, Comput. 

Geotech., 31(5), 411-425. 

Chiu, C.F., Yan, W.M. and Yuen, K.V. (2012), “Estimation of 

water retention curve of granular soils from particle size 

distribution-a Bayesian probabilistic approach”, Can. Geotech. 

J., 49(9), 1024-1035. 

Clough, G.W. and O’Rourke, T.D. (1990), “Construction induced 

movements of in situ walls”, Proceedings of the  Specialty 

Conference on Design and Performance of Earth Retaining 

Structures, Ithaca, New York, U.S.A., June. 

Fang, M.L. (1987), “A deep excavation in Taipei Basin”, 

Proceedings of the 9th Southeast Asian Geotechnical 

Conference, Bangkok, Thailand, December. 

Fang, T.C., Tsai, Y.Y., Su, T.C., Tsung, P. and Seeley, P. (2004), “A 

Table 9 Summary of excavation case histories validating MARS ln(S) model 

Case 

No 
Case name B (m) T (m) He (m) 

𝑐𝑢

𝑣
′
 

𝐸50

𝑐𝑢

 
δ h,M 

(mm) 
 

(kN/m3) 
w 

Target 

ln(𝑆) 
MARS predicted ln(𝑆) References 

1 Formosa 35 27 18.5 0.34 200 62 19.0 0.8 7.30 7.142 Ou et al. (1993) 

2 Taiwan Power Company 60 13.5 14.7 0.30 150 63 19.0 0.9 6.65 7.786 Moh and Song (2013) 

3 Shandao Temple 21.5 26.5 18.5 0.30 250 36.7 18.7 0.8 7.82 8.761 Fang (1987) 

4 Xinyi planning zone 41 27 14.45 0.34 150 78 18.7 0.8 7.02 7.201 Fang et al. (2004) 

5 Bugis MRT 21 35 18 0.25 150 135 16.5 0.9 8.18 8.054 Li (2002) 

6 Lavender 24 16 15.7 0.25 150 32 17.0 0.8 7.96 9.729 Lim et al. (2003) 

7 MRT line in Singapore 20 20 16 0.25 150 38.6 17.6 0.8 8.11 9.343 Goh et al. (2003) 

8 Muni Metro Turnback 16 20.5 13.1 0.22 250 48 16.5 0.8 7.31 8.253 Koutsoftas et al. (2000) 

9 Lurie 64 7.4 11.8 0.25 165 66 18.9 0.8 5.85 7.440 Kung et al. (2007) 

10 Yanchang Road 18.1 15.5 15.2 0.30 190 65 18.0 0.9 5.77 5.891 Wang et al. (2005) 

11 Pudian Road 20.4 15.5 16.5 0.30 190 71 18.0 0.9 6.12 5.575 Wang et al. (2005) 

12 Shanghai Bank building 43 19.3 15.2 0.30 190 67.4 18.6 0.9 6.57 7.218 Xu et al. (2005) 

586



 

MARS inverse analysis of soil and wall properties for braced excavations in clays 

case study on time-dependent displacement of diaphragm wall 

induced by creep of soft clay”, Proceedings of the 5th Cross-

Strait Geotechnics Seminars, Taipei, Taiwan, November.  

Friedman, J.H. (1991), “Multivariate adaptive regression splines”, 

Ann. Stat., 19, 1-67. 

Gioda, G. (1985), “Some remarks on back analysis and 

characterization problems in geomechanics”, Proceedings of the 

5th International Conference on Numerical Methods in 

Geomechanics, Nagoya, Japan, April. 

Goh, A.T.C., Wong, K.S., Teh, C.I. and Wen, D. (2003), “Pile 

response adjacent to braced excavation”, J. Geotech. 

Geoenviron. Eng., 129(4), 383-386. 

Goh, A.T.C. and Zhang, W.G. (2014), “An improvement to MLR 

model for predicting liquefaction-induced lateral spread using 

multivariate adaptive regression splines”, Eng. Geol., 170, 1-10. 

Goh, A.T.C., Zhang, W.G., Zhang, Y.M., Xiao, Y. and Xiang, Y.Z. 

(2018), “Determination of EPB tunnel-related maximum surface 

settlement: A multivariate adaptive regression splines 

approach”, Bull. Eng. Geol. Environ., 77(2), 489-500. 

Goh, A.T.C., Zhang, Y.M., Zhang, R.H., Zhang, W.G. and Xiao, Y. 

(2017), “Evaluating stability of underground entry-type 

excavations using multivariate adaptive regression splines and 

logistic regression”, Tunn. Undergr. Sp. Technol., 70, 148-154. 

Hashash, Y., Levasseur, S., Osouli, A., Finno, R. and Malecot, Y. 

(2010), “Comparison of two inverse analysis techniques for 

learning deep excavation response”, Comput. Geotech., 37(3), 

323-333. 

Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of 

Statistical Learning: Data Mining, Inference and Prediction, 

Springer. 

Jekabsons, G. (2010), “VariReg: A software tool for regression 

modelling using various  modeling methods”, Riga Technical 

University, <http://www.cs.rtu.lv/jekabsons>. 

Ji, J., Zhang, C., Gui, Y., Lü, Q. and Kodikara, J. (2016), “New 

observations on the application of LS-SVM in slope system 

reliability analysis”, J. Comput. Civ. Eng., 31(2), 06016002. 

Juang, C.H., Luo, Z., Atamturktur, S. and Huang, H. (2013), 

“Bayesian updating of soil parameters for braced excavations 

using field observations”, J. Geotech. Geoenviron. Eng., 139(3), 

395-406. 

Koutsoftas, D.C., Frobenius, P., Wu, C.L., Meyersohn, D. and 

Kulesza, R. (2000), “Deformations during cut-and cover 

construction of MUNI metro turnback project”, J. Geotech. 

Geoenviron. Eng., 126(4), 344-359. 

Kung, G.T.C., Hsiao, E.C.L. and Juang, C.H. (2007), “Evaluation 

of a simplified small-strain soil model for analysis of 

excavation-induced movements”, Can. Geotech. J., 44(6), 726-

736. 

Lashkari, A. (2012), “Prediction of the shaft resistance of non-

displacement piles in sand”, Int. J. Numer. Anal. Meth. 

Geomech., 37(8), 904-931. 

Lecampion, B., Constantinescu, A. and Nguyen Minh, D. (2002), 

“Parameter identification for lined tunnels in viscoplastic 

medium”, Int. J. Numer. Anal. Meth. Geomech., 26(12), 1191-

1211. 

Levasseur, S., Malécot, Y., Boulon, M. and Flavigny, E. (2008), 

“Soil parameter identification using a genetic algorithm”, Int. J. 

Numer. Anal. Meth. Geomech., 32(2), 189-213. 

Levasseur, S., Malécot, Y., Boulon, M. and Lavigny, E. (2010), 

“Statistical inverse analysis based on genetic algorithm and 

principal component analysis: Applications to excavation 

problems and pressuremeter tests”, Int. J. Numer. Anal. Meth. 

Geomech., 34(5), 471-491. 

Li, W. (2001), “Braced excavation in old alluvium in Singapore”, 

Ph.D. Thesis, Nanyang Technological University, Nanyang, 

Singapore. 

Lim, K.W., Wong, K.S., Orihara, K. and Ng, P.B. (2003), 

“Comparison of results of excavation analysis using WALLUP, 

SAGE CRISP, and EXCAV97”, Proceedings of the Singapore 

Underground, Nanyang, Singapore, November.  

Miranda, T. (2007), “Geomechanical parameters evaluation in 

underground structures. Artificial intelligence, Bayesian 

probabilities and inverse methods”, Ph.D. Thesis, University of 

Minho, Guimarães, Portugal. 

Mirzahosseinia, M., Aghaeifarb, A., Alavic, A., Gandomic, A. and 

Seyednour, R. (2011), “Permanent deformation analysis of 

asphalt mixtures using soft computing techniques”, Expert Syst. 

Appl., 38(5), 6081-6100. 

Moh, Z.C. and Song, T.F. (2013), “Performance of diaphragm 

walls in deep foundation excavations”, Proceedings of the 1st 

International Conferences on Case Histories in Geotechnical 

Engineering, St. Louis, Missouri, U.S.A., May. 

Moreira, N., Miranda, T., Pinheiro, M., Fernandes, P., Dias, D., 

Costa, L. and Sena-Cruz, J. (2013), “Back analysis of 

geomechanical parameters in underground works using an 

Evolution Strategy algorithm”, Tunn. Undergr. Sp. Technol., 33, 

143-158. 

Ou, C.Y., Hsieh, P.G. and Chiou, D.C. (1993), “Characteristics of 

ground surface settlement during excavation”, Can. Geotech. J., 

30(5), 758-767. 

Ou, C.Y. and Tang, Y. (1994), “Soil parameter determination for 

deep excavation analysis by optimization”, J. Chin. Inst. Eng., 

17(5), 671-688. 

Papon, A., Riou, Y., Dano, C. and Hicher, P.Y. (2011), “Single and 

multi-objective genetic algorithm optimization for identifying 

soil parameters”, Int. J. Numer. Anal. Meth. Geomech., 36(5), 

597-618.  

Rechea, C., Levasseur, S. and Finno, R. (2008), “Inverse analysis 

techniques for parameter identification in simulation of 

excavation support systems”, Comput. Geotech., 35(3), 331-

345. 

Samui, P. (2011), “Determination of ultimate capacity of driven 

piles in cohesionless soil: A multivariate adaptive regression 

spline approach”, Int. J. Numer. Anal. Meth. Geomech., 36(11), 

1434-1439. 

Samui, P. and Karup, P. (2011), “Multivariate adaptive regression 

spline and least square support vector machine for prediction of 

undrained shear strength of clay”. Int. J. Appl. Metaheur. 

Comput., 3(2), 33-42. 

Wang, Z.W., Ng, C.W.W. and Liu, G.B. (2005), “Characteristics of 

wall deflections and ground surface settlements in Shanghai”, 

Can. Geotech. J., 42(5), 1243-1254. 

Xu, Z.H., Wang, W.D., Wang, J.H. and Shen, S.L. (2005), 

“Performance of deep excavation retaining wall in Shanghai 

soft deposit”, Lowland Technol. Int., 7(2), 31-43. 

Yan, W.M., Yuen, K.V. and Yoon, G.L. (2009), “Bayesian 

probabilistic approach for the correlations of compressibility 

index for marine clays”, J. Geotech. Geoenviron. Eng., 135(12), 

1932-1940. 

Zarnani, S., El-Emam, M. and Bathurst, R.J. (2011), “Comparison 

of numerical and analytical solutions for reinforced soil wall 

shaking table tests”, Geomech. Eng., 3(4), 291-321. 

Zentar, R., Hicher, P. and Moulin, G. (2001), “Identification of soil 

parameters by inverse analysis”, Comput. Geotech., 28(2), 129-

144. 

Zhang, C.S., Ji, J., Gui, Y.L., Kodikara, J., Yang, S.Q. and He, L. 

(2016), “Evaluation of soil-concrete interface shear strength 

based on LS-SVM”, Geomech. Eng., 11(3), 361-372. 

Zhang, W.G. and Goh, A.T.C. (2013), “Multivariate adaptive 

regression splines for analysis of geotechnical engineering 

systems”, Comput. Geotech., 48, 82-95. 

Zhang, W.G. and Goh, A.T.C. (2014), “Multivariate adaptive 

regression splines model for reliability assessment of 

serviceability limit state of twin caverns”, Geomech. Eng., 7(4), 

587



 

Wengang Zhang, Runhong Zhang and Anthony. T. C. Goh 

431-458. 

Zhang, W.G. and Goh, A.T.C. (2015), “Nonlinear modeling using 

multivariate adaptive regression splines”, Comput. Concrete, 16, 

569-585. 

Zhang, W.G. and Goh, A.T.C. (2016a), “Evaluating seismic 

liquefaction potential using multivariate adaptive regression 

splines and logistic regression”, Geomech. Eng., 10(3), 269-

284. 

Zhang, W.G. and Goh, A.T.C. (2016b), “Multivariate adaptive 

regression splines and neural network models for prediction of 

pile drivability”, Geosci. Front., 7(1), 45-52. 

Zhang, W.G. and Goh, A.T.C. (2018), “Reliability analysis of 

geotechnical infrastructures: Introduction”, Geosci. Front. 

Zhang, W.G., Goh, A.T.C. and Xuan, F. (2015), “A simple 

prediction model for wall deflection caused by braced 

excavation in clays”, Comput. Geotech., 63, 67-72. 

Zhao, B.D., Zhang, L.L., Jeng, D.S., Wang, J.H. and Chen, J.J. 

(2015), “Inverse analysis of deep excavation using differential 

evolution algorithm”, Int. J. Numer. Anal. Meth. Geomech., 

39(2), 115-134. 

 

 

CC 

588




