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1. Introduction 
 

Slope stability analysis plays a significant role in 

geotechnical engineering. In traditional stability analysis, 

the existence of cracks is generally ignored although they 

are widely found in either cohesive soil or rock slopes. 

Cracks introduce a discontinuity in both the static and 

kinematic fields, which results difficulties in calculating the 

collapse value of the slope when using some numerical 

methods like the finite element method (Li and Yang 

2018c). The limit equilibrium method is normally employed 

in the existing research on the stability assessment for slope 

with cracks. However, this method is not rigorous and 

assumptions with respect to depth and location of cracks are 

usually required when performing such analyses. To 

overcome these difficulties, the limit analysis is adopted for 

stability analysis of soil slopes with pre-existing cracks (Li 

and Yang 2018d, Utili 2013, Michalowski 2013). However, 

there is rare research about stability analysis of rock slopes 

with cracks using limit analysis, in which the nonlinear 

failure criterion is employed to truly reflect the mechanical 

properties of rock masses. In this study, stability analysis 

combined with limit analysis for a rock slope with cracks, 

which is subjected to nonlinear Hoek-Brown (HB) criterion, 

is adopted as the deterministic computational model to 

predict slope stability. 

Reliability method was used for estimating the safety of  
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earth slopes in the 1970s. The randomness of strength 

parameters, geometry properties, and material properties 

can be taken into account in reliability methods, and 

accordingly designs based on these methods will be more 

rational and practical. Traditional probabilistic approaches 

include direct Monte Carlo simulation methods (MCS), 

classical first-order and second-order reliability methods 

(FORM/SORM). However, direct MCS is based on a lot of 

repeated calculations and it is inefficient when the original 

deterministic stability model is extremely complicated. As 

regards FORM/SORM, it is not suitable for high nonlinear 

limit-state function. 
Recently, the response surface method (RSM) integrated 

with MCS is widely used in slope reliability analysis to 
reduce time costs without sacrificing the evaluation 
accuracy (Li and Yang 2018a, Xu et al. 2018, Yang and Liu 
2018). A linear RSM is established to effectively 
approximate the finite element model of a homogenous 
slope. In order to deal with nonlinear stability problems, the 
quadratic response surface method (QRSM) was developed 
as an extension of linear RSM, and it was employed by 
several published studies (Li et al. 2016, Li and Chu 2015, 
Xu and Low 2006, Zhang et al. 2011). Base on QRSM, the 
stochastic response surface method (SRSM) using the 
Hermite polynomial chaos expansion can change the order 
of polynomial to adapt to high-dimensional problems, as 
shown in previous researches (Jiang et al. 2014, Pan and 
Dias 2018). However, QRSM and SRSM both are classified 
as parametric regression methods and they entail the prior 
assumption on the order and type of polynomials. To 
overcome the limitation of potentially assumptions for 
parametric regression methods, the multivariate adaptive 
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regression splines (MARS) has been developed for soil 
slope system reliability analysis combined with limit 
equilibrium method, and it was also demonstrated that 
MARS fits high dimensional nonlinear problems better than 
QRSM and SRSM (Liu and Cheng 2016). The MARS has 
outstanding capacities to produce simple, easy-to-interpret 
and highly accurate models, to estimate the contributions of 
the input variables, and to compute highly efficient. The 
application of MARS to geotechnical engineering is a 
relatively recent development (Adoko et al. 2013, Zhang 
and Goh 2013), using limit equilibrium approach or 
numerical finite element method. However, how to combine 
MARS with limit analysis applied to rock slopes with pre-
existing vertical cracks is a new issue. 

This paper aims to perform probabilistic stability 

analysis of a rock slope of one pre-existing vertical crack by 

combining multivariate adaptive regression splines with the 

kinematic approach of limit analysis. The generalized HB 

criterion is adopted to depict the rock mass properties based 

on the equivalent friction angle (φ′) and cohesive strength 

(c′). The φ′ and c′ can be obtained by HB parameters (σc, mi 

and GSI) using the high nonlinear functions, as shown in 

Hoek et al. (2002). Addition, the factor of safety (FoS) is 

also a high nonlinear function with respect to friction angle 

when the limit analysis is adopted. This is because the 

friction angle exists in two parts of the FoS function, 

namely the tangent function and the exponent, as shown in 

appendix. Considering the high nonlinearity of these two 

parts, the FoS function is regarded as a high nonlinear 

function with respect to friction angle. The limit state 

function (LSF) is established based on FoS. Note that the 

HB parameters (σc, mi and GSI) are regarded as the input 

parameters of LSF in this paper, and LSF is presented by 

the equivalent Mohr–Coulomb parameters for ease of use. 

Due to the two facts, LSF is apparently a complex nonlinear 

function. Therefore, the MARS is used to accurately 

approximate the LSF of a rock slope, and the reliability 

analysis is implemented by MARS-based MCS. 
 

 

2. MARS 
 

MARS is introduced as a flexible statistical strategy to 
represent the relationship between multivariate input 
variables and their dependent outputs. Liu and Cheng 
(2016) then developed the MARS for soil slope reliability 
analysis, and it was demonstrated that MARS fits high 
dimensional nonlinear problems better than conventional 
response surface methods, such as QRSM and SRSM. 
Considering that the stability analysis of rock slopes 
subjected to the HB criterion is high dimensional nonlinear, 
MARS is adopted in the following research. 

Theoretically, MARS is defined as a regular 
combination of product splines, i.e., basis functions (BFs) 
based on piecewise polynomials. The number of BFs and 
the associated parameters with reference to each of them are 
automatically determined by the training data set, which is 
derived directly from the deterministic model. The relation 
between input (X) and output (Y) is expressed as 
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Y is an approximation to a true function, which 

describes the deterministic model. X=(x1,x2,…,xp) is the 

vector of input variables. am is the coefficient of the mth 

term in Eq. (1) obtained by the least squares method. Bm(X) 

is the mth BF, which is expressed as 
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where [ ] means take the positive part; sk,m is the truncation 

direction with the value +1 or 1; xv(k,m) is the input variable 

that corresponds to the kth truncated qth-order power 

function; tk,m is the knot of the corresponding input variable 

xv(k,m); q is a non-negative parameter that is the power of 

truncated power function as shown in Eq. (3). It reflects a 

different degree of smoothness of the resulting MARS 

estimation. Piecewise cubic (q = 3) functions are used in 

this study. Bm(X) may consist of a single truncated qth-order 

power function and two or more ones, which means that 

MARS can approximate highly nonlinear stability 

problems. 
MARS is achieved by a two-step process, which is 

forward selection and backward pruning. At the beginning 
of the forward selection, there is only the basis function 
B0(X) = 1 in the MARS model. Then a pair of BFs in which 
sk,m = 1 and sk,m = -1 respectively are introduced to the 
model, and adding BFs continues until the predefined 
maximum count of terms or the threshold of the training 
error is reached. As expected, the forward step finally 
generates a very complex and overfitting model, and the 
model consisting of large number of BFs may poorly 
predict other new points. To solve this overfitting problem, 
the backward pruning is required. In the backward step, the 
least effective BF in the current model will be deleted at 
each pruning step, and this trimming process is repeated 
until there is not BF available to be deleted. At each pruning 
step, a submodel is produced and a group of submodels are 
generated at the end of trimming process. Then, the 
efficiency of fit of each submodel is assessed according to 
generalized cross-validation (GCV). The optimum MARS 
model is identified as the submodel whose GCV is the 
lowest among the previously mentioned model subsets. 
GCV is defined as the mean-square residual error divided 
by a penalty dependent on the model complexity. For a 
training data set with N points, it is calculated as 
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(4) 

where M is the number of BFs; yi is the true value at Xi; 

Y(Xi) is the estimated value at Xi; and d is a penalizing 

factor and it is equal to three as a default value adopted in 
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this study. The denominator is the penalty mentioned above 

which indicates the change of the model variance with 

regard to the model complexity. 
 

 

3. Stability model of rock slope with pre-existing 
crack 
 

3.1 Equivalent Mohr-Coulomb parameters based on 
Hoek-Brown criterion 
 

Mohr-Coulomb soil parameters (c and φ) are required 

by most commercial software to analyze slope stability. 

However, the non-linear nature of the rock mass failure 

envelope is more pronounced at the low confining stresses, 

which is operational in stability problems (Li et al. 2012, 

Yang and Li 2018b, Yang and Li 2018c). As discussed by, 

the HB failure criterion is one of the few non-linear criteria 

utilized by geotechnical engineers to estimate rock mass 

strength (Li and Yang 2018b, Yang et al. 2018, Yang and 

Zhang 2018). The latest revised form of the HB criterion is 

presented as (Hoek et al. 2002) 

 1 3 3 /
n
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(5) 

where σ1 is the maximum principal stress; σ3 is the 

minimum principal stress; σc is the intact uniaxial 

compressive strength. m, s, and n are constants given by 

100
exp

28 14
i

GSI
m m

D

 
  

   

(6) 

100
exp

9 3

GSI
s

D

 
  

   

(7) 

 /15 20/30.5 / 6GSIn e e   
 

(8) 

where mi is the material constant and D represents the 

disturbance degree of rock mass. As shown in the above 

equations, the magnitudes of m, s, and n are determined by 

geological strength index (GSI) and D. 

For ease of use in most geotechnical engineering 

software still written in terms of the Mohr-Coulomb failure 

criterion, equivalent friction angles and cohesive strengths 

for each rock mass and stress range were developed by 

Hoek et al. (2002). Fig. 1 presents the relationship between 

the Hoek-Brown criterion and equivalent Mohr-Coulomb 

envelope. Hoek et al. (2002) deduced equivalent friction 

angle and cohesive strength by equalizing the areas above 

and below the Mohr–Coulomb plot over a range of minor 

principal stress value, which shown as 

       

        

1

3max 3max

1

3max

1 2 1 / /

1 2 1 2 6 /

n

c c c

n

c

n s n m s m
c

n n n n nm s m

    

 





           

        
 

(9) 

 

    

1

3max

1

3max

6 /
arcsin

2 1 2 6 /

n

c

n

c

nm s m

n n nm s m

 


 





        
          

(10) 

where σ3max suggested by Hoek et al. (2002) as the 

 

Fig. 1 Hoek-Brown and equivalent Mohr–Coulomb 

criteria adopted from Li et al. (2008) 

 

 

Fig. 2 Failure mechanism 
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(12) 

in which H is the height of the slope and γ is the material 

unit weight. For the slope stability problems, σcm can be 

determined by Eq. (12). According to the results using limit 

analysis, Li et al. (2008) found that using equivalent 

parameters could significantly overestimate safety for steep 

slopes. Therefore, Li et al. (2008) proposed that Eq. (11) 

should be modified as two separate equations shown as Eq. 

(13) and Eq. (14), respectively 
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3.2 Failure mechanism for rock slopes with vertical 
cracks 
 

The log-spiral failure mechanism of rock slopes with 

Normal stress (σ)
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pre-existing vertical cracks is illustrated in Fig. 2. The 

geometry of the failure mechanism is determined by the 

three geometrical parameters of θ0, θD, and θh. The 

rotational failure surface is defined by the log-spiral 

equation, which is expressed as 

 0 tan

0r r e
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
 

(15) 

where θ0 is the geometric parameters; r is the radius of any 

point on the failure surface and it corresponds to θ; r0 is the 

radius when θ=θ0; and φ’ is the equivalent friction angle. 

Fig. 2 illustrates the failure model with the slope angle 

β, self-weight γ, and slope height H. The HB failure 

criterion is characterized by the equivalent cohesion c′, and 

frictional angle φ′. A pre-existing vertical crack of 

unspecified location and depth is presented by line C-D, and 

the depth of the crack is z=ξH, where ξ is the coefficient of 

crack depth. According to Utili (2013) and Yang and Li 

(2018), the coefficient of crack depth can be obtained by 

Eq. (16). 
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(16) 

Michalowski (2013) proposed that the crack depth z 

should not be larger than the true maximum depth (zmax) of 

a stable crack, and the zmax is limited by Eq. (17). In 

addition, it was concluded by Utili (2013) that departing 

from the slope face (line B-F) could not exist for the failure 

mechanisms with most critical over cracks of any depth and 

location cracks, which means cracks only could depart from 

the upper surface of the slope (A-F) . 
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3.3 Stability analysis using strength reduction 
technique 
 

By using kinematical approach of limit analysis, an 

upper bound estimate of the slope height can be derived 

from equating the external work rate to the energy 

dissipation rate. The external force in this paper only 

involves the gravity force which results in the external work 

rate. The energy dissipation only includes the dissipation 

along the velocity discontinuity surface B-D. Note that 

energy is not dissipated along the crack C-D separating the 

two rock regions on both sides of C–D, and the block of 

falling rock C–D–B–F rotates away from the resting rock 

region A–C–D, as well as around a horizontal axis 

represented by point O. Therefore, the upper bound estimate 

of the slope height for a slope subjected to the HB criterion 

characterized by the equivalent cohesion and frictional 

angle is given by Eq. (18). 
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(18) 

To estimate the stability of the slope with constant 

height, the FoS is adopted in this study, and the strength 

reduction technique is introduced to change the equivalent 

friction angle and cohesive strength by dividing FoS in Eq. 

(19). 
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Substituting the reduced equivalent strength parameters 

(cf and φf) to the right side of Eq. (18), and equating it to the 

constant height, the expression of FoS is obtained as 
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(20) 

where φ’ in f(θ0, θD, θh) of Eq. (18) has been replaced by φf. 

The minimal safety factor is obtained by minimizing Eq. 

(20) which is an implicit function with respect to three 

geometric variables, and this process is subjected to the 

following constraint conditions 
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When finding the minimum of FoS, the variables (θ0, θD 

and θh) are changed sequentially in each computational 

loop. The procedure is repeated until the least upper bound 

solution is obtained. Then, the increments applied to the 

independent variables are reduced, and the process is 

repeated. The process is stopped when the increments used 

in optimization reached 0.01 for θ0, θD and θh. 
 

 

4. Probability analysis based on MARS-based MCS 
 

4.1 Input random parameters for reliability analysis 
 

Hoek (1998) introduced random parameters of HB 

criterion for rock mass into reliability analysis and 

discussed their influence on engineering design. Three input 

random variables, σc, mi, and GSI are adopted. In the 

present analysis, the disturbance coefficient (D) is regarded 

as constant, as well as slope angle (β), unit weight (γ), and 

slope height (H).  

Random variables are generally characterized by 

statistic properties which include mean value, standard 

deviation (SD), coefficient of variation (COV) and 

distribution type, which are presented in Table 1. The mean 

values listed in Table 1 for σc, mi, and GSI are taken from a 

real slope reported by Douglas (2002) (Case 1A in Table 2). 

As shown in Pan and Dias (2017), three scenarios are 

introduced to investigate the influence of uncertainties of 

variables, i.e. COVs. The COVs of σc and mi of optimistic 

scenario and pessimistic scenario are, respectively, obtained 

by reducing and increasing by 5% from those values of the 

neutral scenario, which is suggested in Hoek (1998). As 

regard GSI, coefficient of variation may be not suitable, 

since GSI is generally determined by geologists according 

to a given GSI chart, which means the estimated values of 

GSI should be within a small interval even evaluated by  

Table 1 Statistical properties for input random variables of 
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Case 1A 

Input 
variables 

Mean 
COVs (%) 

Distribution type 
Optimistic Neutral Pessimistic 

σc 3MPa 20 25 30 Normal/lognormal 

mi 25 7.5 12.5 17.5 Normal/lognormal 

GSI 45 SD=2.5 SD=2.5 SD=2.5 Normal/lognormal 

 

Table 2 Real slopes reported by Douglas (2002) (γ =25 

kN/m
3
, D=0.7) 

Cases σc (MPa) mi GSI H (m) β (°) Stable 

1A 3 25 40-50 70 49 Yes 

1B 3 25 40-50 41 50 No 

1C 3 25 40-50 41 55 No 

1D 3 25 40-50 46 49 No 

1E 3 25 40-50 57 50 No 

2A 5 25 50-60 58 50 Yes 

2B 5 25 50-60 60 48 Yes 

2C 5 25 50-60 60 52 Yes 

3 5 7 50-60 38 39 Yes 

4 150 19 70-80 200 65 Yes 

5A 23 7 60-70 157 48 Yes 

5B 23 7 60-70 60 53 Yes 

6 25 7 40-50 110 48 No 

 

 

Fig. 3 Flowchart of MARS-based MCS program 

 

 

different geologists. Therefore, the SD of 2.5 is adopted for 

representing the uncertainty of GSI, which is also a 

recommended value by Hoek (1998). The SD of GSI 

remains constant for three probabilistic scenarios.  

Apart from random variables, constants are also should 

be determined for reliability analysis as input parameters. 

With respect to the value of disturbance coefficient D, it is 

set to 0.7 to represent modest rock mass damage in civil 

engineering as recommended by Hoek et al. (2002). Other 

constants β, γ, and H are shown as Case 1A in Table 2. 

4.2 Application of MARS-based MCS method 

 

The traditional MCS for slope reliability is directly 

based on the deterministic stability analysis model. 

However, if a deterministic model has high nonlinearity, 

such as the model adopted in this study due to nonlinear HB 

failure criterion, the complicated model will result in 

increasing time cost to obtain a FoS in Eq. (20) for given 

input parameters mentioned above. As a matter of fact, the 

progress of MCS is essentially repeated calculation for FoS 

and the number of repeating times is usually tens of 

thousands. To reduce the time cost of reliability, MARS 

method is introduced for establishing the highly consistent 

approximate relationship between FoS and input 

parameters, which is an explicit function consisting of BFs. 

The computation time for obtaining FoS will decrease. 

MARS-based MCS method can cost less time, and get more 

precise reliability results by improve repeating times. 

Several steps are set to realize MARS-based MCS 

program for the reliability analysis of rock slopes with 

vertical cracks using limit analysis in conjunction with the 

equivalent Mohr–Coulomb parameters. First of all, prepare 

input parameters sets, which include Nt (Nt =300 as initial 

value) training samples generated by the Latin hypercube 

technique, and each sample consists of the values of three 

random variables and four constants mentioned above 

shown in Table 1. Second, substitute these input parameters 

into the deterministic stability analysis model, then Nt safety 

factors are obtained to get training data sets consisting of Nt 

safety factors and corresponding Nt generated training 

samples. The output is Y= (FoS1, FoS2,…,FoSNt), and the 

input is X=(σc,1, σc,2,…, σc, Nt ; mi,1, mi,2,…, mi, Nt ; GSI1, 

GSI2,…, GSINt) in Eq. (1).  In addition, test data sets are 

also prepared using the same method in the same two steps 

above and the size of test data sets is Nc= 200. Next, 

establish a MARS model using the training data sets and 

validate the MARS model using test data sets. The 

predictive ability of the MARS model is described by the 

coefficient of determination (R
2
). If R

2 
is greater than or 

equal to the predefined accuracy of 0.99, the established 

MARS model is considered to be suitable. Otherwise, the 

training sample size (Nt) should be increased and repeat the 

above-mentioned steps until an enough accurate model is 

obtained. Finally, the enough accurate MARS model is 

employed to execute MCS process and the failure 

probability (Pf) is obtained. The procedure of MARS-based 

MCS method mentioned above is presented by a flowchart 

in Fig. 3. In order to assess the failure probability of a rock 

slope with vertical crack, the limit state function is defined 

as 

1G FoS   (22) 

where the FoS can be estimated by instituting samples of 

three random variables into MARS model. The failure 

probability can be evaluated by 

1

1
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N
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(23) 

where N = number of samples of random variables for 

MCS. I(G)=1 for G < 0, otherwise I(G)=0. The estimation 

accuracy of Pf  is assessed by the coefficient of variation of 
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Pf  as 

COV (1 ) / ( )
fP f fP NP 

 
(24) 

It can be easily found that the coefficient of variation of 

Pf is highly dependent on the size of samples, since ten 

times better accuracy need one hundred times size of 

samples. However, the direct Monte Carlo sampling 

technology is completely random and samples are more 

likely to be drawn from distributions with high probability 

of occurrence, which may result in ignoring samples with 

low probability of occurrence when the size of samples is 

not enough. These two reasons lead to high-precision 

reliability results requiring a large number of samples, 

which eventually results in increased time costs. The Latin 

hypercube technique is adopted to generate samples 

accurately reflecting probability distributions without 

ignoring samples with low probability of occurrence and 

can reduce the number of Monte Carlo samples, which is 

set to 10
6
 in this study for enough estimation accuracy of Pf. 

 

 

5. Results and discussions 
 

This section discusses the influence of distribution 

types, level of uncertainty level, and constants on the 

probability density functions of FoS and failure probability. 

A reliability-based design figure is obtained for rock slopes 

with vertical cracks. All calculations consider independent 

variables. 

 

5.1 Influence of distribution types 
 

As stated previously, three random variables (σc, mi, and 

GSI) are adopted for reliability analysis of rock slopes with 

pre-existing vertical cracks, and statistical properties of 

input random variables presented in Table 1 are used in this 

section. Distribution types of random variables comprise of 

normal and lognormal distribution for strength parameters. 

Although Hoek (1998) introduced normal distributions of 

σc, mi, and GSI, using a lognormal distribution can ensure 

positive values of strength parameters to guarantee physical 

meaning. This part focuses on influence of these two 

distributions on results of reliability analysis. Chen and Dai 

(2011) also proved that these two distributions were more 

suitable than other types of distribution according to the 

maximum entropy principle. 

Fig. 4 and 5 illustrate the influence of distribution types 

of three random variables on distributions of safety factors 

presented by curves of probability density function (PDF), 

and the influence on the probability of failure (Pf), 

respectively. Pf can be read by the ordinate of a point whose 

abscissa equal to FoS=1 in cumulative distribution function 

(CDF). In Fig. 4, the shapes of the safety factor 

distributions are similar to Gaussian distribution and the 

difference between two curves is negligible, as well as in 

Fig. 5. According to reliability analysis based on MARS-

based MCS, Pf for normal distribution and lognormal 

distribution are 8.23% and 6.26%, respectively, which also 

can be found in Fig. 5. It can be seen that the influence of  

 

Fig. 4 Influence of distribution types on probability 

density functions 

 

 

Fig. 5 CDF curves for different distribution types 

 

 

Fig. 6 Comparison between FoSs predicted by MARS 

and FoSs calculated by the deterministic model in case 

1A 
 

 

distribution types of three random variables on reliability 

results is non-significant, and normal distribution results in 

relatively conservative Pf. In the following research, normal 

distribution is adopted for reliability analysis. 

Fig. 6 presents the comparison between FoS predicted 

by MARS and those calculated by the deterministic model 

under different distribution types for case 1A. The  
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Fig. 7 Influence of uncertainty level (COVs) on 

probability density functions for slope height H1 

 

 

Fig. 8 CDF curves of the slope whose height is H1 under 

different uncertainty level (COVs) 

 

 

coefficient of determination (R
2
) is adopted to estimate the 

predictive ability of the MARS model. As presented in Fig. 

6, R
2 
is extremely close to 1 and points locate nearly at the 

line with 1:1 slope, which means MARS model has high 

precision to simulate the implicit relation between FoS and 

input parameters under either normal distribution or 

lognormal distribution. 

 
5.2 Influence of uncertainty level  

 

Uncertainty level presented by coefficients of variation 

(COVs) of random variables is mainly considered in 

reliability analysis. In this section, three scenarios 

mentioned above are studied for reliability analysis. The 

influence of uncertainty level (COVs) on probability 

density functions of FoS is presented in Fig. 7. For all 

curves of optimistic, neutral and pessimistic scenarios, an 

apparent trend is that the distribution of the safety factor 

becomes wider and lower as the values of COVs increase, 

i.e., more pessimistic, but the mean of safety factor is nearly 

constant. This trend causes the augmentation of the 

proportion of left side of the vertical line which means 

FoS<1, while COVs increase. This change finally results in 

an increase in unsafe area and therefore Pf increases. As 

shown in Fig. 8, Pf for optimistic, neutral and pessimistic  

 

Fig. 9 Influence of disturbance coefficient (D) on Pf 

 

Table 3 Pf (%) for different disturbance levels (Ds) 

D=0.1 D=0.3 D=0.5 D=0.7 D=0.9 

0.14 0.32 1.38 8.23 55.55 

 

 

Fig. 10 Influence of disturbance coefficient (D) on 

probability density functions for neutral scenario 

 

 

Fig. 11 CDF curves for disturbance coefficients (Ds) for 

neutral scenario 
 

 

scenarios are 4.10%, 8.23% and 12.79% respectively. It can 

be conducted that COVs can significantly influence 

reliability results by changing the shape of PDF curves for 

FoS. 
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5.3 Influence of constants 
 

Although studying random variables is predominant in 

probability analysis, it is still worthy of investigating the 

influence of disturbance factor (D), and geometric 

parameters of slope height (H), and slope angle (β) on the Pf 

evaluations. In the following section, these three constants 

are researched for rock slopes with pre-existing vertical 

cracks. 

As shown in Table 3 and Fig. 9, Pf increases 

significantly while D only enlarges a little. This 

phenomenon can be explained by Fig. 10 and 11. In Fig. 10, 

a noticeable trend is that the distribution of the safety factor 

becomes narrower and higher as the value of D increases, 

and the mean of safety factor becomes lower, which 

manifests as moving left of PDF curves. In Fig. 11, changes 

of the shape of PDF curves lead to bigger slopes of CDF 

curves, and lower mean of safety factor also results in 

moving left of CDF curves. Finally, Pf increases 

significantly with little changing of D. 

The change law of Pf with respect to slope height under 

different uncertainty levels is presented in Fig. 12. For each 

scenario, Pf increase slowly at low values of height and then 

the growth rate gradually increases. When Pf reaches 

approximately 50%, the increasing speed reaches a 

maximum, and then the growth rate gradually slows down, 
 

 

 

Fig. 12 The change law of Pf with respect to slope height 

under different uncertainty levels 

 

 

Fig. 13 The change law of mean of FoS with respect to 

slope height for neutral scenario 

 

Fig. 14 The change law of Pf with respect to slope angle 

under different uncertainty levels 

 

 

Fig. 15 Influence of slope height (H) on probability 

density functions for neutral scenario 

 

Table 4 Pf (%) for different slope heights under three 

uncertainty levels (COVs) 

Slope height Optimistic Neutral Pessimistic 

H1 4.10 8.23 12.79 

Ht 52.48 52.48 52.48 

H2 85.39 81.26 77.69 

 

 
and the final curve appears as an S-shape. The turning point 
is worth noting, since the three curves begin to change slope 
at the same turning point. For all scenarios, Pf is close to 
50% at the turning point, and the corresponding slope 
height is 116m. With respect to the influence of slope height 
on mean of FoS, it is presented in Fig. 13. From the above 
discussion, it can be seen that the uncertainty level does not 
affect the mean value of FoS, so Fig. 13 only shows the 
variation law of FoS with slope height for neutral scenario. 
Obviously, mean of FoS decreases with increasing slope 
height. Let mean of FoS equal to 1, and the critical height 
(Hc) is obtained, which is usually used to get a 
dimensionless stability factor in deterministic stability 
analysis, and it is equal to 113.8m near to the slope height at 
the turning point. Therefore, considering differences 
between reliability analysis and deterministic stability 
analysis, the slope height at the turning point can be 
regarded as the critical slope height.  
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Fig. 16 Influence of uncertainty level (COVs) on 

probability density functions for slope height Ht 

 

 

Fig. 17 CDF curves of the slope whose height is Ht under 

different uncertainty level (COVs) 

 

 

Fig. 18 Influence of uncertainty level (COVs) on 

probability density functions for slope height H2 

 

 

It is an interesting phenomenon that the turning point is 

inconsistent with the above finding that different COVs can 

significantly influence reliability results (i.e., Pf in this 

study). To explain this phenomenon, two specific values on 

behalf of slope heights lower and higher than the critical 

slope height respectively, i.e., H1=70 m and H2=150 m 

respectively, are used, as shown in Fig. 12. It is shown in  

 

Fig. 19 CDF curves of the slope whose height is H2 under 

different uncertainty level (COVs) 

 

 

Table 4 that the variation rule of Pf corresponding to the 

slope height at different uncertain levels is not the same. 

Specifically, for H1, Pf increases with COV, whereas this 

change is reversed for H2, and Pf does not change with COV 

for the critical slope height at the turning point. The reason 

can be found by observing PDF and CDF curves 

corresponding to three kinds of slopes with different heights 

mentioned above. From Figs. 7, 16 and 18, a common trend 

for PDF curves is that higher COVs lead to wider and lower 

curves causing the augmentation of the proportion of left 

and right marginal areas between curve and abscissa, while 

the mean of FoS is nearly constant. In Fig. 7, the slope 

height is less than the critical slope height, so the mean of 

FoS is bigger than 1, which means increasing COV can 

aggrandize the area between the curve and the abscissa in 

the unsafe part while the whole area is regarded as one 

dimensionless unit, therefor Pf increases as COV increases 

as shown in Fig. 8. For slope height bigger than critical 

slope height, the mean of FoS is less than 1 as presented in 

Fig. 18, therefor a smaller COV can improve failure risk of 

slopes by decreasing the area between the curve and the 

abscissa in the safe part, which can be observed in Fig. 19. 

However, Pf of a critical rock slope is close to 50% and 

fluctuates little as COV changes, since the PDF curve of the 

safety factor is nearly symmetrical with respect to the 

critical vertical line (i.e., FoS=1), as shown in Fig. 16 and 

Fig. 17. In addition, the influence of slope height (H) on 

probability density functions for neutral scenario is 

presented in Fig. 15. An observed trend is that the 

distribution of the safety factor becomes a little narrower 

and higher as the slope height increases, and the mean safe 

factor decrease. 

With respect to slope angle β, the change law of Pf under 

different uncertainty levels is presented in Fig. 14. 

Obviously, there is also a turning point corresponding to the 

critical slope angle, and the change law of Pf with respect to 

slope angel is the same as the slope height. It is deserved 

pointed out that Pf corresponding to turning point is equal to 

53.67% which is also near to 50% as the same as the 

turning point with respect to the critical slope height.  

In summary, the reliability results are affected by a 

combination of the uncertainty level that affects PDF shape 

and the constants that affect the value of the mean of FoS. 
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In addition, it should be pointed out that the uncertainty 

level presented by the coefficient of variation has a 

significant influence on the reliability-based design for 

geotechnical engineers because of the guarantee of safety, 

i.e., FoS>1. According to reliability analysis above, the 

uncertainty level should be realistic to get a more reliable 

result in reliability-based design for geotechnical 

engineering. To avoid either overestimating or 

underestimate security of rock slopes with pre-existing 

vertical cracks, extensive and accurate geotechnical 

experiments should be conducted before reliability-based 

design implementation to obtain the realistic uncertainty 

level in reliability analysis. However, in most cases, the 

necessary conditions for conducting tedious geotechnical 

tests are lacking, so the COV and SD values proposed by 

Hoek (1998), namely neutral scenario, can be used as 

reference values which is adopted in the following research. 
 

5.4 Reliability-based design 
 

In this section, 13 cases of real rock slopes in Table 2 

are taken for reliability analysis, and the influence of pre-

existing vertical cracks of unspecified location and depth is 

considered. Table 2 lists details of each slope, including HB 

criterion parameters (mi, GSI, and σc), slope geometry (β 

and H), and stable or unstable state. These cases were 

reported by Douglas (2002). Because no information about 

rock mass unit weight γ and disturbance factor D is 

reported, D is equal to 0.7 and γ is set to 25 kN/m
3
. The 

uncertainty level of three random variables is assumed to be 

the neutral scenario which is suggested by Hoek (1998), and 

they are independent and subject to normal distribution to 

gain conservative solutions. The mean values of variables 

mi and σc are taken from Table 2; the mean value of GSI is 

equal to the average value of its interval. The comparison of 

computed failure probabilities for all slopes between 

previous research (Li et al. 2012) and this study is provided 

in Table 5. 

It can be seen in Table 5 that the failure risk of all cases 

compared to previous reliability results obtained by Li et al. 

(2012) will be higher when considering the existence of 

cracks but the failure probabilities in all cases are of the 

same order of magnitude, therefore the results are 

reasonable. But it also should be pointed out that the degree 

of influence of cracks on reliability results is not uniform. 

For example, the difference of reliability result for case 2B 

reaches up to 56.7%, but the difference for case 1C is only 

0.8%. For the reported stable cases (2A, 2B, 2C, 3, 4, 5A 

and 5B), Pf values obtained are all smaller than 0.15% and 

bigger than 0.006%. In addition, case 1A is table but has 

relatively high Pf therefor the slope is under critical 

conditions, even if it is recorded as stable, which is also 

found in Li et al. (2012). For the reported unstable cases 

(1B, 1C, 1D, 1E and 6), Pf values obtained are all bigger 

than 0.9%. 

To apply reliability analysis into design of rock slopes 

with pre-existing vertical cracks, mean slope safety factor 

(FoSu) corresponding to failure probability derived from 

MARS-based MCS method can be considered as a 

reasonable index to estimate stability and safety degree of 

slopes. Fig. 20 presents the relation between failure  

 

Fig. 20 Failure probability as a function of the mean 

safety factor 

 

Table 5 Comparison of obtained Pf (%) for 13 cases of real 

rock slope 

Cases Li et al. (2012) This study Difference (%) Stable 

1A 6.74 8.23 22.1 Yes 

1B 0.83 0.9989 20.3 No 

1C 3.93 3.9629 0.8 No 

1D 1.04 1.3373 28.6 No 

1E 3.74 4.36 16.6 No 

2A 0.0571 0.0677 18.6 Yes 

2B 0.0457 0.0716 56.7 Yes 

2C 0.1014 0.1316 29.8 Yes 

3 0.0943 0.1234 30.9 Yes 

4 0.0052 0.0062 19.2 Yes 

5A 0.046 0.057 23.9 Yes 

5B 0.0171 0.0178 4.1 Yes 

6 0.966 0.9775 1.2 No 

 
 

probability and FoSu for three cases of different uncertainty 

levels of input parameters. Obviously, the turning point also 

exists at FoSu=1 corresponding to the critical slope height 

or the slope angle. In order to give a safe enough FoSu for a 

conservative design, a reasonable reference value of Pf 

=0.00723% is adopted as shown in Fig. 20, which is put 

forward by Pan and Dias (2017). The safety factor required 

for a target failure probability can be directly got from the 

curves shown in Fig. 20. For example, with respect to the 

optimistic case, FoSu=1.59 is required for suggested failure 

probability of 0.00723%. For the neutral uncertainty level, 

the reasonable FoSu is approximately 1.88. However, for the 

pessimistic scenario, it is impossible to get a reasonable 

FoSu in the considered range of safety factor. So, the FoSu 

of 1.88 can be considered as a reference value for 

geotechnical engineering. 

 

 

6. Conclusions 
 

The stability of rock slope with one pre-existing vertical 

crack of unspecified location and depth is investigated in 
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the framework of probability theory. The deterministic 

stability analysis of rock slope with crack is based on the 

upper bound method, and the equivalent Mohr–Coulomb 

parameters based on the HB criterion are adopted to 

characterize the rock mass strength. In order to estimate the 

stability of the slope with constant height, the FoS which is 

derived from strength reduction technique is used in this 

study. Three input random variables are σc, mi, and GSI. The 

disturbance coefficient D is regarded as a constant, as well 

as slope angle, unit weight, and slope height. The MARS 

for rock slope reliability analysis is used to establish the 

highly consistent approximate relationship between FoS and 

three input random parameters, which can greatly improve 

the computational efficiency of MCS. The influence of 

distribution types, level of uncertainty level, and constants 

on the probability density functions of FoS, and failure 

probability is discussed in this study. Conclusions can be 

drawn as: 

• The shapes of FoS distributions corresponding to 

normal distribution and lognormal distribution are similar 

and the difference between two curves is negligible. 

Therefore, the influence of distribution types of three 

random variables on reliability results is non-significant, 

and the normal distribution results in relatively conservative 

Pf. 

• For three random variables consisting of σc, mi, and 

GSI, more pessimistic uncertainty level can only result the 

PDF curve of the FoS wider and lower, but the mean of FoS 

is nearly constant. For constants including disturbance 

factor D, geometric parameters of slope height H, and slope 

angle β, it is found that Pf  increases significantly with little 

changing of D and the variation rule of Pf corresponding to 

the slope height at different uncertain levels is not the same. 

All constants can change the value of the mean of FoS. 

Therefore the reliability results are affected by a 

combination of the uncertainty level and the constants. A 

turning point in PDF and CDF curves is found, and it is 

considered as a critical point corresponding to FoS=1. Pre-

exiting vertical cracks can reduce reliability of rock slopes, 

which leads to higher failure probabilities than that of 

slopes without cracks, but the failure probabilities for both 

are of the same order of magnitude. 

• To apply reliability analysis into design of rock slopes 

with pre-existing vertical cracks, FoSu corresponding to 

failure probability is considered as a reasonable index to 

estimate stability and safety degree of slopes. The 

relationship between FoSu and Pf  is displayed in Fig. 20. 

The values of COVs of random variables should be 

determined by sufficient experimental and field measured 

data, if no further sample and data information is available. 

Geotechnical engineers can adopt the curve based on the 

uncertainty level suggested by Hoek (1998), namely the 

neutral scenario. According to a reasonable reference value 

of Pf =0.00723%, the FoSu=1.88 can be considered as a 

reference value for geotechnical engineering. 
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