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1. Introduction 
 

One of the most important issues in the design of tunnel 

support system is determination of the tunnel surrounding 

rock mass deformation due to the excavation. The amount 

of the deformation, before the support installation, 

significantly influences on the applied load on the support 

of tunnel. If no displacement is assumed to occur, the loads 

acting on the support will be unrealistic and overpredicted. 

On the other hand, a large amount of relaxation in the 

tunnel surrounding rock may be led to an underestimation 

of the loads acting on the support.  

In a two-dimensional program, it is difficult to quantify 

the real relaxation, because this depends on the distance 

behind the face at which the support is installed (Itasca, 

2009). 

In other to determine the allowable unsupported span for 

the installation of support, it is necessary to establish the 

Longitudinal Displacement Profile (LDP) for the tunnel 

(Vlachopoulos and Diederichs 2009). LDP is a graphical 

view of radial displacement in the rock mass surrounding of 

an advancing tunnel versus distance to the tunnel face, and 

usually depicted for an unsupported tunnel section, behind 

and ahead of the tunnel face, along the tunnel axis (Alejano 

et al. 2012).  

LDP is one of the three basic components of the 

Convergence-Confinement Method (CCM) and provides an 

accurate insight into how quickly the support begins to  
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interact with the rock-mass behind the face of the tunnel 

(Carranza-Torres and Fairhurst 2000).  

Application of LDP is not limited to the CCM and in 

two-dimensional numerical analysis of tunnels can be used 

for calculation of appropriate relaxation, but a three-

dimensional analysis is necessary to precisely determine 

this profile. Therefore, if only two-dimensional numerical 

model is available or if an analytical convergence-

confinement solution is to be used, it is more practical to 

use an analytical function for calculation of the LDP 

(Vlachopoulos and Diederichs 2009). 

LDP strictly depend on the characteristics of the rock 

mass to be excavated, but most of the proposed equation for 

calculation of the LDP are only based on the tunnel 

dimensions (Alejano et al. 2012). Therefore, in the present 

study, it is tried to present a new formulation, based on the 

characteristics of the tunnel surrounding rock mass, for 

determination of the LDP. 

 

 

2. Analytical functions of LDP 
 

Determination of the optimum distance of supports from 

the tunnel face needs an accurate description of the LDP. 

Fig. 1 depicts a longitudinal cross-section of an unsupported 

circular tunnel with radius of R in the vicinity of the face. 

At a distance x from the face the radial displacement is ur. 

When the distance x is large enough the maximum radial 

deformation ur
m, happens. Also, a part of the displacement 

happens in unexcavated area and becomes zero at some 

finite distance ahead of the face. 

Various equations were proposed for calculation of the 

LDP based on the different procedures.  
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the tunnel walls as a function of the distance to the tunnel face. Some useful formulations for calculation of LDP have been 

developed based on the monitoring data on site or by 3D numerical simulations. However, the presented equations are only 

based on the tunnel dimensions and for different quality of rock masses proposed a unique LDP. In the present study, it is tried 
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numerical simulations. The proposed formulation in the present study, is a logistic function and the constants of the logistic 

function were predicted by rock mass quality index (GSI). Results of this study revealed that, the LDP curves of the tunnel 

surrounded by rock masses with high quality (GSI>60) match together; because the rock mass deformation varies over an elastic 

range. 
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Fig. 1 Longitudinal cross-section of a tunnel 
 

 

Based on the finite element analyses, Panet and Guenot 

(1982) presented the following expression for determination 

of radial displacement of tunnel wall 
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Corbetta et al. (1991) suggested another empirical 

equation in a different form as follows 
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Based on the research by Panet (1995), the following 

equation was presented 
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The mentioned equations are only valid for the region 

behind the face (x>0) 

Hoek (1999) proposed an empirical equation based on 

the data measured by Chern et al. (1998) in a tunnel in 

Mingtam Power Cavern project 

1.7

/
1 exp

1.10

r

m

r

u x R

u

−

−
= +
  

  
    

(4) 

Eq. (4) is valid for the regions ahead of the face (x>0) 

and behind the face (x<0) of the tunnel.  

In all of the above equations there is no parameter which 

represent the tunnel surrounding rock mass quality and the 

ratio of r

m

r

u

u  
is only correlated with 

x

R
. Therefore, these 

equations are only valid when the tunnel surrounding rock 

masses deform in the range of elastic deformations.  
Unlu and Gercek (2003) evaluated the effect of 

Poisson’s ratio on the radial displacement of the tunnel 
surrounding medium and proposed a dual function for 
calculation of the normalized radial displacements 
occurring in the vicinity of the face. They believed that LDP 
does not follow a unique continuous function, and then 
suggested Eqs. (5) and (6) for ahead and behind of the 
tunnel face, respectively. 
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where u0 is the radial displacement at face 
0

* *

0
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R U
= = =  is the radial displacement at the 

desired distance X from the face, Ur
m is the maximum radial 

displacement, and R is the tunnel radius. 

If an elastic-base equation is used to calculate LDP and 

the result is implemented in the CCM, the recommended 

time for support installation will not be the real-time and 

then induced stress in the support system was incorrectly 

estimated (Alejano et al. 2012). Therefore, Vlachopoulos 

and Diederichs (2009) presented a new formulation for the 

LDP calculation that takes into account the significant 

influence of plastic radius. 

The displacement at the tunnel face uif is calculated from 

the following equation derived by Vlachopoulos and 

Diederichs 
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where uim is the maximum displacement which occurs at 

rpm. 

The tunnel wall displacement ahead of the face (x<0) is 
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The tunnel wall displacement behind the face (x>0) is 
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Alejano et al. (2012) emphasized that the plastic zone 

around excavations tends to be larger for strain softening 

(SS) rock masses compared to elastic perfect plastic (EPP) 

rock masses and tried to develop the Vlachopoulos and 

Diederichs (2009) approach to SS behavior. 
The equations presented by Vlachopoulos and 

Diederichs (2009) and Alejano et al. (2012) are really useful 
for calculation of LDP in plastic media, but estimation of 
the plastic radius around an opening is very difficult and 
significantly related to the chosen constitutive model for the 
tunnel surrounding rock mass. However, Alejano et al. 
(2012) tried to propose an equation for estimation of the 
plastic radius around a tunnel, but it is an approximate 
estimation and limited to strain-softening media in average 
quality rock masses.  

Komurlu et al. (2015) investigated the effect of 
horizontal in situ stress on failure mechanism and plastic 
zone around underground openings and showed that 
prediction of the plastic zone radius around underground 
excavation is complicated and many simplification is 
necessary for a safe estimation. 

Whereas the qualitative description of rock masses and 
subsequent correlation to establish engineering quantities is 
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inevitable in design of underground rock structures, it is so 
applicable to propose a new formulation for calculation of 
LDP based on the general rock mass quality. In the present 
study, it is tried to suggest a more simple and accurate 
equation for calculation of LDP based on GSI and in a wide 
range of rock mass quality. 
 
 

3. Numerical modelling 
 

Numerical simulation is one of the well-known methods  

for calculation of LDP in different conditions. Some of the 

proposed analytical formulation for calculation of LDP are 

on the basis of some numerical models which developed in 

different  geotechnical  condit ions. For  example, 

Vlachopoulos and Diederichs (2009) have proposed a 

robust formulation based on the ultimate plastic radius 
 

 

 

Fig. 2 Domain geometry of the developed numerical model 

 

Table 1 Mechanical properties of rock mass with different 

GSI 

GSI Em (GPa)  C(MPa)  ϕ (degree)  σt (MPa)  

100 119.29 8.80 47.00 5.63 

95 89.46 6.40 48.00 3.86 

90 67.08 4.66 49.00 2.65 

85 50.30 3.42 49.00 1.82 

80 37.72 2.52 50.00 1.25 

75 28.29 1.89 49.00 0.85 

70 21.21 1.44 49.00 0.59 

65 15.91 1.12 49.00 0.40 

60 11.93 0.90 48.00 0.28 

55 8.95 0.73 47.00 0.19 

50 6.71 0.62 46.00 0.13 

45 5.03 0.53 44.00 0.09 

40 3.77 0.46 43.00 0.06 

35 2.83 0.40 41.00 0.04 

30 2.12 0.35 39.00 0.03 

25 1.59 0.31 37.00 0.02 

20 1.19 0.26 35.00 0.01 

15 0.89 0.22 32.00 0.01 

10 0.67 0.17 29.00 0.01 

5 0.50 0.12 25.00 0.00 

around the tunnel. Also Sadeghiyan et al. (2016) suggested 

the concept of Longitudinal Convergence Profile (LCP) as 

alternative to LDP. Then, a series of 3-dimensional 

numerical modeling was developed to evaluate the effect of 

modulus of elasticity, cohesion and internal friction angle of 

soil on the LCP. 

In this study, extensive numerical models of a circular 

tunnel on the basis of different geotechnical and 

geometrical conditions was established and analyzed. Fig. 2 

shows the three-dimensional domain geometry of the 

developed numerical models. The model represents only a 

quarter of the area around the excavation due to the 

symmetry. Also the dimension of the models were 

determined based on the tunnel dimensions. As shown in 

Fig. 2, D is diameter of the tunnel and the width and length 

of the models are equal to 5D and 10D, respectively.  The 

mechanical behavior of the tunnel surrounding rock was 

described by an elastic-perfectly plastic material with a 

Mohr-Coulomb constitutive model. 

In the next step, the LDPs corresponding to the 

developed models were derived. For this purpose, the half-

length of the tunnel is excavated and vertical displacements 

of the tunnel crown in the longitudinal profile is recorded. 

In the next, a comprehensive set of data were prepared to 

distinguish different LDP in various geo-mechanical 

conditions. 
 

3.1 Effect of rock mass quality on LDP 
 

The qualitative description of rock masses by means of 

classification systems and subsequent correlation to 

establish engineering quantities or design parameters has 

become one of the integral parts of rock engineering design 

(Aydan et al. 2014). Therefore it will be useful to propose 

an analytical equation based on the rock mass quality 

parameters for calculation of LDP. A number of empirical 

indices have been developed for determination of rock mass 

quality such as RQD, RMR, Q, GSI and etc. However, the 

GSI system is a proper index within the scope of our study, 

as it reflects general rock mass quality (joint density and 

joint strength behavior) in a simple way and so enables us 

to easily assign a realistic model to the rock mass and 

estimate its parameters (Alejano et al. 2012). As mentioned 

before, the previous proposed equations can precisely 

estimate the LDP only in elastic medium, and they are 

inapplicable in weak rock. For evaluation of the effect of 

rock mass quality on the LDP, twenty different geotechnical 

conditions corresponding to different GSI were assigned to 

numerical models. Table 1 shows the geotechnical 

properties of rock mass with different GSI in the range of 5-

100. The uniaxial compressive strength of the intact rock is 

equal to 45 MPa and the empirical equations proposed by 

Hoek and brown (1997) used for estimation of rock mass 

properties. The rock mass modulus of deformation is given 

by 

(( 10)/ 40)
( ) .10

100

GSIci

m
E GPa


−

=

 

(12) 

where Em is rock mass deformation modulus and σci is 

uniaxial compressive strength of the intact rock. The other  
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Fig. 3 Comparison of LDPs extracted from the numerical 

models with different GSI 

 

Table 2 Descriptive information of the modeling data at 

different condition of rock mass quality, tunnel dimension 

and overburden depth 

Variable Minimum Mean Maximum SE Mean St Dev 

Tunnel Diameter (m) 6.00 8.14 12.00 0.39 2.74 

Overburden Depth (m) 50.00 113.27 200.00 7.68 53.79 

GSI 5.00 45.61 100.00 4.34 30.39 

UCS (MPa) 45.00 53.06 90.00 2.27 15.87 

m (Hoek-Brown’s constant) 8.00 9.39 16.00 0.40 2.78 

Cohesion (MPa) 0.08 1.50 8.80 0.29 2.00 

Deformation Modulus of rock mass (GPa) 0.50 19.36 119.29 4.12 28.84 

Tensile strength (MPa) 0.00 17.70 836.70 17.10 119.40 

Friction Angle (Deg) 22.00 34.52 50.00 1.33 9.34 

 

 
required equations for estimation of Mohr-Coulomb 
parameters is available in the reference of Hoek et al. 
(2002). 

The numerical model of a circular tunnel with diameter 
of 8 m and overburden depth of 100 m was developed to 
evaluate the tunnel convergence in different geotechnical 
condition according to Table 1. Variation of the vertical 
displacement at the tunnel crown versus distance from the 
face was plotted for the medium with different GSI in Fig. 
3. It should be noted that the vertical displacement of the 
tunnel crown normalized with the maximum vertical 
displacement in longitudinal profile and the distance from 
the face normalized with the tunnel diameter. 

As shown in Fig. 3, the quality of rock mas significantly 
influences on LDP and using of a single equation for both 
strong and weak rocks lead to an inaccurate estimation of 
LDP. However, in order to suggest a robust equation for 
estimation of LDP, it is necessary to develop much more 
numerical models at different conditions of tunnel 
dimension, overburden depth and rock strength. Table 2 
lists statistical information of the extra data regarding the 
different conditions of numerical modeling. SE mean 
represents standard error of the mean and St Dev indicates 
standard deviation of the parameters. 
 
 

4. Statistical analysis 
 

A comprehensive statistical analysis was conducted on  

 
(a) 

 
(b) 

Fig. 4 Variation of (a) m and (b) n with GSI 

 

 
(a) 

 
(b) 

Fig. 5 Variation of (a) m and (b) n with overburden depth 
 

 

the data derived from the numerical simulations. The LDP 

values were extracted for tunnel crown and it is tried to  
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(a) 

 
(b) 

Fig. 6 Variation of (a) m and (b) n with tunnel diameter 

 

 

establish an analytical equation for calculation of LDP at 

different geo-mechanical conditions. For this purpose, 

fitting techniques, including mathematical equations and 

nonparametric methods, were used to model the derived 

data. Curve fitting is the process of introducing 

mathematical relationships between dependent and 

independent variables in the form of an equation for a given 

set of data. The appropriate models for curve fitting of LDP 

data are S-shaped or sigmoid curve functions. One of the 

most common “S” shape function is logistic function with 

the following equation 

 

1
( )

1
n x

f x
me

−
=

+  

(13) 

where x varies in the range of [-∞, +∞], but it is often 

sufficient to compute the standard logistic function for x 

over a small range of real numbers such as a range 

contained in [−5, +5]. Also the value of logistic function 

varies in the range of [0, 1]. For fitting the logistic function 

on LDP curves, the radial displacement of tunnel was 

normalized with the maximum radial displacement and the 

distance from the face was normalized with the tunnel 

diameter. Also, m and n are constants which were 

significantly influenced by geo-mechanical conditions of 

tunnel.  

The logistic function has been used for estimation of 

LDP in previous studies, similar to the one adopted by Hoek 

1999. However, m and n in Hoek’s equation are constant for 

any conditions of tunnel and consequently a single LDP was 

proposed for all of geo-mechanical conditions. In the 

present study, the values of m and n were predicted on the 

basis of rock mass quality and then a more comprehensive 

equation was proposed for calculation of LDP in different 

geo-mechanical conditions. Variation of m and n with GSI 

were depicted in Fig. 4(a) and 4(b), respectively. 

As shown in Fig. 4, the constants of m and n 

significantly change with variation of GSI. However, 

variation of the constant of m was limited in the range of 

GSI<20 and variation of the constant of n was limited in the 

range of GSI>60. 

In addition of GSI, tunnel diameter and overburden 

depth significantly influence on LDP. Fig. 5 and 6 show 

variation of the both constants of m and n with overburden 

depth and tunnel diameter, respectively. As shown in Figs. 5 

and 6, there are not good correlations between the constants 

m and n with overburden depth and tunnel diameter. 

Therefore it is necessary to perform a nonlinear regression 

analysis to propose a robust equation for calculation of 

LDP. 
 

4.1 Regression analysis 
 

Regression analysis includes many techniques for 

modeling and analyzing several variables, when the focus is 

on the relationship between a dependent variable and one or 

more independent variables. One of the most appropriate 

form of mathematical regression analysis is least squares 

that finds the curve of best fit for a dataset, providing a 

visual demonstration of the relationship between the data 

points. Least squares means that the overall solution 

minimizes the sum of the squares of the residuals made in 

the results of every single equation 

2 2 2 2 2

1 1 2 2 3 3 4 4
( ) ( ( )) ( ( )) ( ( )) ( ( )) ...

i
err d y f x y f x y f x y f x= = − + − + − + − +  (14) 

The best curve has minimum error between curve and 

data points, then the derivative of the error with respect to m 

and n should be set each to zero 

0  and 0
err err

m n

 
= =

   

(15) 

Based on the mentioned equations, the suggested 

formulation for calculation of LDP is 

 X

1

1
n

y
me

−
=
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(16) 

where 
r

m

r

u
y

u
= ,

x
X

D
= , m and n were found in the different 

range of GSI as follows 
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Fig. 7 Comparison of the proposed LDP at different GSI 

 

 

Indeed, LDP curves of rock masses with high quality 

(GSI>60) match together because the rock mass 

deformation varies over an elastic range and is only 

proportional to the distance from the face. Based on the 

suggested equation in the present study, the LDP of a 

circular tunnel with a diameter of 8 m and overburden depth 

of 100 m at two different value of GSI (GSI = 10 and 60) 

was depicted in Fig. 7 and compared with the formulation 

proposed by Hoek, 1999. As shown in this figure, the 

suggested equation indicated that GSI significantly 

influences on LDP curve and the Hoek’s equation is only 

valid for the rock masses with rather poor quality. 
The amount of tunnel convergence, the rate of 

deformation and the extent of the plastic zone around the 
tunnel significantly was influenced by geological and 
geotechnical conditions, the in situ state of stress relative to 
rock mass strength, the ground water flow and pore 
pressure, and the rock mass properties (Ghiasi et al. 2012). 
However, the rock masses with different quality have 
completely different behaviors. For example the high 
quality rock masses behave elastically and the tunnel will 
be stable and deform linearly proportional to the distance 
from the face. The rocks with poor to moderate quality 
exhibit nonlinear deformation and the tunnel convergence is 
not only proportional to the distance from the face (Aydan 
et al. 1993). Alejano et al. (2009) evaluated the ground 
reaction curves defined in three different quality rock 
masses (good, average and poor) and found that the 
application of CCM varies according to the quality of the 
rock mass. 

However, LDP is significantly related to the rock mass 
quality and it is certainly applicable to use GSI, as a well-
known rock mass quality index, for calculation of the LDP. 

 

 

5. Conclusions 
 

In the present study, the available equations for 
calculation of LDP were evaluated and a comprehensive 
numerical modeling program was developed to investigate 
the effect of rock mass quality on the LDP of a circular 
tunnel. Results of the numerical modelling showed that the 
previous equations only valid when the tunnel surrounding 
rock masses deform in the range of linear elastic 
deformations, because they are only proportional to the 
distance from the face of tunnel. 

The quality of rock mass significantly influences on the 

LDP and using of a single equation for both strong and 
weak rocks lead to an inaccurate estimation of LDP.  

LDP curves of the tunnel surrounded by high quality 
rock masses (GSI>60) match together, because the rock 
mass deformation varies over a linear elastic range. 

The suggested equation indicated that GSI significantly 
influences on LDP curve and the Hoek’s equation is only 
valid for the rock masses with rather poor quality. 
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