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1. Introduction 
 

The evaluation of coupling behaviors between thermal 

load, fluid flow, and stress change is an important task in 

many rock engineering fields, such as the geological 

disposal of radioactive wastes, geothermal energy, CO2 

sequestration, deep underground mines, and conventional as 

well as unconventional oil and gas production.  In the 

countries considering the geological disposal of high-level 

radioactive waste (HLW), a multi-barrier system consisting 

of natural barrier and engineered barriers is applied for 

ensuring the long-term safety of the repository. Rock mass 

is the natural barrier and canister, buffer, backfill, and 

concrete plug are the components of engineered barriers. A 

performance assessment of the disposal system needs a 

long-term prediction of thermal, hydraulic, mechanical, and 

chemical behaviors of the multi-barriers. It is, therefore, an 

important topic to develop techniques of coupled thermo-

hydraulic-mechanical (THM) analysis in high temperature, 

high rock stress, and high water pressure context such as 

expected in an underground repository, which will be 

normally located at several hundred meters deep  
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underground (Tsang et al. 2012). A general review of the 

THM coupled processes expected in HLW repositories was 

given by Hudson et al. (2005).  

In the last decades, lots of efforts had been given for the 

development of THM analysis techniques.  Some 

commercial codes such as COMSOL, OpenGeySys, 

ABAQUS, FLAC, and etc. could be used as all-in-one 

solutions.  In some cases, integration of different codes 

was found to be more efficient to simulate the complex 

THM coupling behaviors. Table 1 lists various approaches 

for THM coupling applied to different fields.    

For developing a reliable THM coupling technique, it is 

essential to validate it with in situ or laboratory 

experiments. In order to develop reliable THM coupling 

techniques validated with in situ or laboratory experiments, 

an international cooperative project DECOVALEX was 

started in 1992. During the past decades, many in situ and 

laboratory tests had been modeled to enhance the reliability 

of THM coupling techniques in different phases (Hudson 

and Jing 2013). The recent phase of DECOVALEX-2015 

was completed in 2015 and DECOVALEX-2019 was 

launched.   

In this study, as a part of DECOVALEX-2015, THM 

coupling analysis using FLAC3D-TOUGH2 was carried out 

for the in situ heater experiment at Horonobe URL in Japan. 

The experiment was designed for investigating the complex 

THMC behaviors of the engineered barriers and natural 

barrier.  

Recently, new approaches utilizing an artificial neural  
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Abstract.  The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of 

underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock 

mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In 

order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled 

models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ 

THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency 

(JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that 

combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, 

buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for 

the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the 

modeling were compared with the measurements from the in situ THM experiment.  The predicted buffer temperature from the 

THM modelling was about 10°C higher than measurement near by the overpack. At the other locations far from the overpack, 

modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling 

was different from the measurements, the general trends of the variation with time were found to be similar. 
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Table 1 Codes used for THM coupling analysis 

Projects Codes References 

CO2 sequestration 

TOUGH2+FLAC 

OpenGeoSys 
STOMP+ABAQUS 

TOUGH2 +CODE_ASTER 

ECLIPSE+ABAQUS 

Rutqvist et al. 

(2010), 

Magri et al. (2012), 

Carroll (2011), 

Loschetter et al. 

(2012), 

Elyasi et al. (2016) 

Coal bed methane 
TOUGH2(EOS7C) 

TOUGH2+CODE_ASTER 

Stephen (2011), 

Loschetter et al. 
(2012) 

Geothermal 

OpenGeoSys +RockFlow 

FEHM 

CODE_BRIGHT 

TOUGH2+EGS 

Watanebe et al. 

(2009), 

Pandey et al. 
(2017), 

Olivella et al. 

(1996), 

Hu et al. (2012) 

Methane hydrate 
FLAC 

TOUGH2+FLAC3D 

Klar et al. (2010), 

Rutqvist et al. 
(2008) 

Mining FLAC Yang, et al. (2013) 

Oil sand 
(SAGD) 

COMSOL 

EXOTHERM+FLAC 
VISAGE/ECLIPS 

Pumaflow+ABAQUS 

Gong and Wan 

(2008), 

Li and Chalaturnyk 
(2005), 

Khan et al. (2011), 

Guy et al. (2013) 

Radioactive waste 
TOUGH2+FLAC3D 

OpenGeoSys+Rockflow 

CODE_BRIGHT 

DOE (2012), Kwon 

(2013), 

Yildizdag (2010), 

Li et al. (2013) 

Shale gas FRACMAN 
Dershowitz et al. 

(2011) 

Underground space CODE_BRIGHT Gesto et al. (2013) 

 

 

network have been reported for more reliable and efficient 

computer simulations.  Kwon et al. (2013) reported that 

the application of an artificial neural network (ANN) was 

useful for stepwise submodeling. Shahrbanouzadeh et al. 

(2015) performed a simulation of flow through dam 

foundation using finite element (Seep3D) and ANN. In this 

study, an ANN was applied to implement the measured 

temperatures from the in situ heater experiment as the 

boundary conditions in the modeling for more accurate 

calculation.  
 
 

2. In situ experiment at Horonobe URL 
 

An in situ experiment for investigating the THM 

behaviors of rock and engineered barriers including 

bentonite buffer, backfill, concrete plug, and concrete lining 

under the HLW repository conditions was prepared in full 

scale at Horonobe Underground Research Laboratory 

(URL) by Japan Atomic Energy Agency (JAEA). Horonobe 

URL is located in Wakanai, Hokaido, Japan. The in situ 

experiment is to simulate the THM behaviors in the HLW 

disposal concept of Japan, which was reported in the H12 

report (JNC 2000). According to the H12 report, the  

 

Fig. 1 Layout of the Horonobe EBS experiment (Sugita et 

al. 2015) 

 

 

Fig. 2 Layout of the buffer, overpack, and backfill and 

the parameters influencing on overpack temperature 

(Sugita et al. 2015) 
 

 

vitrified HLW will be disposed, several hundred meters 

deep underground, after emplacing in cast iron overpacks. 

The gap between the overpack and rock will be filled with 

tens of cm thick buffer, which will be made of the mixture 

of bentonite and sand. The in situ experiment was started in 

2015. Fig. 1 shows the layout of the in situ experiment. The 

test tunnel of size 5 m × 5.5 m is located at 350 m deep 

underground. The diameter of the vertical emplacement 

hole drilled in the floor is 2.5 m. The overpack’s diameter is 

0.82 m. The thickness of the buffer layer surrounding the 

overpack is  0.7 m-0.72 m. There is a 12 cm thick sand 

layer between buffer and rock. The test tunnel is supported 

by a concrete lining and a concrete plug is installed to seal 

the test area.  

Fig. 2 shows the layout of the buffer, overpack, and 

backfill. For the in situ experiment, various sensors were 

installed to measure the thermo-hydro-mechanical 

behaviors. Table 2 lists the information of the sensors 

installed for the THM experiment. Ten thermocouples were 

installed on the surface of the overpack. Fig. 3 shows the 

temperature variation measured from the thermocouples. 

The measured temperatures were used as the thermal  
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Table 2 Sensors installed for the in situ THM experiment 

(Sugita et al. 2015) 

Sensor ID r(mm) θ(°) 
d 

(mm) 

Piezometer 

PP001 955 90 

5,200 

PP002 605 270 

PP003 955 270 

PP004 1165 123.75 

Borehole extensometer 
DS001-1 200 337.5 

DS002-1 780 337.5 

Borehole extensometer 
DS001-2 200 337.5 

4,850 
DS002-2 780 337.5 

Borehole extensometer DS002-3 780 337.5 4,150 

Pressure cell 

TP008 517.5 11.25 

 

3,450 

TP009 605 0 

TP010 867.5 11.25 

TP011 955 0 

Borehole extensometer DS02-4 780 337.5 

Thermocouple in the buffer 

TE007 605 45 

TE008 780 45 

TE009 955 45 

Borehole extensometer DS002-5 780 337.5 
3,100 

Psychrometer PS009 955 315 

Borehole extensometer DS002-6 780 337.5 2,050 

Thermocouple of the simulated 

overpack 

TEOP001 205 270 4,500 

TEOP002 410 90 4,150 

TEOP003 410 270 4,150 

TEOP004 410 90 3,625 

TEOP005 410 270 3,625 

TEOP006 410 0 3,450 

TEOP007 410 180 3,450 

TEOP008 410 90 3,100 

TEOP009 410 270 3,100 

TEOP010 205 270 2,750 

 

 

Fig. 3 Measured overpack temperatures (Sugita et al. 

2015) 
 

 

boundary conditions in the computer simulation carried out 

in this study.  

Normally, the maximum buffer temperature is required 

to be maintained lower than 100°C in order to prevent 

possible loss of capability of buffer material, which may be 

induced by certain chemical variation in minerals in high 

temperature condition. The prediction of THM behaviors in 

the in situ experiment was the topic of Decovalex-2015 

Task B2, in which five research teams including BGR 

(Germany), CAS (China), DOE-LBNL (USA), KAERI-

Inha University (Korea) and JAEA (Japan) were 

participated.  

 

 

3. THM coupling method 
 

3.1 FLAC3D-TOUGH2 coupling 
 
TOUGH2 is a general-purpose numerical simulation 

program for multi-dimensional fluid and heat flows of 

multiphase, multi-component fluid mixtures in porous and 

fractured media (Pruss et al. 1999). It has been applied to a 

wide range of problems in heat and moisture transfer, and in 

the drying of porous materials. FLAC3D is a well-known 

and widely used commercial geo-mechanical code 

developed by Itasca consulting group (Itasca 2011). Since 

FLAC3D possesses a variety of options for mechanical 

analysis under different conditions, it can cover the 

deficient mechanical calculation capacity in TOUGH2. 

By linking the codes TOUGH2 and FLAC3D, coupled 

thermo-hydraulic-mechanical (THM) processes can be 

performed for investigating multiphase flow in rock masses 

or other geological media under various stress conditions. 

The technique for linking between TOUGH2 and FLAC3D 

code was developed by Rutqvist and Tsang (2002, 2003). 

The combined TOUGH2-FLAC3D simulator has been 

successfully applied to various projects for radioactive 

waste disposal, geothermal operation, CO2 storage in 

geological formation, hydrate sediment, etc. (Rutqvist et al. 

2010, Rutqvist 2011).   

In this study, a TOUGH2-FLAC3D coupling analysis 

technique with an artificial neural network (ANN) routine 

was developed. Fig. 4 shows the calculation flow for the 

THM analysis using the two codes. TOUGH2 was used for 

thermal-hydraulic (TH) analysis, while FLAC3D was used 

for thermal-mechanical(TM) analysis. TOUGH2/EOS3 

(Equation Of State 3) module for the multi-phase and multi-

component analysis of water and air flow was used for the 

hydraulic analysis. The TOUGH2/EOS3 module, fluid flow 

is governed by a multiphase extension of Darcy’s law (Hu 

et al. 2013). In the mechanical analysis, Mohr-Coulomb 

failure criterion was used for calculating elastic-perfectly 

plastic deformation.  Heat conduction was only considered 

in the thermal analysis. The results such as saturation(S) 

and pressure (P) from TH were exported as input files to 

define the initial condition in FLAC3D. The results such as 

porosity(φ), temperature(T), and permeability(K) from TM 

analysis were exported to define the initial condition in 

TOUGH2. Such a sequential exchange of calculation results 

was carried out with adequate time interval, which was 1 

day, in this study. The reason to perform thermal calculation 

again in FLAC3D is that the variation in water content in 

rock and buffer can change the thermal and mechanical  
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Fig. 4 Flow of THM coupling analysis using TOUGH2 

and FLAC3D and neural network 

 

 

Fig. 5 Model mesh for three-dimensional THM analysis 

(B: buffer, H: overpack, S: sand, CP: concrete plug, CL: 

concrete lining) 

 

 

properties of the materials. Thermal and mechanical 

analysis with the changed properties can result in different 

temperature distribution from TH analysis. By 

implementing the temperatures calculated from FLAC3D as 

an initial condition in TOUGH2 in the next step, the 

temperature difference could be adjusted. For more accurate 

simulation, the measured overpack temperatures at different 

measuring points were used as boundary conditions.  In 

order to implement the temperature boundary conditions as 

close to the actual measurements as possible, a new way 

using ANN based on backpropagation learning algorithm 

was developed.  

Fig. 5 shows the 3D model mesh used in this study. 

About 45,000 zones were allocated for considering backfill, 

concrete lining, concrete plug, open tunnel as well as the 12 

cm thick sand layer surrounding the buffer.  

 
3.2 Artificial neural network 

 

Artificial neural networks (ANN) are computer 
algorithms, which have the capacity to learn the 
relationships between input and output parameters. ANNs 
had already been applied in various areas for prediction, 
classification, pattern recognition, etc. It needs learning or 
training process from previous experiences. During the 
learning process, the error between the desired or known 
output and the predicted output from the network should be 
minimized by adjusting the network(Engelbrecht 2007). 
Different learning algorithms can be used for training of the 
networks. Back-propagation (BP) is one of the most popular 
learning algorithms. A BP ANN consists of a number of  

 

Fig. 6 Structure of artificial neural network 

 

 

Fig. 7 Neural network for calculating the overpack 

temperatures as boundary conditions 

 

 
(a) 2 hidden nodes 

 
(b) 4 hidden nodes 

Fig. 8 Measured overpack temperatures and calculated 

temperatures from neural network after training 
 
 
neuron-containing layers. The neurons in input and hidden 

layers and hidden and output layers are interconnected as 

shown in Fig. 6. During the training of BP ANN, the weight 

values (wij, vij) allocated at each connection are adjusted to 

minimize the error. 

The number of neurons in the input and output layers 

are the same as the number of input and output parameters. 

In the case of the hidden layer located in between the input  

Bias node

Bias node

Output layer

Hidden layer

Input layer
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Fig. 9 Comparison of all measured overpack temperatures 

and calculated temperatures from the neural network for 

testing the network 

 

 

and output layers, the adequate number of neurons needs to 

be determined from trial and error.  

In the modelling, the measured overpack temperatures 

were used as boundary conditions. As listed in Table 2, ten 

thermocouples were installed at different locations in the 

overpack. As shown in Fig. 3, there are significant 

differences between the measured temperatures at the 

locations.  It is, therefore, not recommended to use the 

average value as the boundary condition. Another problem 

is that it is not easy to match the measuring locations and 

grid points in the model.  

It would be better to develop a way to calculate the 

temperatures, which are strongly dependent on the 

measuring location as well as time, and to implement them 

as boundary conditions in the model. In order to do that, a 

neural network as shown in Fig. 7 was trained and tested.  

The trained neural network using the measured temperature 

data could calculate the complex temperature variation at 

any locations in the overpack during the calculation time.  

The network was then implemented in the simulation model 

using a FISH program to calculate the boundary overpack 

temperatures. 
Three neurons for depth (d), distance from center axis of 

overpack (r), and time (t) are in the input layer and one 
neuron for overpack temperature is in the output layer. In 
the case of hidden layer, 2 - 4 hidden neurons were tested to 
select the adequate number of neurons in the hidden layer. 
For training of the neural network, 900 measured data were 
randomly selected and trained. During the training, the 
weight values of each connection between input-hidden 
nodes and hidden-output nodes were adjusted until the 
network predicts the measured temperatures with acceptable 
errors. Fig. 8 shows the comparison of the temperatures 
measured and predicted from the network after training. 
Since the network with 4 hidden neurons predicted the 
temperatures more accurately than with 2 hidden neurons, a 
network with 4 hidden neurons was used in the further 
study. Before utilizing the trained network, it should be 
tested in order to check the reliability of the network. 
Testing of the trained network was done with 17,878 data, 
which were not used for training. As shown in Fig. 9, the 
network could successfully predict the temperatures. The 

average value of the measured temperature was 89.15°C, 
while the network predicted 89.3°C.  
 

 

4. THM analysis 
 

4.1 Material properties 
 

The material properties of overpack, buffer, and rock in 

the modelling were provided in the JAEA Task B2 

definition report (Sugita et al. 2015).   

  

4.1.1 Parameters for buffer 
Mohr-Coulomb plastic model was used for the buffer. 

Cohesion was set to zero and the friction angle was 

specified as 16.7°. Biot’s constant of the buffer was set as 

1.0.  Thermal conductivity of the buffer (Kb) was 

calculated using the following equation, which was 

provided by JAEA for the buffer used in the in situ 

experiment 

𝐾b = 0.444 + 0.0138w + 6.14e − 3w2 − 1.69e − 4w3 (1) 

where, w is gravimetric water content(%). 

Initial gravimetric water content in the buffer was set as 

12.5%. For the initial condition of water content of 12.5%, 

thermal conductivity was calculated as 1.2458 W/(m∙K).  

In the modelling, the thermal conductivity with water 

content was assumed to be changed linearly from 0.44 

W/(m∙K) in dry condition to 2.0 W/(m∙K) in fully saturated 

condition. 

The given permeability of 4E-20 m
2
 for the buffer was 

used in the modelling. Capillary pressure was assumed to 

follow the van Genuchten function, given by 

Pc = Po[Se
−1

a⁄ − 1]1−a, Po =
1

λ
  and a=1-

1

n
                    (2) 

With λ = 8E-3(1/m) and n = 1.6 as given in the JAEA 

report, parameters in Eq. (2) were derived as Po = 1.22 MPa 

and a = 0.375. The maximum capillary pressure was 

assumed to be 1E7 Pa. The relative permeability of liquid 

was calculated by using the following equation.  The value 

of 1.3 was determined from the back analysis of infiltration 

test (Sugita 2015). 

RPliq = 𝑆𝑙
1.3

 (3) 

where, RPliq represents relative permeability of liquid, Sl is 

liquid saturation,  

 

4.1.2 Parameters for rock mass 
Bulk and shear modulus were calculated from given 

Young’s modulus and poisson's ratio as 1.046 GPa and 765 

MPa, respectively. Density of 1,354 kg/m
3
 and porosity of 

44.82% were used. Rock was assumed to be fully saturated 

in the initial condition. Biot’s constant of rock mass was set 

as 1.0. Thermal conductivity of the rock mass in dry 

condition was 0.579 W/(m∙K), while it was 1.231 W/(m∙K). 

Initial gravimetric water content in rock mass was 33.1%. A 

hydraulic conductivity of 2.8E-8 m/s measured at Wakanai 

formation was used in the modeling. Permeability 
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Table 3 Material properties used in the modeling 

 Properties Buffer Rock Overpack 

Mechanical 

Model type M-C Elastic Elastic 

Bulk modulus 

(Pa) 
31.28E6 1.046E10 1.67E11 

Shear 

modulus(Pa) 
14.43E6 0.752E10 7.69E10 

Cohesion(Pa) 0 - - 

Friction angle 16.6 - - 

Density(kg/m3) 1,600 1,354 7,800 

Poisson’s ratio 0.3 0.21 0.25 

Thermal 

Dry thermal 
conductivity 

(W/(m∙K)) Wet 

thermal 

conductivity 

(W/(m∙K)) 

0.44 
2.0 

0.579 
1.231 

53 

Specific heat 

(J/kg∙K) 
1,000 833 460 

Thermal 

expansion coeff. 
1E-6 1.34E-5 1.64E-6 

Hydraulic 
Permeability(m2) 4E-20 1.33E-15 - 

Porosity 0.403 0.386 0.001 

van Genuchten 
a 0.375 0.503  

Po (pa) 1.22E6 0.987E6  

 

Table 4 Material properties of concrete, sand, and backfill 

  
Concrete Sand Backfill 

Mechanical 

Model type Elastic Elastic M-C 

Bulk modulus (Pa) 16.7E9 5E6 5E6 

Shear modulus(Pa) 12.5E9 1E6 1.07E6 

Cohesion(Pa) - - 0 

Friction angle - - 10 

Density(kg/m3) 2,280 1,560 1,400 

Poisson’s ratio 0.2 0.4 0.4 

Thermal 

Dry thermal 

conductivity 

(W/(m∙K)) 

Wet thermal 

conductivity 

(W/(m∙K)) 

2.56 

 

2.56 

0.789 

 

2.73 

0.337 

 

1.408 

Specific heat (J/kg∙K) 1,050 1,000 1,260 

Thermal expansion 

coeff. 
1E-6 1E-8 1E-6 

Hydraulic 
Permeability(m2) 1.021E-17 1.33E-14 1.79E-19 

Porosity 0.13 0.4 0.46 

Van Genuchten 
a - 0.627* 0.375 

Po (Pa) - 686* 1.22E6 

 

 

of rock mass was calculated as 2.858E-15 m
2
 with the 

dynamic viscosity of water of 0.001002 kg/(m∙s) at 20°C. 

For the rock mass, the van Genuchten parameter α was 

given as 9,928E-3 (1/m), a = 0.503 were given by JAEA. 

Table 5 Equations for material property changes during the 

calculation   

Rock 

Thermal 

conductivity(W/(m∙K) * 
0.579+0.0197w 

Specific heat (kJ/kg∙K) * (62.6+3.2w)/(100+w) 

Relative permeability* S4 

Buffer 

Thermal 

conductivity(W/(m∙K)) * 

0.444+0.0138w+6.14e-3w2-
1.69e-4w3 

Specific heat (kJ/kg∙K) * (34.1+4.18w)/(100+w) 

Young’s modulus(MPa) * 58.74-1.87w 

Relative permeability* Sl
1.3 

Sand 

Thermal 

conductivity(W/(m∙K)) 
Ks

1-ϕKw
ϕsKa

ϕ(1-s) 

Relative permeability* S4 

Backfill 

Thermal 

conductivity(W/(m∙K)) 
0.339+0.0297w 

Relative permeability* Sl
1.3 

Concrete Relative permeability* S4 

 

 

Then, 

Po =
1

9.928e − 3
= 100.7 m = 0.987 MPa (4) 

The relative permeability in rock mass was calculated 

using Corey’s function. 

RPliq = S4, RPgas = (1 − S2)(1 − S2)      (5) 

S =
(𝑆𝑙 − 𝑆𝑙𝑟)

(1 − 𝑆𝑙𝑟 − 𝑆𝑔𝑟)
 (6) 

where, RPgas  represents relative permeability of gas, Sl  is 

liquid saturation, Slr  is relative saturation of liquid,  Sgr is 

relative saturation of gas. In this modelling, Slr = Sgr = 0.0. 

The initial capillary pressure in rock mass was zero, since 

the effective saturation was 1.0. 
  

4.1.3 Parameters for overpack 
An elastic modulus of 200 GPa and a Poisson’s ratio of 

0.3 were specified in JAEA report and were used. Thermal 

conductivity of 53 W/(m∙K), specific heat of 460 J/kg∙K, 

and thermal expansion coefficient of 1.64E-6 were used. 

Since it can be assumed that there is no groundwater flow 

through the overpack, extremely low permeability was 

allocated. As mentioned before, the measured overpack 

temperatures at different locations were used as the 

boundary condition.    
 

4.1.4 Parameters for other materials 
The properties of backfill were from JAEA report.  In 

the case of sand, the mechanical and hydraulic properties 

were assumed from the properties of rock, buffer and 

backfill. Thermal conductivity of sand (Ksand) was 

calculated using geometric mean of the thermal 

conductivity of soild(Ks), water(Kw), and air(Ka).   

K =  𝐾𝑠
1−∅ 𝐾𝑤

∅𝑆𝐾𝑎
∅(1−𝑆)  (7) 
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where,  ∅ is porosity and S is saturation of water. The 

typical quartz, air, and water thermal conductivities, 7.69 

W/(m·K), 0.026 W/(m·K), and  0.58 W/(m·K), 

respectively, were used in the calculation. 
Table 3 summarizes the material properties used in the 

modelling; isotropic material properties were assumed. The 
material properties of concrete, sand, and backfill are listed 
in Table 4. Table 5 shows the equations for implementing 
the material property change with water content variation. 

Asterisk (*) marked properties were continuously 

changed during the calculation.    

 

 
 
4.2 Modeling condition 
 

The following are the initial conditions for the 

modelling.  

• Initial temperature: 15 °C 

• Heater temperature change with time  

• Saturation of buffer: 50% 

• Saturation of rock: 100% 

• Saturation of sand: 100% 

• Materials: rock, buffer, overpack, sand, backfill, 

concrete lining, concrete plug 

 

Fig. 10 Distribution of rock properties in buffer at 100 days after heating 

 

Fig. 11 Calculated results from THM coupling analysis at 100 days after heating 
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• Constant temperature boundary 

• Half model with fixed boundary  

Some information, especially, for backfill and sand were 

missing; resulting in the use of several assumptions as 

followings; 

- Backfill 

• Initial water content: 30% (91% of saturation) 

• Initial thermal conductivity: 1.3116(W/m∙K) with 91% 

saturation 

• Thermal expansion: 1/100 of buffer 

• Initial pore pressure: 2.2E5 

- Sand 

• Permeability: 10 times higher than rock 

• Thermal conductivity: geometric mean of thermal 

conductivity of solid, water, and air 

• Initial pore pressure: 2.2E5 

• Thermal expansion coefficient: same as backfill 

• Elastic modulus: same as backfill 

Direchlet boundary conditions, with which extremely 

large volume was allocated in the boundary elements, were 

applied for simulating the fixed thermal and hydraulic 

boundary conditions.   
 

4.3 Results from THM analysis 
 

Fig. 10 shows the distribution of bulk modulus, thermal 

 

 

 

conductivity, porosity, and specific heat capacity in buffer at 

100 days after heating.  The material properties were 

changed with time due to the variation of water content. As 

expected, the buffer near the rock shows lower bulk 

modulus and higher thermal conductivity and specific heat 

than initial values due to the increase of water content with 

time.  

Fig. 11 shows the stress, temperature, saturation, and 

pore pressure distributions at 100 days after heating. The 

pore pressure (PP) initialized in FLAC3D was calculated 

using the gas pressure (Pg) and liquid pressure (Pl) from TH 

analysis using TOUGH2.  

PP = Sg x Pg + Sl x Pl   (7) 

where, Sg is the gas saturation and Sl is the liquid saturation.  

Relatively higher compressive stress of 1MPa might be 

related to the thermal expansion of the overpack toward the 

tunnel floor with the increase of temperature. The lower 

temperature in the lower part of the buffer can be explained 

with the fact that the thermal conductivity of sand, which is 

located below the buffer, is higher than that of buffer and 

backfill. Saturation and pore pressure were changed from 

the outer buffer zone due to the inflow of groundwater from 

the rock.  

Fig. 12 shows the comparison of measured and 

calculated temperatures at 3 locations, TE007, TE008, and  

 

Fig. 12 Comparison of measured and calculated temperatures at different locations 

 

Fig. 13 Comparison of pressure change with time at different locations 
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TE009 installed in the buffer. In the case of TE007, 

which is close to the overpack, the prediction from THM 

modelling was about 10 °C higher than measurement. At 

the other two locations, which are far from the overpack, 

modelling predicts slightly lower temperatures than the 

measurements. It tells the thermal conductivity of buffer 

implemented in modelling is lower than actual thermal 

conductivity. In this modelling, the thermal conductivity of 

buffer was updated during the modeling using Eq. (1), 

which shows the relationship between thermal conductivity 

and water content,  but the possible thermal conductivity 

related to porosity change was not included. With the 

consideration of thermal conductivity adjustment with 

porosity change, the difference between modelling and 

measurement might be reduced. Fig. 13 shows the 

comparison of measured and calculated pressure at different 

locations. Measured pressure means the total pressure 

measured by using a pressure cell, while the calculated 

pressure means the variation of pore pressure from the 

initial pressure at the same location. Even though the 

magnitude of pressures from modelling was different from 

the measurements, general trend of the variation with time 

was similar. In the case of TP9, the trend of variation with 

time as well as the magnitude of pressure were quite similar 

to  the  actua l  measurement .  Fig.  1 4  shows the 

 

 

 

comparison of suction pressure in the buffer at the location 

of psychrometer PS009. There is about 0.5MPa difference 

between the measurement and computer simulation in the 

early stage. This may yield errors in prediction in the early 

stage, since the suction pressure is related to the evolution 

of swelling pressure, swelling strain, relative humidity, etc. 

(Tong et al. 2010). 

Fig. 15 shows the comparison of extension at different 

locations. In the early stage, the extensions at the locations 

were similar; in the modelling, the extensions were steadily 

decreased in contrast to the continuous increase in actual 

measurement. There are two possible explanations for the 

difference. The first one is elastic modulus change. The 

extension data showed that the elastic modulus in modelling 

was lower than actual elastic modulus in the early stage, but 

later it was higher than the actual one. Even though the 

elastic modulus change in actual condition might be 

influenced by many parameters such as water content, 

temperature, porosity, etc., water content was only 

considered to adjust the elastic modulus in the modelling. 

The other possible explanation is swelling pressure, which 

was not considered in this modelling. Usually, a saturated 

bentonite can produce high swelling pressure up to several 

MPa, depending on bentonite type and confining condition. 

With the consideration of the swelling pressure in 

 

Fig. 14 Comparison of suction pressure at PS9 

 

Fig. 15 Comparison of extension at different locations 
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modelling, the extension in the later stage can be predicted 

more accurately. Further investigation is needed for more 

accurate prediction of deformational behaviour. 

 

 

5. Conclusions 
 

In this study, a THM coupling analysis, in which TM 

and TH coupling analysis were sequentially carried out 

using TOUGH2 and FLAC3D, was developed and applied 

to the in situ THM experiment carried out at Horonobe 

URL. Using FISH function, the material property changes 

related to water content could be effectively implemented. 

With the help of a backpropagational artificial neural 

network, the measured overpack temperatures could be 

successfully allocated as boundary conditions.  With the 

sequential TM-TH coupling analysis, the variation of 

material properties including thermal conductivity, bulk 

modulus, permeability, and specific heat of buffer, backfill, 

and rock related to the variation of water content could be 

effectively considered in the modelling.    

Temperature, pressure, and displacement could be 

reasonably predicted with the THM coupling analysis using 

TOUGH2-FLAC3D. At a measuring point close to the 

overpack, the predicted temperature from THM modelling 

was higher than the measurement, while it was slightly 

lower temperature than measurement at the locations far 

from the overpack. From that it was possible to deduce the 

thermal conductivity of buffer used in modelling was lower 

than actual thermal conductivity. The predicted pressure 

variation with time from modelling was similar to the 

measurements in general. In the case of TP9, the trend of 

variation with time as well as the magnitude of pressure 

were quite similar to the actual measurement.  The 

predicted extensions in buffer were different from actual 

measurements, even though they were increased similarly in 

the early stage.  The difference might be related to elastic 

modulus change, which can be influenced by many 

parameters such as water content, temperature, and porosity. 

The difference between the modelling and measurement 

might be improved with more precise implementation of 

properties and the consideration of swelling pressure 

expected in saturated buffer. 
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