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1. Introduction 
 

Generally, Mathematical modeling of natural 

phenomena usually express with linear and nonlinear partial 

differential equations.  

In large deflection problems, preparing analytical 

solution for these problems ate vey limit. Therefore 

analyzing of the beam vibration problems uses numerical 

techniques such as:  finite difference, spectral methods, 

finite elements and differential quadrature methods.  

One of the interesting areas of scientific is to analysis 

the structures on elastic foundations, which are widely, use 

in engineering area, such as foundation, pavement and 

railroad, pipeline, and some aerospace structures 

applications. Many simplified engineering problems related 

to the Soil-Structure Interaction (SSI) are modeled as 

Winkler model to consider the interaction as a beam resting 

on elastic foundation. 

It has been so long time that many researchers have 

been working on nonlinear vibration problems in soil 

structure interactions (SSI). One of the well-known 

problems is Euler Bernoulli beams resting on linear on 

nonlinear foundations. There are different approaches that 

use for modeling the soil such as Winkler, Pasternak or 

Vlasov, Flonenko - Borodich foundations. 

Winkler approach is a linear algebraic relationship is 

introduces between the normal displacement of the structure 

and the contact pressure (Gorbunov-Posadov et al. 1973). A 

set of mutually parallel independent spring elements are  
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used in the Winkler model to represent the soil medium (Al- 

Hosani et al. 1995). In this way, considering the nonlinear 

behavior of the problems going to be more easier and 

comparable (Soldatos et al. 1985). Gupta et al. (2006) had 

focused on the  vibration and buckling response of polar 

orthotropic circular plates with linearly varying thickness.  

Auersch et al. (2008)  presented a study about infinite 

beams on half-space compared with finite and infinite 

beams on a Winkler support. The consideration of soil-

structure interaction of an Euler-Bernoulli beam had been 

studied by Kacar et al. (2011). The governing differential 

equations of the beam are solved by using Differential 

Transform Method (DTM).   

Winkler foundation used in the another study by 

Motaghian et al. (2011) in which they had considered a 

mathematical approach to achieve an accurate solution of  

Euler-Bernoulli beam with mixed boundary conditions. 

Ghannadias et al. (2015) tried to prepare an accurate and 

direct modeling technique for modeling uniform 

Timoshenko beam with arbitrary boundary conditions.  

Zahedinejad (2016) studied the soil-structure interaction 

of FG beams on elastic foundations and thermal 

environment effects. Many researchers have been worked 

on the Winkler elastic foundation modeling in the past few 

decades (Lohar et al. 2016, Tsiatas 2010, Akgöz et al. 2015, 

Niknam et al. 2015, Mirzabeigy et al. 2014, Ying et al. 

2008, Xing et al. 2013, Shariyat et al. 2011, He et al. 2016, 

Rabia et al. 2016, Hadji et al. 2015, Bayat et al. 2018, 

2017a, b, c).  
To solve nonlinear vibration problems analytically, the 

only way is to use or prepare some analytical or semi 
analytical approaches for these problems. In last few 
decades, many researches have proposed some new 
approaches such as:  Parameter Expansion Method (Xu 
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2007), Differential Transform Method (Arikoglu et al. 
2006), Variational iteration Method (Liu 2011), Homotopy 
Perturbation Method (Shou 2009). In this study, Max-Min 
Approach (MMA) is applied to solve the nonlinear 
vibration equation of Euler-Bernoulli beam resting on a 
Winkler elastic foundation which was proposed by He 
(2008). It has been tried to solve the problem by suing only 
one iteration. The results are compared with other analytical 
and numerical solutions. 
 

 

2. Description of the problem 
 

Consider a straight beam on an elastic foundation with 
length L, a cross-section A, a mass per unit length M, 
moment of inertia I, and modulus of elasticity E that 
subjected to an axial force of magnitude P  as shown in 
Fig. 1. In Fig. 1, a scheme of simply supported buckled 
Euler-Bernoulli beam fixed at one end resting on Winkler 
foundation is presented.  The most advantages of using 
linear Winkler springs is to make the calculations easier. 

The basic assumptions of the beam theory are 
considered such as: 

1) It has been considered the isotropic and elastic state. 
2) The beam deformation is dominated by bending and 

the distribution and rotation are negligible. 
3) The beam is along as slender with a constant section 

along the axis. 
The equation of motion for an axially loaded Euler-

Bernoulli beam by considering the mid-plane stretching 
effect is 
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( ) ( , )
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where Kʹ is a foundation modulus and U is a distributed 

load in the transverse direction. 

Assume the non-conservative forces were equal to zero. 

Therefore, Eq. (1) can be written as follows 
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Here we introduce the following non-dimensional 

variables 
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(3) 

where ( )R I A
 

is the radius of gyration of the cross-

section. We assume the elastic coefficient of Winkler 

foundation is constant 0( )K X K   Then Eq. (1) can be 

written as follows 
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(4) 

If we assume ( , ) ( ) ( )W X t w t X in which ϕ(X) is 

the first Eigen mode of the beam and using the Galerkin 

method, then we will have the following governing 

nonlinear vibration equation of motion for an axially loaded 

Euler-Bernoulli beam (Javanmard et al. 2013) 

2
3

1 2 0 32

( )
( ) ( ) ( ) 0

d w t
P K w t w t

dt
      

 
(5) 

 

Fig. 1 Schematic representation of an axially loaded 

Euler-Bernoulli beam resting on Winkler foundation 
 

 

The initial conditions for center of the beam are 

(0) , (0) 0w dw dt  
 (6) 

The value of the α1, α2 and α3 can be obtained as followd 
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3. Basic idea of max-min approach (MMA) 
 

Consider a generalized nonlinear oscillator in the form 

( ) 0,      (0) ,      (0) 0,w w f w w w    
 (8) 

where f(w) is a non-negative function of w. According to the 

idea of the max–min method, we choose a trial-function in 

the form 

 ( ) cos ,w t t 
 

(9) 

where ω the unknown frequency to be further is 

determined. 

Observe that the square of frequency, ω
2
, is never less 

than that in the solution 

1 min( ) cos ( ),w t f t 
 

(10) 

of the following linear oscillator 

min 0,        (0) ,       (0) 0,w w f w w    
 (11) 

where fmin is the minimum value of the function f(w). 
In addition, ω

2
 never exceeds the square of frequency of 

the solution 

1 max( ) cos ( ),w t f t 
 

(12) 

of the following oscillator 

max 0,        (0) ,       (0) 0,w w f w w    
 (13) 

where fmax is the maximum value of the function f(w). 

Hence, it follows that 

2 maxmin .
1 1

ff
 

 
(14) 
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According to He Chentian interpolation (He 2008), we 

obtain 

2 min max ,
m f n f

m n





  

(15) 

or 

2 min max ,
1

f k f

k





  

(16) 

where m and n are weighting factors, k=n/m. So the solution 

of Eq. (8) can be expressed as 

min max( ) cos ,
1

f k f
w t t

k


 


 (17) 

The value of k can be approximately determined by 

various approximate methods (Ozis and Yildirim 2007, 

2009). Among others, hereby we use the residual method. 

Substituting (17) into (8) results in the following residual 

   2( ; ) cos( ) cos( ) cos( )R t k t t f t         
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where 
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1
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k






. 

If, by chance, Eq. (17) is the exact solution, then R(t;k) 

is vanishing completely. Since our approach is only an 

approximation to the exact solution, we set 

min max

0
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1
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
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where T=2π/ω. Solving the above equation, we can easily 

obtain 

 

max min

2

0

.

1 cos . cos

f f
k

t f t dt








 

 

(20) 

Substituting the above equation into Eq. (17), we obtain 

the approximate solution of Eq. (8). 
 

 

4. Application of MMA 
 

We can re-write Eq. (5) in the following form 

 2
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(21) 

We choose a trial-function in the form 

( ) cos( )W t t 
 (22) 

where ω the frequency to be is determined. By using the 

trial-function, the maximum and minimum values of ω
2 
will 

be 
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So we can write 
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(24) 

According to the Chengtian’s inequality (He 2008), we 

have 

   2
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where m and n are weighting factors, k=n/m+n. Therefore 

the frequency can be approximated as 

  2
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(26) 

Its approximate solution reads 

 0
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(27) 

In view of the approximate solution, Eq. (26), we re-

write Eq.(21) in the form 

3
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If by any chance Eq. (26) is the exact solution, then the 

right side of Eq. (28) vanishes completely. Considering our 

approach which is just an approximation one, we set 
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3 3
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where T=2π/ω. Solving the above equation, we can easily 

obtain 

3

4
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Finally, the frequency is obtained as 
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Hence, the approximate solution can be readily obtained 
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The ratio of Non-linear frequency (ωNL) to Linear 

frequency ωL is 
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5. Results and discussion 
 

The Max-Min Approach (MMA) is used to obtain an 

analytical solution for simply supported beam at constant 

elastic modulus. To obtain numerical solution we must 

specify the parameter β. This parameter depends on value of 
α1, α2, α3 and p, then we have 

 
3

2 1 0p K




 

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(35) 
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Table 1 Comparison of nonlinear to linear frequency ratio 

(ωNL/ωL) for simply-supported beams 

α β 

Present 

Study 

(MMA) 

EBM 

(Javanmard et al. 

2013) 

Pade approximate 

P{4,2}(Azrar et al. 

1999) 

Pade approximate 

P{6,4}(Azrar et al. 1999) 

0.2 3 1.04403 1.04403 1.04388 1.04388 

0.6 3 1.34536 1.34536 1.33973 1.33970 

1 3 1.80277 1.80277 1.78468 1.78442 

1.5 3 2.46221 2.46221 2.42618 2.42541 

2 3 3.16227 3.16227 3.10845 3.10712 

2.5 3 3.88104 3.88104 3.80991 3.80802 

3 3 4.60977 4.60977 4.52172 4.51927 

 

 
(a) 

 
(b) 

Fig. 2 Comparison of MMA solution of w(t) based on 

time with the Runge-kutta solution for simply supported 

beam (a) a=0.5, p=20, K0=200 and (b) a=1, p=10, 

K0=100 

 

 

So Eq. (34) become 

23
1

4

NL

L





 

 

(36) 

For simply supported beam the trial function ϕ(X)=sin(π 

X) is assumed. The first mode of the vibration give the most 

behavior of the systems during any excitations. 

Table 1 represents the comparison of present study with  

 

Fig. 3 Influence of K0 on nonlinear to linear frequency base 

on ∆ for p=5 

 

 

Fig. 4 Influence of axial load on nonlinear to linear 

frequency base on ∆ for K0=300 

 

 

the results obtained by (Azrar et al. 1999) for different 

values of amplitude and β. 

The numerical procedure of the problem has been 

presented in Appendix A. The presented analytical approach 

are compared with the results of EBM and Azrar et al. 

(1999). 

The displacement comparison are shown in Fig. 2 for 

simply supported beam (a) a=0.5, p=20, K0=200 (b) a=1, 

p=10, K0=100. Fig. 3 is Influence of K0 on nonlinear to 

linear frequency base on ∆ for p=5. The influence of axial 

load on nonlinear to linear frequency base on ∆ for K0=300 

are shown in figure 4. 

Fig. 5 is the Effect of K0 and p parameters on phase-plan 

diagram for the cases (A): a=2, p=20 and (B): a=0.5, 

K0=200.  

Fig. 6 is shown the sensitivity analysis of frequency 

MMA solution for various parameters.  

By increasing ∆ the ratio of nonlinear to linear 

frequency are increased and decreasing the stiffness it leads 

to lower values of frequency. In general, large vibration 

amplitude will yield a higher frequency ratio.  In large 

amplitude ratios, the effect of the non-linearity due to mid-

plane stretching is dominant and neglecting it introduces 

error in the results. It has been shown that the only one 

iteration of the proposed method is preparing a high 

accurate solution for whole domain. 
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(a) 

 
(b) 

Fig. 5 Effect of K0 and p parameters on phase-plan 

diagram for the cases (a) a=2, p=20 and (b) a=0.5, 

K0=200 

 

 
(a) 

 
(b) 

Fig. 6 Sensitivity analysis of frequency MMA solution 

for various parameters 

6. Conclusions 
 

Nonlinear dynamic response of an Euler-Bernoulli beam 

resting on a Winkler elastic foundation and subjected to the 

axial loads has been solved analytically by using a new 

novel method called Max-Min Approach (MMA) in time 

domain. Winkler approach is used widely to the beams and 

pipelines resting on an elastic soil. In the present work, we 

assume the elastic coefficient of the springs is constant. As 

shown in this paper, the results of Max-Min Approach 

(MMA) have an excellent agreement with the numerical 

solutions. Its excellent accuracy in the whole range of 

oscillation amplitude values is one of the most significant 

features of this method. The successful application of the 

Max-Min Approach (MMA) for the large-amplitude beam 

vibration problem is considered in this study. The Max-Min 

Approach (MMA) could be easily extended to any 

nonlinear vibration problems, which provide an easy and 

direct procedure for determining approximations to the 

periodic solutions. 
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CC 

Nomenclature 
 

A cross-sectional area 

L beam length 

Wʹ normal displacement 

E Young’s modulus 

X axial coordinate 

P  axial load 

M mass per unit length 

ϕ(X)  trial function 

t time 

Kʹ elastic coefficient of Winkler foundation 

EA axial rigidity of the beam cross section 

EI bending rigidity of the beam cross section 

w(t) time-dependent deflection parameter 

A dimensionless maximum amplitude of oscillation 

β parameter of boundary condition of beam 

ωNL nonlinear frequency 

ωL linear frequency 
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Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach 

Appendix A: Basic idea of Runge-Kutta’s algorithm 
 

For such a boundary value problem given by boundary 

condition, some numerical methods have been developed. 

Here we apply the fourth-order RK algorithm to solve 

governing equations subject to the given boundary 

conditions. RK iterative formulae for the second-order 

differential equations are 
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(A.1) 

where ∆t is the increment of the time and h1,h2,h3 and h4 are 

determined from the following formulas 
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(A.2) 

The numerical solution starts from the boundary at the 

initial time, where the first value of the displacement 

function and its first-order derivative is determined from the 

initial conditions. Then, with a small time increment [∆t], 

the displacement function and its first-order derivative at 

the new position can be obtained using (A.2). This process 

continues to the end of time. 

 

 

361




