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1. Introduction 
 

Functionally graded materials (FGMs) are a relatively 

new class of advanced composite materials that are 

becoming increasingly important on account of their many 

advantages. This class of materials was discovered by 

Japanese scientists and designed to prepare thermal barrier 

materials (Yamanouchi et al. 1990, Koizumi 1993, 1997). 

With rapid developments in modern technology (e.g., 

nuclear, gas turbine and rocket chamber design), a variety 

of requirements including enhanced thermal shock 

resistance, the necessity for high hardness and high 

toughness in wear-resistant coatings, higher corrosion 

resistance and longer fatigue life, have accelerated the 

implementation of functionally graded materials in diverse 

engineering systems. FGMs are considered as non-

conventional composite materials that are microscopically 

non-homogeneous and with mechanical properties which 

vary continuously and smoothly through the thickness 

coordinate. These characteristics eliminate and reduce the 

influence of stress concentration generally encountered in  
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laminated composites. Moreover, the concept of a typical 

FGM is based on a mixture of two distinct material phases, 

generally ceramic and metal by the volume fraction of the 

constituent materials through the thickness of structural 

element (Behravan Rad 2012, Ahmed 2014, Behravan Rad 

2015, Bousahla et al. 2016, El-Haina et al. 2017, Behravan 

Rad et al. 2017, Bellifa et al. 2017a, Abdelaziz et al. 2017, 

Karami et al. 2017 and 2018a, b, c, Shahsavari et al. 2018, 

Attia et al. 2018; Fourn et al. 2018, Belabed et al. 2018). 

The large-scale utilization of FGMs requires a robust 

mathematical description of their mechanical proprieties 

which is needed to represent accurately the response of 

these materials at the macroscopic level. 
Although experimental investigations of FGM plates 

have been communicated, the benefits of mathematical 
modeling of functionally graded plates provide a more cost-
effective and indeed alternative approach for predict their 
responses. Models can also be corroborated with 
experimental data. Theoretical analysis of FGMs has 
therefore emerged as a substantial body of research 
examining a wide spectrum of problems. Many studies have 
been presented on accurate plate theories which combine 
classical plate theory and shear deformation plate theory to 
simulate static, buckling and dynamic behaviors of 
functionally graded plates. Founded on the kinematic field 
assumptions, these plate theories are developed in 
accordance with the plate thickness-to-length ratio. The 
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Abstract.  In this paper, the effect of the homogenization models on buckling and free vibration is presented for simply 

supported functionally graded plates (FGM) resting on elastic foundation. The majority of investigations developed in the last 

decade, explored the Voigt homogenization model to predict the effective proprieties of functionally graded materials at the 

macroscopic-scale for FGM mechanical behavior. For this reason, various models have been used to derive the effective 

proprieties of FGMs and simulate thereby their effects on the buckling and free vibration of FGM plates based on comparative 

studies that may differ in terms of several parameters. The refined plate theory, as used in this paper, is based on dividing the 

transverse displacement into both bending and shear components. This leads to a reduction in the number of unknowns and 

governing equations. Furthermore the present formulation utilizes a sinusoidal variation of displacement field across the 

thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any 

shear correction factor. Equations of motion are derived from Hamilton’s principle. Analytical solutions for the buckling and 

free vibration analysis are obtained for simply supported plates. The obtained results are compared with those predicted by other 

plate theories. This study shows the sensitivity of the obtained results to different homogenization models and that the results 

generated may vary considerably from one theory to another. Comprehensive visualization of results is provided. The analysis is 

relevant to aerospace, nuclear, civil and other structures. 
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classical plate theory (CPT) neglects shear deformations 
and therefore it is truly accurate only for thin plates. CPT 
has been deployed for buckling analysis of FGM plates by 
various investigators including Feldman and Aboudi (1997), 
Mahdavian (2009), and Mohammadi et al. (2010). However 
CPT over-predicts the natural frequencies and critical 
buckling loads of thick plates. This limitation can be 
avoided by introducing the effects of transverse shear 
deformation. First-order shear deformation theory (FSDT) 
(Reissner 1945, Mindlin 1951, Al-Basyouni et al. 2015, 
Bouderba et al. 2016, Youcef et al. 2018) considers 
transverse shear deformation; this theory recommends a 
shear correction factor in order to satisfy the zero transverse 
shear stress boundary conditions at the top and bottom of 
the plate. Indeed in CPT the displacements, strains and 
stresses fields are assumed to obey a linear distribution 
through the thickness of plate. However this linear behavior 
does not describe correctly the variation of these variables. 
This shortcoming has mobilized interest in developing a 
more accurate approach which better represent the stress 
and strain fields through the thickness of plate. To achieve 
improved accuracy, various higher-order shear deformation 
plate theories (HSDTs) have been developed and 
implemented in recent years to analyze the responses of 
thick functionally graded plates in various loading 
scenarios. The majority of higher-order shear deformation 
plate theories incorporate a nonlinear distribution to 
represent the displacement field. These theories feature a 
different number of unknowns to each other. For example 
the HSDT theory of Nelson and Lorch (1974) features nine 
unknowns, that of Lo et al. (1977) has eleven unknowns, 
the model of Reddy (1984) uses five unknowns, Bounouara 
et al. (2016) also employ five unknowns. Other HSDT 
models include those of Kant and Pandya (1988) with seven 
unknowns, Kant and Khare (1997) with nine unknowns and 
Talha and Singh (2010) with eleven unknowns. A good 
review of these theories for the analysis of functionally 
graded plates is available in Swaminathan et al. (2015). 

In addition, the higher-order shear deformation plate 
theories are capable of much better representation of the 
distribution of displacement, strains and stress through the 
thickness of plate compared with classical plate theory and 
First-order shear deformation theory. However the resulting 
equations of motion are much more complicated since they 
invariably generate a host of unknowns. Recently, an 
accurate refined higher order shear deformation theory 
(RHSDT) has however been developed which is relatively 
simple to use and simultaneously retains important physical 
characteristics. Applications of the RHSDT approach (with 
only four unknowns) to various problems in bending, 
buckling and dynamics of FGM plates are addressed in the 
papers of Benyoucef et al.(2010), Bouderba et al.(2013), 
Tounsi et al.(2013), Zidi et al. (2014), Ait Yahia et al. 
(2015), Barati et al. Shahverdi (2016) and Younsi et al. 
(2018). The displacement field is chosen based on a 
nonlinear variation of in-plane and transverse 
displacements through the thickness. Partitioning the 
transverse displacement into the bending and shear 
components leads to a reduction in the number of 
unknowns, and consequently, makes these theories much 
more amenable to mathematical implementation. Recently, 
Wang and Zu (2017a) studied the nonlinear steady-state 
responses of longitudinally traveling FGM plates immersed 

in liquid for the first time. Wang and Zu (2017b) 
investigated the dynamic thermoelastic response of 
rectangular FGM plates with longitudinal velocity. Using 
Rayleigh-Ritz method, Wang and Zu (2017c) studied 
analytically the vibration of a longitudinally moving 
rectangular plate submersed in an infinite liquid domain.   

An additional factor which can be observed in many 

research papers dealing with functionally graded plates is 

the relative sparseness of studies considering the effect of 

micromechanical models on macroscopic behaviors. In 

most investigations the Voigt model is considered as 

principal homogenization model which predicts the 

effective mechanical properties as being Young’s modulus 

and Poisson’s ratio, for homogenized functionally graded 

plates.  

Several micromechanical models have been examined 

and tested to estimate the effective properties of 

functionally graded materials, based on volume fraction 

distribution by Zuiker(1995) who has elaborated on the 

important limitation on structural mechanics property 

variation. Reiter and Dvorak (1997) presented a numerical 

simulation based on Mori-Tanaka method to predict the 

elastic responses for several functionally graded 

microstructures under different traction and mixed 

boundary conditions. An extension of this work for 

thermomechanical loading was subsequently communicated 

by Reiter and Dvorak (1998). Gasik (1998) summarized the 

important homogenization models used for composites and 

functionally graded materials and discussed the effect of the 

derived thermo-mechanical properties of these models on 

elastic and plastic thermal stress analysis of FGMs. 

Cho and Ha (2001) compared results obtained by two 

classical averaging approaches for predicting the Young's 

modulus and the thermal expansion coefficient for 

functionally graded materials, namely the Wakashima-

Tsukamoto linear modified mixture rule and the finite-

element discretization approach utilizing rectangular cells. 

Schmauder and Weber (2001) presented numerical results 

for homogenization modeling of functionally graded 

materials also benchmarking their solutions with 

experimental findings. Paulino et al. (2003) elucidated on a 

range of micro-mechanics models for predicting the elastic 

effective proprieties of FGMs and their failure behavior. Yin 

et al. (2004) obtained novel results via a micromechanical 

model for the effective elastic behavior of functionally 

graded materials with particle interactions based on 

Eshelby’s equivalent inclusion method.  

The above articles provide a perspective of the various 

homogenization models deployed to derive the effective 

elastic proprieties of functionally graded materials and gain 

knowledge about engineering properties and structural 

behaviors. Moreover, these studies provide an insight into 

the behavior of such materials at the microscopic scale; it is 

also necessary from an engineering perspective to show the 

influence of microscopic behavior on global structural 

(macroscopic) response. Several comprehensive studies are 

available for providing a good methodology with regard to 

predicting the effect of homogenization models on 

functionally graded plate responses at the macroscopic 

scale. Vel and Batra (2004) used the Mori-Tanaka and self-

consistent schemes to obtain three-dimensional exact 
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solutions for vibration response of functionally graded 

rectangular plates, although they did not deliberate to any 

great extent on the physical implications of their solutions. 

Ferreira et al. (2005) estimated the effective proprieties by 

the rule of mixtures and the Mori-Tanaka scheme to analyze 

static deformations of a simply supported functionally 

graded plate. Ferreira et al. (2006) later presented solutions 

for the free vibration of functionally graded plates based on 

third-order shear deformation plate theories. Shen et al. 

(2012) assessed the viability of both the Voigt and Mori-

Tanaka models for vibration analysis of functionally graded 

plates. Belabed et al. (2014) presented an efficient and 

simple higher order shear plate theory, considering three 

distribution material models (i.e., the power law 

distribution, the exponential distributions, and the Mori-

Tanaka scheme) to derive elastic proprieties for both the 

static and dynamic cases. Recently, Akbarzadeh et al. 

(2015) explored the relative performance of a diverse range 

of homogenization models (i.e., Voigt, Reuss, Hashin-

Shtrikman bounds, LRVE and self-consistent model)and 

their effect on the static and dynamic stress fields, critical 

buckling loads, and fundamental frequency of functionally 

graded plate resting on a Pasternak elastic foundation. 

In this study, the effect of homogenization models on 

buckling and free vibration is investigated for thick 

functionally graded plates resting on elastic foundations, to 

evaluate the effective elastic proprieties such as Young’s 

modules, Poisson’s ratio and mass density. A range of 

explicit homogenization models are utilized such as the 

Voigt, Reuss, Hashin-Shtrikman bounds Tamura and LRVE 

models based on volume fraction distribution. For plate 

analysis, the refined plate theory for functionally graded 

plates on elastic foundation is proposed to predict buckling 

and free vibration of thick FG plates. This theory delineates 

the transverse displacement into both bending and shear 

parts with only four-unknowns, and therefore decreases the 

number of governing equations. A sinusoidal variation is 

elected for all displacements across the thickness which 

satisfies the stress-free boundary conditions on the upper 

and lower surfaces of the plate without requiring any shear 

correction factor. The equations of motion and boundary 

conditions are derived from Hamilton’s principle. 

Analytical solutions for buckling and free vibration are 

obtained. Numerical examples are presented and compared 

with those obtained by classical and third-order plate 

theories using different homogenization models showing 

significant deviation in results. The effect of elastic 

foundation parameters are taken into account for various 

plate configurations. Finally, the present study shows that 

structural responses of functionally graded plates can be 

correctly evaluated by the correct choice of the constituent 

materials and their homogenization models, which is 

generally neglected in the vast majority of investigations.  
 

 

2. Homogenized models for functionally graded 
materials 
 

As mentioned above, functionally graded materials are 

non-conventional composite materials. The material 

properties of FGM plates are assumed to vary continuously 

through the plate thickness and are dependent on the 

volume fraction of inclusions. The distribution of material 

properties is assumed to obey the power-law distribution as 

follows (Hebali et al. 2014, Kar et al. 2016) 
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where p is the power law index and the subscripts m and c 

represent the metallic and ceramic constituents, 

respectively. The homogenization models are deployable for 

the computation of the Young’s modulus E(z) and Poisson’s 

ratio υ(z). In this study, the material non-homogeneous 

properties are derived via explicit homogenization models 

such as Voigt, Reuss, Hashin-Shtrikman bounds, Tamura 

and Cubic local representative volume elements (LRVE) 

models where the volume fraction is adopted as a law of 

material distribution through the thickness. 

 

2.1 Voigt rule 
 

This model was derived by Voigt (1889) and is a widely 

used model for the effective properties of functionally 

graded materials. It considers a constant strain through the 

material coordinate loading to predict the homogenization 

proprieties of heterogonous materials at the macroscopic-

scale. Appling the assumption of Voigt for functionally 

graded materials, the Young’s modulus is given as 
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and the related Poisson’s ratio is assumed as 
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2.2 Reuss rule 
 

According to the Reuss assumption (Reuss 1929), the 

effective proprieties are obtained as a function of constant 

stress tensor through the material. This model produces 

estimates of the Young’s modulus and Poisson’s ratio as 
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Hill (1963) much later showed that the Voigt and Reuss 

rules present the upper and lower bounds respectively of the 

elastic effective proprieties of reinforced solids and their 

assumptions can be derived from the energy principles, as 

defined by Hill’s condition (Hazanov 1998). 
 

2.3 Hashin-Shtrikman bounds model 
 

Hashin and Shtrikman (1963) proposed a variational 

principle based on strain and stress fields to express the 

effective elastic proprieties for two-phase materials. This 

259



 

Tewfik Mehala, Zakaria Belabed, Abdelouahed Tounsi and O. Anwar Bég 

permitted the geometry and physical propriety of inclusions 

and therefore provided the lower and upper bounds as a 

function of the bulk (K) and shear modulus (G). The 

Young’s modulus can been stated in the form 
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)()(9

zKzG

zKzG
zE




 

(6) 

Poisson’s ratio is given as 
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where G(z) and K(z) denote the shear and bulk moduli 

through the thickness respectively 
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for upper bound 

(9) 

In fact, the upper and lower bounds describe the contrast 

in material properties or phases of the matrix and 

inclusions. 

 

2.4 Tamura model 
 

Tamura’s model is based on a modified linear mixture 

rule for two phase materials achieved by introducing the 

empirical fitting parameter qT called the “stress-to-strain 

transfer” (Zuiker 1995, Gasik 1998). This parameter is 

derived from coupling the stress and strain averages under 

uniaxial loading of two phase materials. The emerging 

effective Young’s modulus for this model described below 
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Moreover, for qT=0 Reuss’s model is retrieved as a 

special case. Furthermore Voigt’s model corresponds to the 

case given by qT= ±∞. Poisson’s ratio is derived from 

Voigt’s model as 
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2.5 Cubic local representative volume elements 
(LRVE) model 
 

By taking into account the interfaces between the 

constituents of the two phase materials and their 

geometrical arrangements, Gasik and Lilius (1994) 

formulated a new micro-mechanical model to predict the 

effective elastic proprieties based on small cellular 

mechanical properties. This intermediate scale is termed the 

cubic local representative volume element (LRVE) which 

relates the strain and stress components on the local 

representative element surfaces at the infinite length scale. 

These assumptions are applied to Young’s modulus as 

follows 
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By simplification, the Young’s modulus is easily 

obtained as 
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wherein 
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Additionally Poisson’s ratio emerges in the same form 

as for the Voigt model 
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3. Theoretical formulation 
 

3.1 Kinematics 
 

The displacement field of the present theory is chosen 

based on the following assumptions: (1) The transverse 

displacements are partitioned into bending and shear 

components; (2) the in-plane displacement is partitioned 

into extension, bending and shear components; (3) the 

bending parts of the in-plane displacements are similar to 

those given by CPT ; and (4) the shear parts of the in-plane 

displacements give rise to the sinusoidal variations of shear 

strains and hence to shear stresses through the thickness of 

the plate in such a way that the shear stresses vanish on the 

top and bottom surfaces of the plate. Based on these 

assumptions, the following displacement field relations can 

be obtained 

 

(16a) 

 

(16b) 
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 (16c) 

where u0 and v0 denote the displacements along the x and y 

coordinate directions of a point on the mid-plane of the 

plate; wb and ws are the bending and shear components of 

the transverse displacement, respectively. In this study, the 

shape function f(z) is chosen based on the sinusoidal 

function proposed by Touratier (1991) as 
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The non-zero strains associated with the displacement 

field in Eq. (16) are 
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3.2 Equilibrium equations 
 

Hamilton’s principle is used herein to derive equations 

of motion for plates resting on elastic foundation. The 

principle can be stated in an analytical form as follows 

(Zemri et al. 2015, Bellifa et al. 2017b, Kaci et al. 2018, 

Mokhtar et al. 2018) 

  
T

dtKVU
0

0   
 

(20) 

where δU is the variation of strain energy, δV is the 

variation of potential energy and δK is the variation of 

kinetic energy.  

The variation of strain energy of the plate is calculated 

by 

 

(21) 

 

Fig. 1 FGM plate (1) resting on an elastic foundation 

consisting of shearing (2) and Winkler (3) layers 

 

 

where A is the top surface and the stress resultants N, M and 

S are defined by 
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The variation of potential energy of the applied loads 

can be expressed thus 

   dAwwfNV
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where fe is the density of reaction force of the elastic 

foundation. 
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where KW and KS are the transverse and shear stiffness 

coefficients of the foundation, respectively and N
0
 is the in-

plane applied load. 
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(26) 

where Nx
0
, Ny

0
 and Nxy

0 
are in-plane pre-buckling forces 

The variation of kinetic energy of the plate can be 

written in the form 

 

(27) 

Here the dot-superscript convention corresponds to 

differentiation with respect to the time variable, t and (I0, I1, 
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J1, I2, J2, K2) are mass inertias, defined as follows 
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Substituting the expressions for δU, δV, and δK from 

Eqs. (21), (24), and (27) into Eq. (20) and integrating by 

parts, and collecting the coefficients of δu0, δv0, δwb and 

δws, the following equations of motion of the plate are 

obtained 
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3.3 Constitutive equations 
 

The linear constitutive relations of a FG plate can be 

written as 
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where (σx, σy, τyz, τxz, τxy) and (εx, εy, γyz, γxz, γxy) are the stress 

and strain components, respectively. The computation of the 

elastic constants Cij are the plane stress reduced elastic 

constants, defined as 
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E, G and the elastic coefficients Cij vary through the 

thickness according to Eqs. (2), (4),(6), (10) or (13). By 

substituting Eq. (18) into Eqs. (30) and the subsequent 

results into Eqs. (22) and (23), the stress resultants are 

readily obtained as 
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Here the stiffness coefficients are defined as 
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3.4 Equations of motion in terms of displacements 
 

Introducing Eq. (34) into Eq. (29), the equations of 

motion can be expressed in terms of displacements (δu0, 

δv0, δwb, δws) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential 

operators 
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3.5 Analytical solutions 
 

Consider a simply supported rectangular plate with 

length a and width b resting on elastic foundations (Fig. 1). 

Based on the Navier solution method, the following 

expansions of displacements (u0, v0, wb, ws) are assumed as 
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(36) 

where Umn, Vmn, Wbmn, Wsmn unknown parameters must be 

determined, ω is the eigen-frequency associated with 

(m,n)
th

eigen-mode, and λ=mπ/a and μ=nπ/b. Substituting 

Eq. (36) into Eq. (35), the analytical solutions can be 

obtained from the matrix-vector system 
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in which 

 

(38) 

 
 

4. Results and discussion 
 

In this section, various numerical examples are 

presented and compared to verify the effect of the 

homogenization models in predicting the critical buckling 

loads and natural frequencies of simply supported 

functionally graded plates resting on elastic foundation. The 

material properties of FGM plates used in this study are 

listed in Table 1. The effective mass density ρ(z) is 

estimated using the power-law distribution with Voigt's rule 

of mixtures for all the models as follows 
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For convenience, the following dimensionless forms are 

utilized 
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Table 1 Material properties used in the FGM plate 

Properties 
Metal aluminum Alloy 

1100 
Ceramic Alumina (Al2O3) 

E (GPa) 69 380 

v 0.33 0.22 

ρ (kg/m3) 2710 3980 

 

Table 2 Comparison of non-dimensional critical 

unidirectional buckling loads N of simply supported FGM 

square plate with different homogenization models (a/h=5) 

p Theory 

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

Ceramic 

CPT (a) 19.0406 19.0406 19.0406 19.0406 19.0406 19.0406 

TSDT (a) 15.8412 15.8412 15.8412 15.8412 15.8412 15.8412 

Present 
SSDT 

15.8458 15.8458 15.8458 15.8458 15.8458 15.8458 

0.5 

CPT (a) 12.5797 8.4890 9.7010 11.1882 9.8634 9.9060 

TSDT (a) 10.6123 7.0776 8.1266 9.4558 8.31763 8.3275 

Present 

SSDT 
10.6187 7.0775 8.1283 9.4601 8.31971 8.3297 

1 

CPT (a) 9.7521 7.0908 7.8269 8.7725 7.8687 7.9529 

TSDT (a) 8.2480 5.7897 6.4648 7.3851 6.54682 6.6012 

Present 
SSDT 

8.2496 5.7872 6.4630 7.3855 6.54529 6.6000 

2 

CPT (a) 7.6581 6.2143 6.6734 7.1760 6.7266 6.7446 

TSDT (a) 6.3768 4.9214 5.3436 5.8941 5.4005 5.4274 

Present 

SSDT 
6.3746 4.9181 5.3391 5.8906 5.3949 5.4229 

10 

CPT (a) 5.9343 4.8381 5.2004 5.5997 5.2570 5.2582 

TSDT (a) 4.4905 3.7655 3.9997 4.2662 4.0335 4.0384 

Present 
SSDT 

4.4862 3.7652 4.0000 4.2649 4.0345 4.0388 

Metal 

CPT (a) 3.6921 3.6921 3.6921 3.6921 3.6921 3.6921 

TSDT (a) 2.9895 2.9895 2.9895 2.9895 2.9895 2.9895 

Present 

SSDT 
2.9904 2.9904 2.9904 2.9904 2.9904 2.9904 

(a) 
Given by Akbarzadeh et al. (2015) 
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Table 3 Comparison of non-dimensional critical 

unidirectional buckling loads N  of simply supported 

FGM square plate with different homogenization models 

(a/h=10) 

p  

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

ceramic 

CPT (a) 19.0406 19.0406 19.0406 19.0406 19.0406 19.0406 

TSDT (a) 18.1238 18.1238 18.1238 18.1238 18.1238 18.1238 

Present 
SSDT 

18.1243 18.1243 18.1243 18.1243 18.1243 18.1243 

0.5 

CPT (a) 12.5797 8.4890 9.7010 11.1882 9.8634 9.906 

TSDT (a) 12.0216 8.0851 9.2520 10.6973 9.4246 9.457 

Present 

SSDT 
12.0263 8.0851 9.2530 10.7002 9.4257 9.4584 

1 

CPT (a) 9.7521 7.0908 7.8269 8.77254 7.8687 7.9529 

TSDT (a) 9.3261 6.7128 7.4344 8.37822 7.4898 7.5648 

Present 

SSDT 
9.3262 6.7113 7.4332 8.37786 7.4887 7.5638 

2 

CPT (a) 7.6581 6.2143 6.6734 7.17600 6.7266 6.7446 

TSDT (a) 7.2910 5.8304 6.2815 6.80511 6.3366 6.3579 

Present 

SSDT 
7.2897 5.8283 6.2793 6.80332 6.3339 6.3557 

10 

CPT (a) 5.9343 4.8381 5.2004 5.59969 5.2570 5.2582 

TSDT (a) 5.4916 4.5156 4.8364 5.19273 4.8855 4.8880 

Present 

SSDT 
5.4890 4.5123 4.8346 5.19094 4.8842 4.8864 

Metal 

CPT (a) 3.6921 3.4868 3.6921 3.6921 3.6921 3.6921 

TSDT (a) 3.4868 3.4868 3.4868 3.4868 3.6921 3.4868 

Present 

SSDT 
3.4870 3.4870 3.4870 3.4870 3.4870 3.4870 

(a) 
Given by Akbarzadeh et al. (2015) 

 
 

4.1 Results for buckling analysis 
 

The first example deals with thick (a/h = 5) functionally 

graded square plates. Various values of the material index 

pare considered. Young’s modulus is evaluated using the 

homogenization models described above. The obtained 

results are compared with classical and third order plate 

theory documented in Akbarzadeh et al. (2015). Table 2 

presents the computed non-dimensional critical buckling 

loads N . It is pertinent to note that the classical plate 

theory solutions neglect the effect of transverse shear strains 

and this assumption tends to over-estimate the non-

dimensional critical buckling loads for thick FGM plates. 

The third order plate theory solutions are obtained based on 

parabolic variation of in-plane displacement through the 

plate thickness by using five unknown parameters. 

Inspection of Table 2 demonstrates that the present 

computations are in very good agreement with third order 

plate theory solutions available in the literature for all 

homogenization models with only four parameters. On the 

other hand, it is observed that for all homogenization 

models, the non-dimensional critical buckling loads 

decrease as a function of material index parameters. The 

non-dimensional critical buckling loads are highest in the 

ceramic phase and lowest for the metal phase. Additionally, 

from a comparison of the homogenisation models a 

deviation is observed in the computed non-dimensional 

critical buckling loads for Voigt, Reuss and Hashin Upper 

bounds models.  

However closer correlation is achieved with the Hashin 

Lower bounds, LRVE and Tamura models which exhibit 

good similarity, the maximum values of non-dimensional 

critical buckling load correspond to Voigt’s model which 

estimates the effective proprieties provided by the upper 

bounds. The minimum values are produced by Reuss’s 

model which provides approximate estimates of the 

effective proprieties based on lower bounds. Hashin’s upper 

bounds model estimates the effective proprieties based on 

optimal shear and bulk moduli for upper phase material, 

which explains the close values of the results obtained by 

Voigt’s model. For Hashin’s lower bounds, LRVE and 

Tamura models, the effective proprieties are derived as 

functions of the lower phase material, manifesting in 

closely correlating values for non-dimensional critical 

buckling loads. As mentioned above, both Tamura and 

LRVE models use the same Poisson’s ratio estimation and 

this generates very close results.  

Next FGM plates with thickness ratio a/h=10 are 

analysed, another situation of relevance to aircraft and 

spacecraft structures. In this scenario, Young’s modulus and 

Poisson ratio are evaluated using Voigt, Reuss and Hashin 

Upper bounds, Hashin Lower bounds, LRVE and Tamura 

models. This example aims to predict the non-dimensional 

critical buckling loads for moderately thick plates; the 

obtained results are compared with CPT and those predicted 

by third order plate theory in Table 3.  

It is observed that the non-dimensional critical buckling 

loads are slight higher compared to thick FGM plates. The 

higher values of non-dimensional critical buckling loads are 

observed in the ceramic rich phase and decreased to lower 

magnitudes in the metallic rich phase. The obtained results 

demonstrate that the same accuracy is achievable with the 

present theory using a lower number of unknowns than 

third order theory used by Akbarzadeh et al.(2015).The 

comparison between solutions generated with the different 

homogenization models show important differences in the 

computed non-dimensional critical buckling load values. 

Moreover, the effect of homogenization models does not 

depend on the thickness ratio of plates; there are various 

factors such as material phase location and arrangement, 

zones of graded microstructure and interphase of 

continuous matrix and inclusions distribution that involve 

predicting the homogenized effective proprieties and 

incorporation of these may improve the accuracy of 

predicted critical buckling loads for FGM plates. 

 

4.2 Results for free vibration analysis 
 

The accuracy of the proposed higher order shear plate 

theory and the effect of homogenization models are also 

verified and discussed for a structural dynamic case, namely 

free vibration analysis. This example is performed for thick 

and moderately thick FGM square plates. This example 

aims to verify the effect of homogenization models on 

fundamental frequency; the obtained results are compared 

with the classical and third order plate theory solutions of  
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Table 4 Comparison of non-dimensional fundamental 

frequency   of simply supported FGM square plate with 

different homogenization models (a/h=5) 

p  

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

Ceramic 

CPT (a) 10.9571 10.9571 10.9571 10.9571 10.9571 10.9571 

TSDT (a) 10.0885 10.0885 10.0885 10.0885 10.0885 10.0885 

Present 
SSDT 

10.0897 10.0898 10.0898 10.0898 10.0898 10.0898 

0.5 

CPT (a) 9.4189 7.7166 8.2564 8.8759 8.3253 7.7238 

TSDT (a) 8.7277 7.1185 7.6305 8.2334 7.7172 7.7238 

Present 

SSDT 
8.7301 7.1185 7.6313 8.2346 7.7178 7.7248 

1 

CPT (a) 8.5358 7.2682 7.6362 8.0892 7.6542 7.6978 

TSDT (a) 7.9227 6.6432 7.0157 7.4944 7.0561 7.0879 

Present 

SSDT 
7.9233 6.6415 7.0151 7.4947 7.0554 7.0874 

2 

CPT (a) 7.7910 7.0298 7.2771 7.5417 7.3025 7.3149 

TSDT (a) 7.1877 6.3369 6.5952 6.9152 6.6273 6.6446 

Present 
SSDT 

7.1868 6.3345 6.5927 6.9135 6.6242 6.6424 

10 

CPT (a) 7.2220 6.5423 6.7778 7.0248 6.81379 6.8144 

TSDT (a) 6.3804 5.8474 6.0267 6.2222 6.0524 6.0556 

Present 

SSDT 
6.3773 5.8468 6.0271 6.2212 6.0530 6.0556 

Metal 

CPT (a) 5.8472 5.8472 5.8472 5.8472 5.8472 5.8472 

TSDT (a) 5.3172 5.3172 5.3172 5.3172 5.3172 5.3172 

Present 

SSDT 
5.3183 5.3179 5.3179 5.3179 5.3179 5.3179 

(a) 
Given by Akbarzadeh et al. (2015) 

 

Table 5 Comparison of non-dimensional fundamental 

frequency   of simply supported FGM square plate with 

different homogenization models (a/h=10) 

p  

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

Ceramic 

CPT (a) 11.2199 11.2199 11.2199 11.2199 11.2199 11.2199 

TSDT (a) 10.9548 10.9548 10.9548 10.9548 10.9548 10.9548 

Present 
SSDT 

10.9548 10.9549 10.9549 10.9549 10.9549 10.9549 

0.5 

CPT (a) 9.6468 7.9193 8.4676 9.0959 8.5382 8.5569 

TSDT (a) 9.4370 7.7349 8.2757 8.9005 8.3524 8.3671 

Present 

SSDT 
9.4389 7.7347 8.2761 8.9018 8.3526 8.3678 

1 

CPT (a) 8.7542 7.4621 7.8399 8.3012 7.8601 7.9028 

TSDT (a) 8.5671 7.2673 7.6475 8.1188 7.6751 7.7141 

Present 
SSDT 

8.5675 7.2664 7.6469 8.1187 7.6746 7.7135 

2 

CPT (a) 8.0089 7.2176 7.4775 7.7527 7.5063 7.517 

TSDT (a) 7.8215 6.9987 7.2623 7.5569 7.2932 7.3059 

Present 

SSDT 
7.8207 6.9979 7.2608 7.5561 7.2915 7.3049 

10 

CPT (a) 7.4243 6.7091 6.9544 7.2143 6.9920 6.9927 

TSDT (a) 7.1517 6.4889 6.7147 6.9562 6.7486 6.7503 

Present 

SSDT 
7.1501 6.4863 6.7133 6.9550 6.7475 6.7488 

Table 5 Continued 

p  

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

Metal 

CPT (a) 5.9875 5.9875 5.9875 5.9875 5.9875 5.9875 

TSDT (a) 5.8237 5.8237 5.8237 5.8237 5.8237 5.8237 

Present 

SSDT 
5.8238 5.8238 5.8238 5.8238 5.8238 5.8238 

(a) 
Given by Akbarzadeh et al. (2015) 

 

 

Akbarzadeh et al. (2015). Young’s modulus and 

Poisson’s ratio are evaluated using Voigt, Reuss and Hashin 

Upper bounds, Hashin Lower bounds, LRVE and Tamura 

models. The mass density has been derived from Voigt's 

model for all models considered. 

The non-dimensional fundamental frequency   is 

given in Tables 4 and 5 for different values of the material 

index parameters.  

It is evident that the present computations are in an 

excellent agreement with the third order plate theory 

solutions. Since the classical plate theory omits shear 

deformation effects, it therefore noticeably over-estimates 

the frequency of thick plates. It can be seen that the derived 

solutions are however close since the dynamic properties of 

the FGM plates are computed via the same homogenization 

model. Since increasing material index parameter decreases 

fundamental frequency values, the highest values are 

presented in ceramic material phase and the lowest values 

are observed in the metallic phase according to the effective 

elasticity modulus and the mass densities of each material 

can be calculated.  

 

4.3 Parametric study 
 

After proving the authenticity of the present analytical 

solutions, new results are presented to conduct a parametric 

study. The critical buckling loads and the fundamental 

frequency of simply supported functionally graded plates 

with various material index and elastic foundation 

parameters are investigated in this section, for all the 

homogenization models mentioned above.  

Table 6 shows the effect of material index and elastic 

foundation parameters on the critical buckling loads of 

simply supported FGM square plate with thickness ratio 

a/h=10 using Voigt, Reuss and Hashin Upper bounds, 

Hashin Lower bounds, LRVE and Tamura models. 

As can be seen, the obtained non-dimensional critical 

buckling loads increase as the foundation parameters 

increase and the Pasternak parameter exerts a greater effect 

compared with the Winkler parameter. It is also observed 

that the difference between maximum values obtained by 

Voigt’s model and the minimum values obtained by Reuss’s 

model is more significant and decreases when material 

index parameter increases.   

The first four non-dimensional natural frequencies of 

simply supported square FGM plates for different values of 

material index parameters and foundation parameters are 

listed in Tables 7-8 with thickness ratio a/h=10. It should be 

noted that the both mass distribution and mass moment of  
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inertia are computed by Voigt’s model for all presented 
homogenization models. It is apparent that the effect of 
Pasternak parameter is higher than that of the Winkler 
parameter. In fact, the difference in obtained fundamental  

 

 

Table 7 Effect of the volume fraction exponent and elastic 

foundation parameters on the first and second non-

dimensional natural frequencies   of simply supported 

FGM square plate with different homogenization models 

(a/h=10) 

Mode K0 K1 p 

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

1 

0 50 

0.5 12.5842 11.3588 11.7352 12.1855 11.7891 11.8000 

1 12.1239 11.2415 11.4907 11.8102 11.5084 11.5352 

10 11.7565 11.3697 11.4998 11.6408 11.5197 11.5204 

50 00 

0.5 9.62280 7.95823 8.48535 9.09641 8.56003 8.57456 

1 8.78199 7.51858 7.88683 8.34494 7.91360 7.95157 

10 7.45233 6.81849 7.03470 7.26544 7.06735 7.06873 

50 50 

0.5 12.7230 11.5121 11.8837 12.3286 11.9370 11.9477 

1 12.2767 11.4060 11.6517 11.9669 11.6692 11.6955 

10 11.9426 11.5623 11.6902 11.8288 11.7098 11.7105 

100 100 

0.5 15.3184 14.3256 14.6268 14.9916 14.6700 14.6789 

1 15.1008 14.4008 14.5959 14.8491 14.6093 14.6309 

10 15.3006 15.0096 15.1076 15.2137 15.1227 15.1231 

 

Table 7 Continued 

Mode K0 K1 p 

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

2 

0 50 

0.5 49.0973 40.0882 42.9662 46.7916 43.9809 43.7340 

1 45.4100 36.4749 39.0966 42.9025 39.9008 39.8148 

10 31.9747 28.9803 29.7125 30.9809 29.8569 29.9250 

50 0 

0.5 49.0973 40.0882 42.9662 46.7916 43.9809 43.7340 

1 45.4100 36.4749 39.0966 42.9025 39.9008 39.8148 

10 31.9747 28.9803 29.7125 30.9809 29.8569 29.9250 

50 50 

0.5 49.0973 40.0882 42.9662 46.7916 43.9809 43.7340 

1 45.4100 36.4749 39.0966 42.9025 39.9008 39.8148 

10 31.9747 28.9803 29.7125 30.9809 29.8569 29.9250 

100 100 

0.5 49.0973 40.0882 42.9662 46.7916 43.9809 43.7340 

1 45.4100 36.4749 39.0966 42.9025 39.9008 39.8148 

10 31.9747 28.9803 29.7125 30.9809 29.8569 29.9250 

 

 

frequency values is minor compared to buckling loads, and 

decreases with increasing material index parameters. This is 

due to the material phases transforming from the fully 

ceramic phase to the fully metal phase which involves a 

marked depletion in the stiffness and mass density. 

In order to verify the effect of homogenization models 

on the second and third natural frequencies, a simply 

supported FGM plate with different aspect ratio (a/b) is 

now investigated. From the results presented in Table 9, it  

Table 6 Effect of the volume fraction exponent and elastic foundation parameters on non-dimensional critical 

unidirectional buckling loads N  of simply supported FGM square plate with different homogenization models  

(a/h=10) 

K0 K1 Model 
Index parameter p 

Ceramic 0.5 1 2 10 metal 

100 0 

Voigt 19.0719 12.9738 10.2737 8.2372 6.4365 4.4345 

Reuss 19.0719 9.0326 7.6588 6.7758 5.4597 4.4345 

Hashin (UB) 19.0719 11.6477 9.3254 7.7509 6.1384 4.4345 

Hashin (LB) 19.0719 10.2006 8.3807 7.2268 5.7822 4.4345 

LRVE 19.0719 10.3732 8.4362 7.2814 5.8317 4.4345 

Tamura 19.0719 10.4059 8.5113 7.3032 5.8339 4.4345 

0 100 

Voigt 36.8278 30.7297 28.0297 25.9932 24.1925 22.1904 

Reuss 36.8278 26.7886 25.4148 24.5317 23.2157 22.1904 

Hashin (UB) 36.8278 29.4036 27.0813 25.5068 23.8945 22.1904 

Hashin (LB) 36.8278 27.9565 26.1367 24.9828 23.5381 22.1904 

LRVE 36.8278 28.1291 26.1922 25.0374 23.5877 22.1904 

Tamura 36.8278 28.1619 26.2672 25.0591 23.5899 22.1904 

100 100 

Voigt 37.7754 31.6772 28.9772 26.9407 25.1400 23.1380 

Reuss 37.7754 27.7361 26.3623 25.4793 24.1632 23.1380 

Hashin (UB) 37.7754 30.3512 28.0288 26.4543 24.8419 23.1380 

Hashin (LB) 37.7752 28.9041 27.0842 25.9303 24.4857 23.1380 

LRVE 37.7754 29.0767 27.1397 25.9849 24.5352 23.1380 

Tamura 37.7754 29.1094 27.2148 26.0067 24.5374 23.1380 
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can be seen  that for all used homogenization models, the 

 

 

Table 9 Effect of the volume fraction exponent and aspect 

ratio (a/b) on the second and third non-dimensional natural 

frequencies  of simply supported FGM plates with 

different homogenization models (a/h=10) 

Mode a/b p 

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

2 

2 

0.5 77.6299 63.3850 67.9354 73.9837 69.5397 69.1496 

1 71.7999 57.6718 61.8175 67.8346 63.0888 62.9526 

10 50.5563 45.8217 46.9793 48.9849 47.2081 47.3157 

3 

0.5 109.785 89.6400 96.0757 104.629 98.3442 97.7916 

1 101.540 81.5606 87.4230 95.9326 89.2210 89.0285 

10 71.4977 64.8020 66.4388 69.2755 66.7618 66.9140 

4 

0.5 143.142 116.877 125.267 136.420 128.226 127.505 

1 132.392 106.341 113.985 125.081 116.329 116.079 

10 93.2218 84.4911 86.6264 90.3237 87.0467 87.2452 

 

Table 9 Continued 

Mode a/b p 

Homogenization model 

Voigt Reuss 
Hashin 

(LB) 

Hashin 

(UB) 
LRVE Tamura 

3 

2 

0.5 126.629 102.341 111.001 119.805 112.928 112.334 

1 117.843 93.8613 101.660 110.383 103.043 102.925 

10 85.2781 77.9209 80.0039 82.6525 80.1743 80.3611 

3 

0.5 178.871 143.983 156.365 169.056 159.101 158.294 

1 166.061 131.949 142.885 155.355 144.768 144.697 

10 119.799 110.110 112.923 116.417 113.147 113.399 

4 

0.5 232.837 186.394 202.768 219.741 206.350 205.361 

1 215.431 170.641 184.725 201.202 187.048 187.125 

10 154.838 143.411 146.845 150.974 147.105 147.417 

 

 

second and third non-dimensional natural frequencies  
increase as aspect ratio increases and when the material 
index parameter increases, both the second and third non-
dimensional natural frequencies decrease. 

The effects of the elastic foundation parameters and 

aspect ratio (b/a) on non-dimensional critical buckling loads  

Table 8 Effect of the volume fraction exponent and elastic foundation parameters on the third and fourth non-

dimensional natural frequencies  of simply supported FGM square plate with different homogenization models 

(a/h=10) 

Mode K0 K1 p 
Homogenization model 

Voigt Reuss Hashin (LB) Hashin (UB) LRVE Tamura 

3 

0 50 

0.5 80.1431 64.9300 70.3691 75.8716 71.5855 71.1993 

1 74.6903 59.5805 64.5357 70.0153 65.4312 65.3296 

10 54.1610 49.3049 50.6597 52.4053 50.7725 50.8936 

50 00 

0.5 80.1431 64.9292 70.3682 75.8716 71.5846 71.1989 

1 74.6894 59.5792 64.5344 70.0145 65.4299 65.3292 

10 54.1593 49.3049 50.6588 52.4040 50.7721 50.8932 

50 50 

0.5 80.1431 64.9300 70.3691 75.8716 71.5855 71.1993 

1 74.6903 59.5805 64.5357 70.0153 65.4312 65.3296 

10 54.1610 49.3049 50.6597 52.4053 50.7729 50.8940 

100 100 

0.5 80.1435 64.9313 70.3704 75.8721 71.5859 71.2006 

1 74.6907 59.5818 64.5370 70.0162 65.4325 65.3309 

10 54.1627 49.3053 50.6601 52.4066 50.7734 50.8945 

4 

0 50 

0.5 366.254 285.723 311.885 346.181 321.454 318.807 

1 332.439 251.162 273.884 308.748 280.450 280.185 

10 204.129 196.167 197.790 200.953 197.632 198.215 

50 0 

0.5 366.253 285.720 311.883 346.180 321.452 318.806 

1 332.437 251.160 273.882 308.747 280.448 280.182 

10 204.126 196.164 197.787 200.950 197.629 198.213 

50 50 

0.5 366.254 285.723 311.885 346.181 321.454 318.807 

1 332.439 251.163 273.884 308.748 280.450 280.185 

10 204.129 196.167 197.790 200.953 197.632 198.216 

100 100 

0.5 366.256 285.724 311.887 346.184 321.456 318.809 

1 332.441 251.164 273.886 308.750 280.453 280.186 

10 204.133 196.170 197.793 200.956 197.635 198.219 
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(a) Kw=Ks=0 

 
(b) Kw=100, Ks=100 

Fig. 2 Variation of non-dimensional critical buckling 

loads versus the aspect ratio (b/a) of Al/Al2O3 square 

plates (a/h=10, p=1) 

 

 
(a) Kw=Ks=0 

 
(b) Kw=100, Ks=100 

Fig. 3 Variation of non-dimensional fundamental 

frequency versus the aspect ratio  (b/a) of Al/Al2O3 

square plates (a/h=10, p=1) 

are illustrated in Fig. 2 for all presented homogenization 

models. Evidently the non-dimensional critical buckling 

loads decrease for FGM plates with higher aspect ratio b/a. 

Furthermore the effect of Pasternak foundation parameter is 

more significant than Winkler foundation parameter. It is 

also observed that the non-dimensional critical buckling 

loads obtained by Hashin Lower bounds, LRVE and Tamura 

homogenization models are in much closer agreement than 

those computed with the other homogenization models 

employed in this study. 

Fig. 3 shows the effect of the elastic foundation 

parameters and aspect ratio (b/a) on non-dimensional 

fundamental frequency obtained by using different 

homogenization models. It is observed that the obtained  

fundamental frequency decreases when the aspect ratio, b/a, 

is increased for all models. It should be noted that the all 

models have used the same mass distribution and mass 

moment of inertia model and this contributes to a reduction 

in the difference between computed fundamental frequency 

generated with the homogenization models studied. 

 

 

5. Conclusions 
 

A theoretical study of the effect of various 
homogenization models is presented for buckling and free 
vibration analyses of functionally graded material (FGM) 
plates resting on elastic foundations. The accuracy of the 
present theory has been demonstrated for both buckling and 
free vibration analyses of simply supported FGM plates. 
The theory incorporates the shear deformation effect 
without requiring a shear correction factor. By dividing the 
transverse displacement into bending and shear 
components, the number of unknowns and governing 
equations emerging in the present theory is reduced to four 
and this refined theory is therefore somewhat simpler than 
alternate theories available in the scientific literature. The 
equations of motion derived from Hamilton’s principle are 
solved analytically via Navier’s expansion technique for 
buckling and free vibration problems of a simply supported 
plate. The present computations have highlighted some 
important observations: 

• The homogenization effect is non-trivial and needs to 
be taken into consideration in order to derive the effective 
elastic properties that are more physically realistic for 
engineering applications. 

• Since the majority of existing studies use Voigt’s 

model to study FGM plate structural/dynamic behavior, it is 

logical to explore alternative homogenization models such 

as Voigt, Reuss and Hashin Upper bounds, Hashin Lower 

bounds, LRVE and Tamura approaches. These different 

models invariably yield different results since each model is 

founded on different assumptions and specific criteria.  

• Voigt’s model estimates the effective proprieties based 

on upper bounds considering the ceramic rich phase and 

generates maximum values for plate responses with 

markedly lower values obtained by Reuss’s model which is 

based on lower bounds considering a metal rich phase.  

• Hashin-Strickman’s models derive the effective elastic 

proprieties from shear and bulk moduli for upper and lower 

bounds and these produce a moderate agreement with the 

values computed using the Voigt and Reuss models 
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respectively.  

• Tamura’s model derives effective properties from a 

modification of the Voigt model which includes an 

empirical fitting parameter qT based on the nature of matrix-

inclusions phases, which is considered as a correction factor 

to the Voigt model.  

• The LRVE model takes into account the small cellular 

mechanical properties to predict the effective proprieties at 

the macroscopic-scale for two phase materials and is 

generally used for random distribution materials or 

interphase regions.  

• In the structural dynamic (free vibration) analysis, the 

homogenization effect is reasonable since all presented 

models use the same Voigt’s model to predict both the mass 

distribution and mass moment of inertia.  
• In addition, it is observed that increasing material 

index parameter decreases both critical buckling loads and 
fundamental frequency and in addition this effect is also 
observed when aspect ratio (b/a) increases. The effect of 
Pasternak foundation parameter is more prominent than the 
Winkler foundation parameter on critical buckling loads and 
fundamental frequency magnitudes. 

Finally, the current study provides a good foundation for 
extension to more general computational simulation for 
more complex geometrical configurations such as shells 
structures (Zine et al. 2018, Karami et al. 2018) and very 
thick plates (Bousahla et al. 2014, Belabed et al. 2014, 
Hebali et al. 2014, Bennai et al. 2015, Meradjah et al. 2015, 
Larbi Chaht et al. 2015, Hamidi et al. 2015, Bourada et al. 
2015, Bennoun et al. 2016, Draiche et al. 2016, Bouafia et 
al. 2017). In this regard the methodology described 
furnishes a good pathway for predicting the various 
effective elastic proprieties and it is hoped that readers may 
also be encouraged to consider experimental tests to 
validate the homogenization models considered in to 
establish the optimum choice for functionally graded plate 
problems. Also another possible extension of the current 
work is to consider micro-structural material behaviour 
which could be simulated within the framework of 
Eringen’s micropolar elastic models for both static and 
dynamic loading (Othman et al. 2013). This could also lead 
to investigations of fracture propagation in FGM plates with 
different homogenization models elaborated in this article. 
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