
Geomechanics and Engineering, Vol. 15, No. 6 (2018) 1183-1191 

DOI: https://doi.org/10.12989/gae.2018.15.6.1183                                                                1183 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7                                                             ISSN: 2005-307X (Print), 2092-6219 (Online) 

 
1. Introduction  
 

The linear Mohr-Coulomb (MC) criterion is often used 

in practical rock engineering owing to its simplicity and 

practicability. However, experiments have demonstrated 

that the linear criterion is not suitable for rock materials 

whose strength envelopes present nonlinearity (Cai et al. 

2007, Yang and Li 2018a). In order to provide input data for 

the design of underground excavations in hard rock mass, 

Hoek and Brown (1980) proposed the Hoek-Brown failure 

criterion. This nonlinear criterion was later modified by 

Hoek et al. (2002) to describe the strength characteristics of 

rock more accurately. 

Two-dimensional (2D) plane strain analysis has been 

adopted to estimate stability of slopes over several decades 

as the 2D analysis is generally considered to be 

conservative. However, the conservative factors of safety in 

the 2D analysis will be obtained only if the most pessimistic 

partition in the three-dimensional (3D) question is selected, 

and 3D mechanism is more critical and realistic under some 

conditions (Griffiths and Marquez 2007). The limit 

equilibrium method and the finite element method have 

been employed to estimate stability of 3D slopes (Hungr 

1987). However, the limit equilibrium method entails some 

assumptions to meet the relevant requirements, and the 

finite element method demands specific slopes with 

accurate geotechnical parameters. The limit analysis 

approach overcomes these difficulties, therefore, this theory 

is more suitable for 3D analysis of slopes. Michalowski 

(1989) proposed a 3D multi-block mechanism of slope 

failure within limit analysis. Furthermore, a 3D horn failure 
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mechanism was put forward for 3D slope. 

Reliability methods used for estimating the safety of 

earth slopes was earliest used in the 1970s. The randomness 

of strength parameters, geometries properties, and material 

properties can be taken into account in reliability methods, 

and accordingly designs based on these methods will be 

more rational and practical. Numerous researches have been 

conducted with respect to the failure of soil or rock slopes 

by virtue of reliability analysis (Al-Homoud and Tanash 

2004, Cassidy et al. 2008, Li and Lumb 1987, Low 2007, 

Shinoda 2007). However, these reliability analyses of slopes 

are generally in conjunction with limit equilibrium analysis, 

rather than limit analysis. Li et al. (2012) combined limit 

analysis with reliability method to study stability of 2D rock 

slopes. In the present analysis, 3D rock slopes under the 

effect of seismic load will be investigated. The nonlinear 

HB failure criterion is employed to depict the strength 

characteristics of rock mass, and the combined method of 

the limit analysis method and the Monte Carlo method is 

adopted to evaluate corresponding rock slope stability. 

 

 

2. Stability analysis of 3D rock slopes 
 

2.1 HB failure criterion and generalized tangential 
technique 

 

MC soil parameters (c and υ) are required by most 

computer programs to analyze slope stability. However, the 

non-linear nature of the rock mass failure envelope is more 

pronounced at the low confining stresses which is 

operational in slope stability problems (Xu et al. 2018, Xu 

and Yang 2018a, Xu and Yang 2018b, Yang and Li 2018b). 

The HB failure criterion is one of the few non-linear criteria 

utilized by practicing engineers to estimate rock mass 

strength. Hoek and Brown (1980) first proposed the HB 

failure criterion in 1980, and the latest version of this  
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Fig. 1 Tangential line to the modified Hoek-Brown failure 

criterion 

 

 

criterion is presented as (Hoek et al. 2002) 
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where σc is the intact uniaxial compressive strength, mi 
is 

the material constant and D represents the disturbance 

degree of rock mass. As illustrated in the above equations, 

the magnitudes of m, s and n are determined by geological 

strength index (GSI) and D. 

The tangential line to curve at location of tangency point 

M, is shown in Fig. 1. The tangential line is (Zhang and 

Chen 1987, Huang et al. 2018) 

= tant n tc    (5) 

where υt and ct are the tangential friction angle and the 

intercept of the straight line with τ-axis respectively. ct is 

expressed as (Yang and Zhang 2018a, Yang and Zhang 

2018b) 
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It can be seen that the tangential line is above the 

nonlinear failure criterion, therefore the linear failure 

criterion represented by the tangential line will give an 

upper bound of the actual load for the material, whose 

failure envelope is nonlinear. 

 

2.2 Construction of 3D failure mechanism 
 

Limit analysis is widely used in civil engineering (Li 

and Yang 2018a, Li and Yang 2018b, Yang and Wang 2018). 

Xu and Yang (2018b) studied a homogenous slope with 

angles α and β, as show in Fig. 2. The slope is subjected to 

earthquake forces, which is described by a horizontal 

seismic coefficient kh. Michalowski and Drescher (2009) 

proposed the 3D failure mechanism whose shape is a 

curvilinear cone with apex angle, as shown in Fig. 2. This 

failure mechanism has one symmetry plane passing the toe 

point C, and partially intersects the rock slope. The trace of 

the mechanism on the symmetry plane is described by two 

 

Fig. 2 Three-dimensional rotational mechanism of slope 

with inclined angle 

 

 
(a) 3D rotational mechanism with inclined angle 

 
(b) 3D mechanism with plane insert 

Fig. 3 Schematic diagram of three-dimensional mechanism 

with inclined angle 
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width of sliding block (Michalowski and Drescher 2009, 

Yang and Li 2018b). In view of this case, a plane insert is 

appended to the 3D failure patterns (Fig. 3(a)) to make the 

result consistent with practice. As illustrated in Fig. 3(b), 

the 3D surface is divided into two halves. The new 

parameter, b, is named as the width of the insert block, and 

B is the sum of rotational mechanism subjecting to a 

limitation imposed on the maximum of slope width. 

 

2.3 A new non-dimensional stability factor 
 

The stability factor is defined as 

c

n
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H
N

s
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
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where γ is the unit weight of the rock mass, and Hc is the 

minimum upper solution of the critical height of rock slope 

under earthquake forces. The critical height is expressed as 

 
     

   

       

0 tan

0

'

5 0 0 0 6 0

' '

1 0 0 0 2 0 3 0 0 0 4 0

cot sin
sin sin

sin

, , / , , /

, , / , , / , , / , , /

h tt t

h

h h

h h h h h h

c
H e

g r r g b H

g r r g b H k g r r k g b H

   
   

  

   

       

    
 




  

 (10) 

where g1, g2, g3, g4, g5, and g6 are given in Xu and Yang 

(2018b), with the following constraint conditions, as shown 

in Eq. (11). 
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(11) 

where '

maxB  is the maximum width of rotation mechanism 

and B is the finite width of slope. Li et al. (2012) proposed 

the safety factor defined as 

cF
HN




  (12) 

where N is the dimensionless stability number and it is 

different from the stability factor Nn mentioned above. The 

safety factor is adopted to analyze the stability of rock 

slopes in limit analysis method which is the same as the 

conventional factor of safety used in limit equilibrium, as 

shown in Eq. (13). But F and Fs generally are not equal 

(i.e., F≠Fs) due to their different definitions. 
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In terms of a slope with a height of H, the stability factor 

can be expressed as 
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Corresponding stability factor with Hc of the slope is 

shown in Eq. (9). Then, the safety factor can be derived 

from Eq. (15), and it is shown in Eq. (16). Finally, the new 

non-dimensional stability factor can be presented as Eq. 

(17). A purpose of this paper is to calibrate the new safety 

factor expressed in Eq. (16) for different probability of 

failures. 
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3. Reliability estimation of rock slope 
 

3.1 Determination of random variables 
 

In the limit analyses, for given slope geometry (α, β, 

B/H), rock mass (σc, GSI, mi, D, and γ), and seismic 

coefficient (kh), the optimized solutions of the critical height 

can be carried out with respect to the constraint conditions. 

Therefore, the stability factor can be derived from Eq. (9). 

However, as regards probabilistic analyses, the slope height 

(H) is required as an extra input, as well as parameters 

above.  

The first priority is to determine all uncertainties in rock 

slopes for reliability analysis. Hoek (1998) proposed that σc, 

mi, and GSI were distributed normally with their 

coefficients of variation (COVs) being 0.25, 0.125, and 0.1 

respectively. Li et al. (2012) adopted the standard deviation 

(Stdev) of 2.5 for GSI instead of COV equaling to 0.1, as 

Stdev  changes slightly with different GSI estimates. 

Therefore, these three parameters are regarded as 

uncertainties for reliability assessment, and above COVs or 

Stdev of random variables are adopted in the study. One 

case in critical situation is utilized for the following 

probability analysis, as shown in Table 1. 

 

3.2 Application of Monte Carlo method 
 

Monte Carlo method can estimate the failure probability 

(Pf) through the proportion of failure cases. Four steps need 

to be executed to realize the reliability method: (1) All 

 

 

Table 1 Input parameters 

Item Mean COV or Stdev 

σc

 
1 MPa 0.25(COV) 

mi

 
15 0.125(COV) 

GSI 50 2.5(Stdev) 

D 0 - 

H 52 m - 

α 15° - 

β
 

60° - 

B/H 5 - 

γ
 

20 kN/m3 - 

kh

 
0.05 - 
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Fig. 4 Influences of the number of Monte Carlo simulations 

on results (a) μNn
−Nt; (b) σNn

−Nt; (c) μF−Nt; (d) σF−Nt 

 

 

random variables (σc, mi, GSI) are sampled with Nt times to 

generate Nt samples, where Nt is the total amount of 

samples, and each sample comprise whole uncertainties (σc, 

mi, GSI ); (2) Every sample as well as other parameters (D, 

α, β, B/H, γ, and kh) is substituted one by one into 

optimization program, then Nt stability factors are obtained; 

(3) Nt safety factors can be derived from Eq. (16), and the 

number of all failure cases (F<1), nf, is recorded; (4) The 

failure probability can be calculated with the equation 

finally. 

Table 2 Comparison between the previous stability factor 

and the present stability factor 

Case GSI 
Nn 

Difference (%) 
Previous Present 

1 10 11.73 11.99 2.22 

2 20 18.51 19.16 3.53 

3 30 19.95 20.76 4.05 

4 40 18.54 19.27 3.91 

5 50 16.25 16.96 4.34 

6 60 13.93 14.36 3.10 

7 70 12.03 12.19 1.34 

8 80 10.24 10.30 0.63 

 

 

Fig. 5 Relation between mean safety factors and slope 

height for case 1 
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 The total amount of samples, Nt, can be obtained by the 

correlation between the mean and standard deviation of the 

stability factor (μNn
, σNn

) or the safety factor (μF, σF) and the 

number of simulations. Fig. 4 shows μNn
, σNn

, μF, and σF as a 

function of the number of samples for the case presented in 

Table 1. It indicates that results become stable as the 

amount of samples reaches Nt=5000. Therefore, the 

following research is based on 5000 Monte Carlo 

simulations, which is considered enough to give reasonably 

stable and reproducible reliability results. 

In order to verify the rationality of the reliability method 

and the new safety factor, some cases are recalculated by 

reliability analysis, as shown in Table 2. All cases have 

same parameter values presented in Table 1 except GSI. By 

changing the slope height (H), the relationship between the 

mean factor of safety and the slope height is presented in 

Fig. 5, for case 1 in Table 2. The exponential function 

relationship between μF and H is obtained with the help of 

nonlinear curve fitting tool of Origin software. Then the 

optimized critical height of rock slope (Hc) can be obtained 

by the exponential function with mean safety factor 

equaling to 1 (i.e., μF=1). The present stability factors can 

be finally derived by substituting Hc into Eq. (9). From 

Table 2, it is found that the maximum difference is less than 

4.5%. The agreement shows that the reliability method is an 

effective approach, and uncertainties of rock slope cause the 

difference between the previous stability factor and the 

present stability factor. 
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Table 3 Distribution types of σc, mi, and GSI under different 

combinations (normal distribution and lognormal 

distribution are presented by N and L respectively) 

Combination σc mi GSI 

C1 N N N 

C2 N N L 

C3 N L N 

C4 L N N 

C5 N L L 

C6 L N L 

C7 L L N 

C8 L L L 

 

 

Fig. 6 Distributions of safety factors under different 

combinations of distribution types of σc, mi, and GSI 

 

 

4. Results and discussions 
 

4.1 Influence of distribution types 
 

As stated previously, three random variables (σc, mi, 

GSI) are adopted for reliability analysis of 3D rock slopes, 

and input parameters presented in Table 1 are used in this 

section. The distribution types of random variables 

comprise of normal distribution and lognormal distribution 

for strength parameters. Although Hoek (1998) introduced 

normal distributions of σc, mi, and GSI, using a lognormal 

distribution can ensure positive values of strength 

parameters to guarantee physical meaning. This part focuses 

on influence of these two distributions on results of 

reliability analysis. 

In Table 3, there are eight combinations of distribution 

types of σc, mi, and GSI. For convenience, 8 combinations 

are represented by C1 to C8, respectively. Fig. 6 and Table 

4 display the influence of distribution types of σc, mi and 

GSI on distributions of safety factors and the probability of 

failure respectively. The shapes of the safety factor 

distributions are similar, and all curves are left-leaning. In 

Table 4, the probability of failure changes as combination of 

distribution types of σc, mi, and GSI alters. When C1 and 

C4, C2 and C6, C3 and C7, C5 and C8 are compared with 

each other, it can be seen that the lognormal distribution of 

σc causes more conservative results. Similarly, lognormal 

distributions of mi, and GSI make higher and less 

probability of failure respectively, but both parameters have 

less influence on results. Overall, there is little effect on the 

Table 4 Probability of failure under different combinations 

of distribution types of σc, mi and GSI 

C1 C2 C3 C4 C5 C6 C7 C8 

51.78% 51.06% 52.14% 54.14% 51.74% 54.26% 56.38% 54.44% 

 

Table 5 Probability of failure in different situations 

Situations COVs=0.1 COVs=0.2 COVs=0.3 

Unsafe 91.02% 79.56% 73.44% 

Critical 50.00% 53.06% 52.64% 

Safe 3.74% 17.4% 27.26% 

 

 
(a) Distribution of the safety factor in unsafe situation 

(H=65 m) 

 
(b) Distribution of the safety factor in critical situation 

(H=52 m) 

 
(c) Distribution of the safety factor in safe situation (H=38 

m) 

Fig. 7 The influence of the COVs values in different 

situations 
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final results for both distribution types. 

 

4.2 Investigation of coefficient of variation 
 

As pointed by some scholars (Luo and Li 2016), Pf 

increases, i.e., reliability decreases, when the COVs values 

of variables are augmented. However, the conclusion is 

inferred as slopes in safe situation (i.e., F>1). In this part, 

three situations, namely, safe situation (H=38 m), critical 

situation (H=52 m), and unsafe situation (H=65 m), are 

considered. Results are displayed in Table 5 and Fig. 7. In 

Table 5, Pf has different response to variation of the COVs 

values of variables (σc, mi) in different situations. When a 

slope is safe, Pf increases as the COVs  values increase; on 

the contrary, there is a negative correlation between Pf and 

the COVs values under the unsafe situation. However, an 

alteration of COVs values has little influence on Pf as a 

slope is in critical situation.  

There is an explanation of this phenomenon, which can 

be obtained by Fig. 7. In Fig. 7, an apparent trend is that the 

distribution of the safety factor becomes wider as the COVs 

values increase and the mean of safety factor is nearly 

constant. This trend causes the augmentation of the 

proportion of left and right marginal areas between curve 

and abscissa. This change finally results in an increase in 

safe area (for unsafe situation), or unsafe area (for safe 

situation), so Pf of unsafe slopes decreases but Pf of safe 

slopes increases. However, Pf of critical slopes fluctuates a 

little around 50% because the distribution of the safety 

factor is nearly symmetrical with respect to the critical line 

(i.e., F=1). So, the COVs values have different influences 

on reliability analysis when a slope is in different situations, 

as shown in Table 5.  

Finally, it is pointed out that the coefficient of variation 

of variables has a great influence on slopes design progress 

because of the guarantee of safety (F>1), according to the 

discussion above. 

 

4.3 The effect of two constants (D, kh) on reliability 
assessment 

 

Although studying variables is predominant in 

probability analysis, it is still worthy of investigating the 

influence of disturbance factor and seismic coefficient on 

the Pf evaluations. 

There are two situations considered. The first is critical 

situation, and the second is safe situation. Slope heights of 

two situations are 52 m and 30 m respectively. There are six 

cases under critical situation or safe situation as shown in 

Table 6, and parameters of all cases are same as the case in 

Table 1, except for COV values of σc and mi 
(COV=0.1 for 

both variables). 
Results are presented in Table 7 and Table 8. Whenever 

slopes are critical or safe, disturbance factor has a great 
influence on reliability results. However, compared to Table 
7, Pf does not increase remarkably with augmentation of kh 
for slopes under safe critical situation. As presented in Fig. 
8, the distribution of safety factor is narrower and the mean 
is closer to 1 when both D and kh increase. In Fig. 8(b), the 
proportion of unsafe cases is still low, though the influence 
of kh is apparent. Briefly, D and kh have a great influence on  

Table 6 Cases under critical situation (H=52 m) or safe 

situation (H=30 m) 

Case D kh H 

a 0 0.05 30 m or 52 m 

b 0.2 0.05 30 m or 52 m 

c 0.4 0.05 30 m or 52 m 

d 0 0 30 m or 52 m 

e 0 0.05 30 m or 52 m 

f 0 0.1 30 m or 52 m 

 

Table 7 Probability of failure for cases under critical 

situation (H=52 m) 

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f) 

51.26% 88.36% 99.56% 15.06% 50.72% 91.52% 

 

Table 8 Probability of failure for cases under safe situation 

(H=30 m) 

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f) 

0.14% 2.76% 30.62% 0.06% 0.2% 4.2% 

 

 
(a) The influence of D 

 
(b) The influence of kh 

Fig. 8 The distribution of safety factor for safe cases (H=30 

m) 

 

 

distribution of safety factor whenever slopes are in critical 

or safe situations. Finally, this influence results in a visible 

change of Pf in reliability analysis. 

 

4.4 Relationship between probability of failure and 
mean safety factor 
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Fig. 9 For case in Table1 (a) Relation between mean safety 

factor and α, and (b) Relation between probability of failure 

and α 

 

 

Fig. 10 For case in Table1 (a) Relation between mean safety 

factor and β, and (b) Relation between probability of failure 

and β 

 

 

Safety factor is usually used to give guidance for design 

progress of slopes. However, reliability analysis focuses on 

probability of failure, which reflects safety degree of slopes. 

A slope is safe when safety factor is more than 1, but it is 

still unknown whether the slope is safe enough or not. So, it 

is necessary to study the relationship between probability of 

failure (Pf) and mean safety factor (μF). 

The case, whose parameters are given in Table 1, is 

adopted in next research. Results presented in Fig. 9 to Fig. 

12 display the relationship between Pf, μF and geometric 

 

Fig. 11 For case in Table1 (a) Relation between mean safety 

factor and H, and (b) Relation between probability of failure 

and H 

 

 

Fig. 12 For case in Table1 (a) Relation between mean safety 

factor and B/H, and (b) Relation between probability of 

failure and B/H 

 

 

parameters (α, β, H and B/H). As shown in Fig. 9, α has a 

little influence on reliability results when α is lower than 

50°. However, it is presented that in Fig. 10 to Fig. 12 that 

the mean safety factor increases with the reduction in other 

geometric parameters. As expected, probability of failure 

and these three geometric parameters are negatively 

correlated. In addition to the trend, β and H have a great 

effect on reliability results compared with B/H. From the 

results in Fig. 9 to Fig. 12, the relation between probability 

of failure and the factor of safety can be derived. The  
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Table 9 Input parameters for relationship between 

probability of failure and mean safety factor 

Case 
GSI σc(MPa) mi 

D 
γ 

(kN/m3)
 kh 

(Stdev=2.5) (COV=0.25) (COV=0.125) 

a1 40 1 15 0 20 0.05 

a2 60 1 15 0 20 0.05 

b1 50 3 15 0 20 0.05 

b2 50 5 15 0 20 0.05 

c1 50 1 12 0 20 0.05 

c2 50 1 18 0 20 0.05 

d1 50 1 15 0.1 20 0.05 

d2 50 1 15 0.2 20 0.05 

e1 50 1 15 0 15 0.05 

e2 50 1 15 0 25 0.05 

f1 50 1 15 0 20 0 

f2 50 1 15 0 20 0.1 

 

 

relationship is displayed in Fig. 13 for all geometric 

parameters, which are similar. This phenomenon is also 

valid for slopes whose failure mechanism bases on plane in 

Li et al. (2012).  

In order to discuss whether values of rock mass 

properties (GSI, σc, mi, D, and γ) and seismic coefficient (kh) 

have an influence on the relationship between Pf and μF, 

some cases in Table 9 are adopted. Every case has only one 

different parameter compared with case in Table 1. Each 

case is represented by one point in Fig. 13. It is obvious that 

all cases agree with the relationship between Pf and μF 

derived from geometric parameters. Therefore, the 

relationship between Pf and μF have little correlation with 

magnitudes of geometries, rock mass properties, and 

seismic coefficient. However, if COVs values of variables 

change, curves indicating this relation will make changes. 

As shown in Fig. 13, when COVs values are higher, more 

higher safety factor is required to maintain the same Pf, 

which means reinforcement or ground improvement should 

be considered. In addition, cases in Table 6 (COVs=0.1) 

also conforms to the curve for COVs of variables (σc, mi) 

equating to 0.1. As the relationship between Pf and μF is 

independent of the magnitudes of input parameters but 

relative to variability of uncertainties, the relation can be 

determined once COVs of variables are obtained with the 

help of sufficient experimental and field measured data. 

And then, more actual curves will be presented in Fig. 13. 

According to the relationship between Pf and μF based 

on the COVs of variables suggested by Hoek (1998) in Fig. 

13, reliability analysis can provide guidance for slope 

designs when no further sample and data information is 

available. Given a failure probability (Pf), the factor of 

safety can be obtained from Fig. 13. For example, if COVs 

of variables are same as the case in Table 1 and the failure 

of probability was set to be less than 10
-3

, then a safety 

factor of F=4.8 could be appropriate. However, if COVs  

of variables is equal to 0.1, F=1.7 is adopted for Pf≤10
-3

.  

 

 
5. Conclusions 

 

The present study focuses on the application of 

 

Fig. 13 The relation between probability of failure and 

mean factors of safety 

 

 

reliability analysis for 3D rock slopes based on the HB 

failure criterion, within the framework of limit analysis. The 

horn failure mechanism proposed by Michalowski and 

Drescher (2009) was adopted for the Reliability estimation 

of rock slopes. For the convenience of risk analysis, the new 

factor of safety was proposed based upon the stability 

factor. The purpose of the present work is to calibrate the 

new safety factor for different probability of failures, which 

is shown in Fig. 13. 

The determination of all variables in rock slopes 

predominates in reliability analysis. Three parameters (σc, 

mi, and GSI) are regarded as uncertainties. According to 

presented results of reliability analysis, it is found that 

distribution types of variables have little influence on risk 

analysis. However, the COVs values of uncertainties have 

different influences on reliability results when the slopes are 

in different situations. It is also shown that the magnitudes 

of two constants (D, kh) could have significant effect on the 

Pf estimation. 

In order to provide guidance for slope designs with the 

help of reliability analysis, the relationship between 

probability of failure and mean safety factor is investigated. 

It is found that the relation between Pf and μF is independent 

of the magnitudes of input parameters but relative to the 

variability of variables. Therefore, the COVs values should 

be determined by sufficient experimental and field 

measured data, so as to obtain actual curves in Fig. 13 for 

slope designs. If no further sample and data information is 

available, designers can adopt the curve based on the COVs 

values. 
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