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1. Introduction 
 

Stabilizing underground openings such as tunnels 

excavated in rock mass remain a major concern of 

geotechnical engineers dealing with this kind of structures. 

In tunnels, the rock mass strain and the ground pressure on 

lining depend on the stress state and characteristics of the 

rock mass as well as of the geometry, the stiffness and the 

moment of the lining installation. Pressure variation on 

lining and strain over time are caused by the advance of 

excavation and the time-dependent properties of the rock 

mass and lining. 

For a long time, these engineering works were designed 

based on the experience of the engineers, the similarity to 

“reference works” and empirical methods. Nowadays, the 

computational tools allow the study of tunnels with three-

dimensional models that consider the nonlinearity of the 

materials and the ground-support interaction together with 

the constructive process. Works such as the Mroueh & 

Shahrour (2003), Gomes (2006), Masin (2009), Couto 

(2011), Machado (2011) and Fiore (2015), exemplify some 

of these tools. In the case of viscoplastic behavior of the 

rock mass, several other studies consider the long-term 

effects. We can mention some studies such as Hanafy 

(1981), Sulem et al. (1987), Bernaud (1991), Pan and Dong 

(1991a, b), Bernaud et al. (1994), Benamar (1996), Malan 

(1999), Sahli et al. (2001), Boidy & Pellet (2002), Gomes 

(2006), Sterpi and Gioda (2009), Debernardi (2008),  
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Debernardi & Barla (2009) and more recently, Fahimifar et 

al. (2010), Roatesi (2010), Barla et al. (2011), Nomikos, et 

al. (2011), Khoshboresh (2013), Karami and Fahimifar 

(2013), Sharifzadeh et al. (2013), Wang et al. (2013, 2014), 

Maleki and Mousivand (2014), Fiori et al. (2016) and 

Quevedo (2017). 

However, these analyzes require meshes that are 

difficult to construct and have longer processing time and, 

therefore, reserved for more complex studies (which 

consider rock mass heterogeneity, localized loading of 

surface structures, noncircular sections, partial excavations, 

etc.). Beyond that, the tunneling project involves step-

decision where the designer does not have much 

information and needs to do quick preliminary studies. 

Tools that allow quick and cost-effective evaluation may be 

helpful in these steps. Therefore, the scope of this work is to 

present the results of a parametric study with an 

axisymmetric two-dimensional model of a tunnel excavated 

in a rock mass with viscoplastic behavior and elastic lining. 

The numerical simulation of the tunnel advance is based on 

the technique of activating and deactivating elements. The 

following parameters are changing in the calculation: 

• the distance of the lining to the excavation face; 

• the modulus of elasticity of the rock mass;  

• the stiffness of the lining; 

• the hydrostatic geostatic pressure; 

• the excavation speed. 

 

 

2. Numerical model 
 

Tunnels are essentially three-dimensional problems. 

However, for long stretches and sufficiently deep tunnels 

(depth/radios of cross-section ≥ 10) within sufficiently 

homogeneous ground/rock mass, axisymmetric conditions  
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Fig. 1 Finite element mesh and boundary conditions of 

the model (Bernaud 1991) 

 

 

around the longitudinal axis of the tunnel may be 

considered valid. These considerations allow simplifying 

the rigorously three-dimensional problem for a two-

dimensional axisymmetric analysis. However, this 

simplification restricts the study to circular sections and 

deep-long tunnels. Despite the limitations of the model, 

these simplifications allow larger amounts of analysis since 

it is a less costly model from the computational point of 

view. 

 

2.1 Numerical simulation procedure 
 

The model used in the calculations can be seen in Fig. 1. 

A regular mesh composed of 1298 quadrilateral, 

isoparametric elements with nine nodes and quadratic 

interpolation functions was used. The model has dimensions 

of 24R along the x axis and 30R along the y axis 

(longitudinal axis of the tunnel). The excavated portion 

corresponds to a length of 13R around the tunnel axis, 

where R is the radius of the circular section of the tunnel. 

To represent the excavation, at each step of excavation, 

a low multiplier is applied in the modulus of elasticity of 

the corresponding elements deactivating them. The velocity 

of the excavation V was considered constant and simulated 

through the time required to excavate a single step, 

according to Eq. (1) 

Vpt p /
 

(1) 

where tp = time required to a step of the excavation, p = 

excavation step, V = excavation speed. The placement of 

the lining along the excavation was simulated by changing 

the properties of the finite elements to the elastic properties 

of the lining. Fig. 2 illustrates the tunneling process, the 

first excavation consisting of three steps (3p=R) and the 

remainder step-by-step excavation, in 36 excavations. The 

installation of the lining follows the excavation distance d0 

(unsupported length) from excavation face. 

After the excavations, the lining corresponding to the 

last excavation is filled. Afterwards, the program continues 

 

Fig. 2 Sequence of excavation and placement of the 

lining (QUEVEDO 2017) 

 

 

Fig. 3 Sequence of excavation and placement of the 

lining (Bernaud 1991) 

 

 

simulating the behavior of the tunnel over time until the 

increase in viscous deformation is below a certain tolerance, 

thus achieving stabilization of the deformations and of the 

tensions of the tunnel. 
 

2.2 Constitutive laws 
 

The constitutive law of the viscoplastic rock mass is 

represented according to the rheological diagram presented 

in Fig. 3. 

The tensor of total deformations was decomposed 

according to Eq. (2) 

vpe
 

 
(2) 

where 𝜀𝑒  e 𝜀𝑣𝑝  are the elastic and viscoplastic strain 

tensors, respectively. The total stress 𝜎 was obtained by 

Hooke’s law, according to Eq. (3) 

  0
:

e vp
D     

 
(3) 

where D  is the 4th order tensor with the elastic properties 

of the ground and 
0

  is the initial stresses. To determinate 

if the stress state is in an elastic or viscoplastic regime, the  
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Fig. 4 Comparison of experimental and numerical 

convergence for t = 4 years (Bernaud and Rousset 1993) 
 

 

von-Mises viscoplasticity criterion represented by Eq. (4) 

was adopted 

  s

D
F  

2

3

 

(4) 

where 
D

  is the modulus of the deviatoric stresses and  

σs is the yield stress obtained by a test, which in the case of 

geomechanical materials is equal to 2 times the cohesion. 

When   0F  the tensile state in elastic domain and the 

total strain rate is purely elastic, according to Eq. (5) 

 
(5) 

However, if   0F  the total strain rate is the sum of 

an elastic part and a viscoplastic part, according to Eq. (6) 

 
(6) 

The Bingham model was adopted for the viscoplastic 

deformation rate, according to Eq. (7) 

 

(7) 

where  F  is the viscoplasticity criterion,     FG   

is the associated viscoplastic potential, η and n=1 are 

viscosity constants, F0 represents a reference tension and 〈∙〉 
is the Macaulay brackets. For the lining adopted the 

Hooke’s law according to Eq. (8) 

e
D  :

 
(8) 

where D , in this case, is the 4th order tensor with the 

elastic properties of the lining. 

 

2.3 Verification and validation of GEOMEC91 

The model used in this paper is implemented in the 

finite element code GEOMEC91 which was largely verified 

with analytical solutions (perfect and hardening plastic 

Tresca, Coulomb, von-Mises and Drucker-Prager 

constitutive laws) (Bernaud 1991) and validated with the 

experimental results of a deep viscoplastic clay in the 

gallery of Mol in Belgium (Bernaud and Rousset 1993). In 

this case of the Mol’s gallery, considering velocity of the 

excavation variable, elastic nonlinear linning and a 

hardening parameter in the viscoplasticity criterion, the 

code showed its efficacy in a more complex problem than 

the present work, reaching a good approximation of the real 

long term convergences, as shown in Fig. 4. 
 
 

3. Numerical model 
 

According to Bernaud (1991), eight parameters can be 

used to analyze the problem in perfect viscoplasticity: P∞ 

hydrostatic geostatic pressure, Ks stiffness of the lining, d0 

unsupported length, V tunneling speed, η mass viscosity 

coefficient, R radius of cross-section of the tunnel and C the 

cohesion of the rockmass. These parameters can be grouped 

into five independent dimensionless parameters, according 

to Eqs. (9)-(13). 

C

Es

s 
*E

 

(9) 

C

H

C

P 
 *P

 

(10) 

C

K s

s 
*K

 

(11) 

R

d 0*

0d 
 

(12) 

CR

V
*V

 

(13) 

where γ is the specific weight to the ground/rock mass, H 

the depth of the tunnel and Ks is obtained through the 

equivalent rigidity of a thick circular tube (radius/thickness 

≤10) according to Eq. (14) (Panet 1995). 

 22

22

s
)()21()1(

))((
K

eRR

eRRE

rr

r







 

(14) 

where Er is the modulus of elasticity of the lining, νr is the 

Poisson’s coefficient of the lining, e is the thickness of the 

lining and R is the radius of the cross-section of the tunnel. 

Each analysis performed generates a convergence profile as 

shown in Fig. 5. The convergence in equilibrium Ueq 

corresponds to the mean of the convergences U in a stretch 

between 23R and 26R after cessation of viscous effects. 

The convergence profiles will not be presented, only the 

abacuses that collect the Ueq results as a function of the  
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Fig. 5 Example of convergence profile 

 

Table 1 Values of the dimensionless parameters used to 

construct the abacuses 

Dimensionless parameters (Group 1) 

d0* 0,00 0.67 1.33 
   

Es* 80 400 1000 1600 3200 
 

Ks* 20 200 400 800 2000 
 

P* 2 4 
    

v* 100 250 580 800 1160 2000 

Dimensionless parameters (Group 2) 

d0* 0.00 0.67 1.33 
   

Es* 333 1667 41667 6667 13333 
 

Ks* 83 833 1667 3333 8333 
 

P* 8 17 
    

v* 100 250 580 800 1160 2000 

 

 

unlined distance d0*, the velocity of tunneling V* and the 
equivalent stiffness of the lining Ks*. The Poisson’s 
coefficient adopted for the rock mass was νs.= 0.4 and the 
dimensionless parameters used in the analysis are show in 
Table 1. 

Another important parameter for preliminary analyzes is 
the equilibrium pressure Peq acting on the lining. For a 
Tresca rock mass, we can obtain the convergence curve 
given by the analytical solution presented in Eqs. (15)-(17) 
for R = 1 (Bernaud 1991) 












 

2

1

2
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C

PP
y i

 
(15) 
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(17) 

Since Eq. (17) is deduced considering Tresca’s 

Plastiticity criterion, the C cohesion makes the approach 

between the Tresca and von-Mises models. It’s given by Eq. 

(18) 

TRVM CC
3

2


 
(18) 

Adopting as an approximation νs.= 0.5 we have an 

explicit form to calculate Peq, according to Eq. (19) 

(Bernaud and Rousset 1992) 


























 

VM

seq

VMeq
C

EU
CPP

3

2
ln1

 

(19) 

 
 

4. Results 
 

The results of the study are summarized in the abacuses 

of Figs. 6-21. These abacuses can be used for preliminary 

studies; however, convergences greater than 20% are 

unrealistic and are useful only for academic studies. 

Through the abacuses it is possible to see the influence 

of some parameters on the final convergence of the tunnel 

excavated in rock mass with viscoplastic effects: 
• the greater the unlined distance, the greater the radial 

deformation; 
• the higher the speed, the smaller the radial 

deformation. However, for P* values less than 2, velocity 
does not influence radial deformation; 

• for P* greater than 2, the slower the speed, the greater 
the sensitivity of the convergence; 

• the greater the stiffness of the lining, the smaller the 
radial deformation. However, the approximation of the 
curves for high stiffness indicates a limit from which the 
increase in stiffness no longer influences the convergence; 

• It can be observed in most cases that the curves for 

different stiffness are parallel. 
 

 

 
(a) 

 
(b) 

Fig. 6 Group 1: D0*=0, P*=2, Es*=80 to 1600 
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(c) 

 
(d) 

Fig. 6 Continued 

 

 
(a) 

 
(b) 

Fig. 7 Group 1: D0*=0, P*=4, Es*=80 to 1600 

 
(c) 

 
(d) 

Fig. 7 Continued 

 

 
(a) 

 
(b) 

Fig. 8 Group 1: D0*=0, P*=2, Es*=3200; D0*=2/3, P*=2 

Es*=80 to 1000 
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(c) 

 
(d) 

Fig. 8 Continued 

 

 
(a) 

 
(b) 

Fig. 9 Group 1: D0*=0, P*=4, Es*=3200; D0*=2/3, P*=4 

Es*=80 to 1000 

 
(c) 

 
(d) 

Fig. 9 Continued 

 

 
(a) 

 
(b) 

Fig. 10 Group 1: D0*=2/3, P*=2 Es*=1600 to 3200; 

D0*=4/3, P*=2 Es*=80 to 400 
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(c) 

 
(d) 

Fig. 10 Continued 

 

 
(a) 

 
(b) 

Fig. 11 Group 1: D0*=2/3, P*=4, Es*=1600 to 3200; 

D0*=4/3, P*=4, Es*=80 to 400 

 
(c) 

 
(d) 

Fig. 11 Continued 

 

 
(a) 

 
(b) 

Fig. 12 Group 1: D0*=4/3, P*=2, Es*=1000 to 3200 
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(c) 

Fig. 12 Continued 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 13 Group 1: D0*=4/3, P*=4, Es*=1000 to 3200 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 14 Group 2: D0*=0, P*=8, Es*=80 to 6667 

980



 

Parametric study of the convergence of deep tunnels with long term effects: Abacuses 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 15 Group 2: D0*=0, P*=17, Es*=80 to 6667 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 16 Group 2: D0*=0, P*=8, Es*=13333; D0*=2/3, 

P*=8, Es*=333 to 4167 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 17 Group 2: D0*=0, P*=17, Es*=13333; D0*=2/3, 

P*=17, Es*=333 to 4167 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 18 Group 2: D0*=2/3, P*=8, Es*=6667 to 13333; 

D0*=4/3, P*=8, Es*=333 to 1667 

982



 

Parametric study of the convergence of deep tunnels with long term effects: Abacuses 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 19 Group 2: D0*=2/3, P*=17, Es*=6667 to 13333; 

D0*=4/3, P*=17, Es*=333 to 1667 

 
(a) 

 
(b) 

 
(c) 

Fig. 20 Group 2 D0*=4/3, P*=8, Es*=4167 to 13333 

 

 
(a) 

Fig. 21 Group 2 D0*=4/3, P*=17, Es*=4167 to 13333 
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(b) 

 
(c) 

Fig. 21 Continued 

 

 

Fig. 22 Example of using the abacus 

 

 

Fig. 23 Convergence profile of the example 

 

Fig. 24 Pi x Ui Convergence curve of the example 

 
 
5. Example of abacus utilization 
 

Input data: R = 4m, e = 0,1m; H=353m; γ = 17kN/m³; 

Es=600MPa; νs=0.4; C = 1.5MPa; η = 107 MPa.s; d0 = 

2/3R; Er = 30000MPa e V = 10m/day. Initially it is checked 

if the parameters d0*, Es*, νs e P* are in the scope of the 

abacus 

)(400
5.1

600
E* OK

MPa

MPa

C

E s

s 
 

(20) 

)(4
5.1

6

5.1

353*)/17(
P

3
* OK

MPa

MPa

MPa

mmkN

C

H


  (21) 

)(4.0 OKs 
 

(22) 

Once these parameters are within the scope of the 

abacus, you can continue the calculations 

   
MPa

eRR

eRRE

rr

r 6.843
)9.3(4)3.0*21()3.01(

))9.3(4(30000

)()21()1(

))((
K

22

22

22

22

s 










  
(23) 

4.562
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C
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(24) 
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1
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7
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
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





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


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sMPa
day

m

CR

V

 

(25) 

With the values of d0*, Es*, P*, Ks* e V* go to the 

abacus according to Fig. 22. 

The convergence profile of the example is shown in Fig. 

23. 

Drawing the convergence curve of the Eq. (17) we can 

find the pressure Peq as shown in Fig. 24. 

In another way, using Eq. (19) 

MPaPeq 15.2

5.1*
3

2
*3

600*0147.0*2
ln15.1*

3

2
6 







































 

(26) 

 
 

6. Conclusions 
 

In this paper, we show the results of a parametric study 
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from finite element method involving 1716 analysis 

summarized in 60 abacuses. It consists of a very useful tool 

for preliminaries study of tunnels. We can observed the 

influence of the dimensionless parameters in the long time 

behavior of the tunnel. For example, the larger the unlined 

distance the greater the radial displacements. For sequential 

excavations (mining type) it is difficult to work with small 

unlined distances due to the space required to move the 

machines. Therefore, if it is necessary to reduce the radial 

deformation the use of tunnel-boring machines (TBM) is 

suggested. If P* is less than 2 then the use of lower speeds 

can be reached because in this case there is little influence 

on radial displacement. However, if P* is greater than 2 

then, to obtain smaller displacements, higher speeds should 

be prioritized. 

To determine the pressure at equilibrium, the 

convergence curve of rock mass can be calculated from 

Eqs. (15)-(18). However, the results obtained from this 

curve present a very good agreement with the results of Eq. 

(19). 

The results of the abacuses are deduced for deep 

tunnels. Nevertheless, they can be used as a first approach 

for shallow tunnels. 
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