
Geomechanics and Engineering, Vol. 15, No. 4 (2018) 947-955 

DOI: https://doi.org/10.12989/gae.2018.15.4.947                                                                  947 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7                                                             ISSN: 2005-307X (Print), 2092-6219 (Online) 

 
1. Introduction 
 

Simplified methods for evaluating slope stability include 

the limit equilibrium method (LEM; Razdolsky et al. 2005, 

Deng et al. 2015, Xiao et al. 2015), the finite element 

method (FEM; Ji and Liao 2014, Tschuchnigg et al. 2015a, 

b), the combined LEM and FEM method (Sloan 2013), the 

rigid FEM (Liu and Zhao 2013), and the distinct element 

method (DEM; Liu et al. 2014). In addition, the influence 

of the three-dimensional slope shape is discussed when 

dealing with the three-dimensional model (Gao et al. 2013, 

2016, Michalowski and Nadukuru 2013, Zhang et al. 2013, 

Shen and Karakus 2014, Lim et al. 2015). Furthermore, 

methods using new numerical analysis such as the particle 

method have been studied for investigating slope failure 

with large deformation behavior (Peng et al. 2015). 

The authors proposed a three-dimensional simplified 

slope stability analysis method based on the rigid-body 

spring model (RBSM; Kawai 1977, Takeuchi and Kawai 

1997, Yagi and Takeuchi 2015). The input data of this 

method is equivalent to a simplified method such as the 

Hovland method and Janbu method. The purpose of this 

method was to grasp the qualitative slope movement 

because the safety factor of the slope with the conventional  
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simplified method cannot obtain information regarding the 

deformation condition of the slope. 

In recent years, methods that use the deformation 

condition have been discussed such as using the 

deformation and strain state of the slope to evaluate the 

slope stability (Murata et al. 2014). For such evaluation 

methods, it is necessary to grasp the quantitative 

deformation condition, and a calculation method was 

proposed using the Spencer method and the Newmark 

method. 

On the other hand, the present authors and others have 

developed the hybrid-type penalty method (HPM; Takeuchi 

et al. 2001, Ohki and Takeuchi 2005, Mihara and Takeuchi 

2005, 2007, Vardanyan and Takeuchi 2008, Takeuchi et al. 

2009, Yagi and Takeuchi 2011, Fujiwara et al. 2015) as a 

discretization method based on the principle of hybrid-type 

virtual work equation (Washizu 1968). In this method, the 

same discretization limit analysis as RBSM can be 

performed. In addition, the accuracy of the displacement 

solution is equivalent to FEM with constant strain element 

(Mihara and Takeuchi 2005, Ohki and Takeuchi 2005). This 

assumes the same degree of freedom as the discontinuous 

deformation analysis (DDA; Ohnishi et al. 2013). However, 

DDA mainly deals with a mass of discrete bodies and is 

therefore used for the collapse analysis of a rock mass 

having many discontinuity planes (Jiang et al. 2013, Jiang 

and Zheng 2015).  

On the other hand, HPM is considered applicable to 

phenomena such as landslides and full-layer avalanches 

because it can express approximately continuous models 

using a penalty function. In addition, as compared with the 

previous study of three-dimensional simplified slope  
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Fig. 1 Subdomains Ω
(e)

 and the boundary Γ
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Fig. 2 Common boundary Γ<ab>  between subdomains 

Ω
(a)

 and Ω
(b)

 
 
 

stability analysis methods using RBSM, the accuracy of the 

displacement solution is improved as the strain results are 

obtained. 

In this paper, we propose a simple method to evaluate 

the slope stability by applying HPM to the previous study 

of three-dimensional simplified slope stability analysis 

method using RBSM. Finally, we describe the features of 

the obtained solution using numerical examples. 
 

 

2. Summary of the HPM 
 

2.1 Hybrid-type virtual work equation  
 

Fig. 1 shows that domains Ω consist of M subdomains 

Ω
(e)

 with the closed boundary Γ
(e)

. 

 

(1) 

Then the virtual work equation is represented by the 

sum of each subdomains as follows 
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(3) 

We use Γ<ab> to denote the common boundary between 

two subdomains Ω
(a)

 and Ω
(b)

, which are adjoined, as shown 

in Fig. 2.  

The boundary Γ<ab> satisfies the following conditions 

 
(4) 

In the principle of hybrid-type virtual work, the 

following equation represents the continuity condition on 

the boundary 
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(6) 

The continuity condition of Eq. (5) can be represented in 

the following form with the Lagrange multiplier 
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(7) 

Eq. (7) is introduced into the virtual work equation (2). 

Then, the hybrid-type virtual work equation is obtained. 

The number of common boundaries of the subdomain is 

N, and hybrid-type virtual work equation is represented as 
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(8) 

 

2.2 Displacement field 
 

The HPM assumes independent displacement fields in 

each subdomain. In this study, it assumes a first-order 

displacement field as shown Fig. 3 and the expression  
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Here d
(e)

 and ε
(e)

 are the rigid displacement and the 

strain at arbitrary points in the domain, and Nd
(e)

 and Nε
(e)

  

are the coefficient matrices related to the coordinates. 
Therefore, the displacement field in HPM has the degree 

of freedom of strain and its gradient in addition to the rigid 
displacement and rigid rotation at arbitrary point in the 
domain. The conventional displacement-type FEM uses the  
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Fig. 3 Displacement field in each subdomain 
 

 

Fig. 4 The surface force on the boundary in subdomains 
 

 

apexes of the element to the degree of freedom. However, 
HPM does not share the displacement at the apex because 
the displacement field is represented by the parameter at an 
arbitrary point in each domain. 
 

2.3 Relative displacement and Lagrange multiplier 
 

The physical interpretation of the Lagrange multiplier 

means the surface force on the boundary. The surface force 

on the boundary Γ<ab> in subdomains Ω
(a)

  and Ω
(b)

  as 

shown in Fig. 4 can be represented as in the following 

equation with the relative displacement δ<ab> and the 

penalty matrix k 

  abab δkλ  (16) 

By using the matrix form, Eq. (16) is represented as 

follows 
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(17) 

Here δs<ab>, δt<ab>, and δn<ab>, are the relative 

displacement for the tangential and normal direction on the 

element boundary Γ<ab>. Similarly, λs<ab>, λt<ab>and λn<ab> are 

the Lagrange multiplier for the tangential and normal 

direction and ks, kt and kn are the penalty function for the 

tangential and normal direction. When the penalty matrix is 

a sufficiently large value, the displacement continuity is 

approximately represented on the boundary. 
 

2.4 Discretization equation  
 

We introduce the relation of Eqs. (9) and (16) to Eq. (8); 

finally, we obtain the following discretization equation 

PKU   (18) 
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where K
(e)

 is the stiffness matrix of the element (e) and K<s> 

is the continuity condition on the element boundary <s>. 

 

 

 

(a) The modeling slope 

 

(b) The division by the lattice 

 

(c) The division of the column 

Fig. 5 Method of element division with a column 

 

 

Fig. 6 The weight of the column 

Inclining direction

Slip direction

Column

Ground level

Ground

Water

level

Slip surface
Reference level

Column

Ground level

Slip surface

Reference surface

Bottom layer element

Top layer element

Middle layer elements

(1 to 3 elements)

Equal interval

Ground level

Reference

level

Water level

elementＩ

Slip surface

949



 

Kiyomichi Yamaguchi, Norio Takeuchi and Eisaku Hamasaki 

3. Modeling for three-dimensional simplified slope 
stability analysis 
 

3.1 Method of element division with column 
 

In this study, the stability analysis of HPM uses the 

same input parameter as the conventional simplified 

method. Therefore, we apply the modeling method that 

divides the slope into a lattice and that calculates with an 

assumed slip surface to the same as conventional simplified 

method as shown in Fig. 5(b). When the model is the slope 

as shown in Fig. 5(a), it is divided into the column by the x 

and y direction of the lattice as shown in Fig. 5(b). 

Moreover, we divide this column in the z direction as 

shown in Fig. 5(c), because HPM can consider the elastic 

deformation. We divide the column with equal interval to 

the top layer element, the bottom layer element, and the 

middle layer elements. We increase the number of middle 

layer elements depending on the accuracy of calculation. 

However, the material uses the same stiffness in each 

column, because the purpose of this method is simplified 

slope stability analysis that we can use with the same input 

parameter as the conventional simplified method. In this 

study, we use the average of the stiffness of the column. 

 

3.2 Weight of the column 
 

The weight of the column uses the average of unit 

weight in each column. When the groundwater level is 

considered as shown in Fig. 6, this part uses the submerged 

weight. 

In the case of element I in Fig. 6, the average height of 

upper, lower, and water level are 

 
(21) 

 
(22) 

 
(23) 

The weight of an element is calculated as follows 

 
(24) 

 (25) 
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(26) 

where γt is the wet weight and γsub is the submerged weight. 

 

3.3 Seismic load 
 
We treat the seismic load as a static problem by using 

the design horizontal seismic coefficient. Fig. 7 shows the 

state of the column using the seismic load. 

 In this study, the weight of the element I is WI, and the 

 

 

Fig. 7 The seismic load 

 

 

designed horizontal seismic coefficient is kh. The seismic 

load is obtained as 

hIs kWH 1  (27) 

The seismic load decomposes in the x-direction and y-

direction as follows 

cos11  sfx HW
 (28) 

sin11  sfy HW
 (29) 

 

 

4. Discretization for three-dimensional simplified 
slope stability analysis 
 

4.1 Continuity condition of the column on the x-side 
surface 

 

As shown in Fig. 8, we consider the contact situation of 

a column for the x-direction. 

 
 

 

Fig. 8 The continuity condition of a column for the x-

direction 
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It is assumed to connect for each of the layers, and the 

relative displacement of element I and II are obtained as 

  IIIIIIIII UBδ
 (30) 

where   IIIδ  is the relative displacement,  IIIU  is the 

degree of freedom of elements I and II, and  IIIB  is the 

coefficient matrix.  

The Lagrange multiplier  IIIλ  for elements I and II is 

represented as 

  IIIIII δkλ
 (31) 

The penalty matrix k  is 
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(32) 

kn is for the normal direction, ks and kt are for the shear 

direction. 

In the case of the x-direction, the penalty matrix k is 

 

 
 

   































 

dx

E

dx

E

dx

E









121

1
00

0
1

0

00
1

'

'

'

sidexkk

 

(33) 

Here, we assume that the penalty function is p, and Eʹ is 

assumed as 

pEE 
 

(34) 

Therefore, the continuity condition of the side for the x-

direction is discretized as 
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4.2 Continuity condition of a column on the y-side 
surface 

 

We consider the continuity condition of a column for the 

y-direction as shown in Fig. 9. 

This concept of the continuity condition is the same as 

in the x-direction. Therefore, in the case of the y-direction, 

the penalty matrix k is 
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(36) 

Finally, the continuity condition of the side for the y-

direction is discretized as follows 
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Fig. 9 The continuity condition of a column for the y-

direction 

 

 

 

 

Fig. 10 The continuity condition of the column for the 

upper and lower surface 
 

 

4.3 Continuity condition of column on upper and 
lower surface 

 

As shown in Fig. 10, the column is divided to at least 
three parts: the top layer, the bottom layer, and the middle 
layer(s). The division method uses equal intervals and it 
ignores the stratum and groundwater. 

In the case of the contact surface for the side as in 

Sections 4.1 and 4.2, the coordinate transformation for the 

normal direction is not necessary to obtain the relative 

displacement, because the contact surface is parallel to the 

y-z plane and x-z plane. However, in the case of the upper 

and lower surface, it is not parallel to the x-y plane. Thus, 

the coordinate transformation is necessary.  

In this case, the relative displacement is obtained with 

the coordinate transformation matrix  iiiR  as follows 

  iiiiiiiiiiii UBRδ  (38) 

The Lagrange multiplier  iiiλ  for elements I and II is 

represented as 
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Fig. 11 The continuity condition of the column for the 

slip surface 
 

 

Here, iii hhh   is the average of height of upper and 

lower surface and Eʹ is used as the relation of Eq. (34). 

Therefore, the continuity condition of the upper and 

lower surface is discretized as follows 


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(41) 

 

4.4 Continuity condition of the column on the slip 
surface 

 

As shown in Fig. 11, we consider the continuity 

condition regarding the slip surface. 

To obtain the direction of the slip surface, we introduce 

the concept of an isoparametric element to the slip surface 

as 
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In this case, the normal vector n and shear vector s and t 

on the slip surface are obtained as 
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(45) 

The relative displacement of the slip surface is obtained 

with the displacement of column 
)(I

U  as follows 
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I
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Here the coordinate transformation matrix slipR  is 

represented with the relation Eq. (43)-(45) as follows 
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The Lagrange multiplier of the slip surface is 

slipslipslip δkλ 
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where the penalty matrix slipk is 
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where Eʹ uses the coefficient of the slip surface 

slipEE 
 (50) 

Therefore, the continuity condition of the slip surface is 

discretized as 

)(
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(51) 

 

4.5 Strain energy in each element and total energy of 
model 

 

As shown in Section 2, the HPM can be used to evaluate 

the element stiffness. 

As shown in Fig. 12, in the case of element I, its strain 
)(I

ε  and stress 
)(I

σ  are 

)()()( III
UBε   

(52) 

)()()( III
εDσ   

(53) 

where )(I
B  is the matrix that is the relation between the 

strain and the displacement and )(I
D  is the structural 

matrix of a general three-dimensional elastic body 
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In this case, the element stiffness is represented as 

)()()()()(
column )(

IIIItIt

I
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(56) 

Therefore, the total energy is obtained with Eqs. (35), 
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I
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(37), (41), (51), and (56) as follows 

slipverticalsideysidexcolumn HHHHWV    
(57) 

 

 

 

Fig. 12 The element stiffness of column 

 

 

(a) The ground level 

 

(b) The slip surface 

Fig. 13 The numerical model 

 

Table 1 The shape size 

The number of divisions for x nx 16 

The number of divisions for y ny 20 

The number of divisions for z nz 3 

The width of divisions for x (m) dx 10 

The width of divisions for y (m) dy 10 

 

Table 2 The material parameters 

Unit of weight (kN/m3) γt  18 

Cohesion (kN/m2) C 4.22 

Internal frictional angle (°) ϕ  22 

Elastic coefficient (GPa) E  1 

Poisson ratio ν 0.2 

 

(a) The elastic analysis Fs = 1.104 

 

(b) The nonlinear analysis Fs = 1.155 

Fig. 14 The local safety factor 

 

 

(a) The elastic analysis 

 

(b) The nonlinear analysis 

Fig. 15 The principal strain 
 
 

5. Numerical example 
 

5.1 Numerical model 
 

The numerical model is shown in Fig. 13: (a) represents 

the ground level and (b) represents the assumed slip surface. 

Column

Slip surface

Reference level

I
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(a) The elastic analysis 

 

(b) The nonlinear analysis 

Fig. 16 The displacement vector 

 

 

The number and width of divisions are shown in Table 

1. 

The material parameters are shown in Table 2. To 

compute the state of the slip surface, we use a penalty 

function based on the Mohr-Coulomb failure criterion as the 

yield criterion on the slip surface and an r-min method as 

the load incremental method (Takeuchi et al. 2001, Ohki 

and Takeuchi 2005). And HPM obtains directly the normal 

and shear surface force on the slip surface. Therefore the 

safety factor is calculated by these surface force that are 

considered the Mohr-Coulomb failure criterion. 

Regarding the assumed slip surface, the coefficient of 

the penalty function is assumed as follows 

 
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(59) 

 

5.2 Result in a seismic load 
 

Fig. 14 shows the safety factor at the slip surface when 

considering seismic load: (a) shows the elastic analysis 

result without the slip failure and (b) shows the nonlinear 

analysis result with the slip failure. The designed horizontal 

seismic coefficient is 1.5 in the y-direction. 

Red lattice represents that the safety factor is 1 or less 

and blue lattice represents 2 or more. The total safety factor 

in the elastic analysis is 1.104 and in the nonlinear analysis 

is 1.155. The total safety factor of the elastic analysis is 

smaller than the nonlinear analysis. On the other hand, the 

local safety factor of the nonlinear analysis shows that the 

slip occurs over a wide area. The local safety factor of 

elastic analysis is less than 1. When the local safety factor 

approaches zero, there is the tendency that the total safety 

factor is reduced. This result confirms that tendency. 

Regarding the comparison with stationary elastic 

analysis, the safety factor of this method is 1.767. On the 

other hand, with the modified Hovland method, the safety 

factor that calculated using the angle of the slip surface is 

1.538, and the safety factor assuming that the entire slope 

slips downward is 2.188. The actual sliding direction is 

these mixed patterns, and the safty factor is between these 

values. On the other hand, the solution by proposed method 

is the value between these safety factors. 

Regarding the calculation amount, the total number of 

degree of freedom is 5544 in the case of this model. 

Therefore this method required 56 iterations of 

simultaneous equations with 5544 degrees of freedom for 

the elasto-plastic analysis. In the case of conventional 

simplified method, its calculation is one time. 

Fig. 15 shows the principal strain at the ground level 

when considering seismic load. 

Red vectors represent the tensile strain and blue vectors 

the compressive strain. The compressive strain occurs at the 

lower side in the elastic analysis. However, the large tensile 

strain occurs at the upper side because the slip does not 

occur in the elastic analysis. On the other hand, the 

compressive state is shown in the nonlinear analysis 

because the slip occurs at the upper side. Therefore, this 

change of strain state indicates the possibility to predict the 

sign of failure. 

Fig. 16 shows the displacement at the ground level when 

considering seismic load. 

The displacement at the upper side should be the largest 

by slip. However, it is smaller than in the central area in the 

elastic analysis. This is due to the unnatural constraint 

without slip. On the other hand, the displacement vector 

where the slip occurred is the largest in the nonlinear 

analysis. Moreover, the constraint state appeared in the area 

where the slip does not occur at the lower side. 
 

 

6. Conclusions 
 

In this paper, we proposed a three-dimensional 

simplified slope stability analysis by using HPM to obtain 

the strain and displacement. In conventional simplified 

method, the safety factor of maximum of inclining on slip 

surface at each column is obtained. And the safety factor 

may be less than 1 to calculate the safety factor by 

decomposing forces of column weight to direction of the 

slip surface. On the other hand, this method can obtain the 

safety factor of displacement direction. And the surface 

force on the slip surface moves on the failure surface 

because it is obtained by nonlinear analysis considering the 

Mohr-Coulomb failure criterion. Therefore the safety factor 

is not less than 1. And as mentioned the comparison with 

stationary elastic analysis, the solution of this method was 
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obtained between solutions of the modified Hovland 

method. In addition this method makes it possible to obtain 

the change of strain and displacement before and after slip. 

Therefore, we can extend this model to the evaluation of the 

multidirectional stability by adding an evaluation of the 

deformation condition to the conventional slope stability 

analysis.  
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