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1. Introduction 
 

Dynamic impedance of piles in soil media to time-

harmonic loads is of important theoretical significance in 

the field of geotechnical engineering and structural 

engineering (Bose and Haldar 1985, Dobry and Gazetas 

1988, Amin et al. 2015). This introduction provides an 

overview of the key literature relevant to the development 

of theoretical models to obtain the dynamic impedance of 

piles embedded in soils, with various mathematical models 

having been developed by researchers. The Winkler model 

is extensively employed due to its simplicity in which soil 

layers are represented by equivalent spring-dashpot 

elements. However, the Winker model has limitations when 

describing the mechanism of wave propagation within the 

pile-soil system (Anoyatis and Mylonakis 2012, Wu et al. 

2014, Ding et al. 2014). Novak et al. (1978) presented a 

plane-strain model for the pile-soil interaction system and 

considered the soil as a linear viscoelastic layer with 

hysteretic-type damping. Manna and Baidya (2009) 

investigated the possible factors for the unsatisfactory 

performance of the Novak’s model and showed these to be 

the effective pile length for significantly under-loaded piles 

and the real embedment effect. Furthermore, the three 

dimensional wave effect of an end bearing pile is  
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considered within the pile-soil interaction system by 

modelling the soil as a three-dimensional axisymmetric 

continuum in which both its radial and vertical 

displacements are taken into account (Yang et al. 2009, Wu 

et al. 2013).  
The surrounding soil of the pile in the above studies of 

the pile-soil system is assumed as a single-phase medium. 
However, soil is generally a multiphase medium that can be 
modelled as a liquid-filled porous medium. In recent 
decades, pile-soil dynamic interaction considering the effect 
of liquid-saturated media has become one of the key topics 
of pile-soil interaction (Liu et al. 2014). In much of the 
research to date, Biot’s model has been employed to 
describe the macro-mechanical behaviour of a saturated soil 
in pile-soil interaction systems. Rajapakse and Senjuntichai 
(1995) explicitly derived rigorous analytical solutions of the 
vertical vibration that describes the relationship between the 
generalized displacement and the force of multilayered 
porous media in the Fourier-frequency space. Zhou et al. 
(2009) investigated the dynamic response of a pile 
embedded in a saturated half space subjected to transient 
vertical loading by adopting Biot’s porous elastodynamic 
equations. Cai and Hu (2010) used Biot’s elastodynamic 
theory as the basis to present the analytical solution for the 
vertical vibration of a rigid foundation embedded in a 
poroelastic half-space. In addition, Zheng et al. (2015) 
presented an analytical method to study the vertical 
vibration of a floating pile embedded in poroelastic soil 
using the Biot’s theory.  

The framework of Biot’s model is essentially based on a 
phenomenological methodology and an engineering 

 
 
 

Dynamic impedance of a floating pile embedded in  
poro-visco-elastic soils subjected to vertical harmonic loads 

 

Chunyi Cui
1, Shiping Zhang1, David Chapman2 and Kun Meng1 

 
1Department of Civil Engineering, Dalian Maritime University , Dalian, 116026, China 

2School of Engineering, University of Birmingham, Birmingham, B15 2TT, United Kingdom  

 
(Received July 29, 2017, Revised December 12, 2017, Accepted December 23, 2017) 

 
Abstract.  Based on the theory of porous media, an interaction system of a floating pile and a saturated soil in cylindrical 

coordinates subjected to vertical harmonic load is presented in this paper. The surrounding soil is separated into two distinct 

layers. The upper soil layer above the level of pile base is described as a saturated viscoelastic medium and the lower soil layer is 

idealized as equivalent spring-dashpot elements with complex stiffness. Considering the cylindrically symmetry and the pile-soil 

compatibility condition of the interaction system, a frequency-domain analytical solution for dynamic impedance of the floating 

pile embedded in saturated viscoelastic soil is also derived, and reduced to verify it with existing solutions. An extensive 

parametric analysis has been conducted to reveal the effects of the impedance of the lower soil base, the interaction coefficient 

and the damping coefficient of the saturated viscoelastic soil layer on the vertical vibration of the pile-soil interaction system. It 

is shown that the vertical dynamic impedance of the floating pile significantly depends on the real stiffness of the impedance of 

the lower soil base, but is less sensitive to its dynamic damping variation; the behavior of the pile in poro-visco-elastic soils is 

totally different with that in single-phase elastic soils due to the existence of pore liquid; the effect of the interaction coefficient 

of solid and liquid on the pile-soil system is limited. 
 

Keywords:  analytical solution; dynamic impedance; pile-soil interaction; vertical vibration; porous medium; viscoelastic 

soil 

 



 

Chunyi Cui, Shiping Zhang, David Chapman and Kun Meng 

description. Bowen (1980) proposed the theory of porous 
media (TPM) by integrating the continuum theory of 
mixtures with the concept of volume fractions. In contrast 
to Biot’s theory, the theory of porous media has also been 
proven to provide a comprehensive and extensive modelling 
framework (Edelman and Wilmanski 2002, Heider et al. 
2012). Substantial developments with respect to the theory 
of porous media have been extended to geomechanical 
problems and were contributed to by De Boer’s pioneering 
work (De Boer et al. 1990, 1994, 1996a, b, c). In addition to 
De Boer’s pioneering work, Liu et al. (1999) investigated 
inhomogeneous wave propagation in saturated porous soils 
by using the theory of porous media (TPM). The general 
solutions of plane longitudinal and transverse waves in 
saturated porous media were obtained, and simultaneously, 
the explicit expressions for the mean energy flux vectors 
and the mean energy dissipation rate were also presented by 
Zheng et al. (2005). Kumar and Hundal (2005) derived 
characteristic equations for discontinuities across the wave 
fronts in a fluid-saturated incompressible porous medium, 
and took the Heaviside step input function for the numerical 
investigation of the symmetric wave propagation.  

As for studies on the dynamic behaviour of piles in 
saturated soil based on the theory of porous media (TPM), 
some substantial developments have been made by some 
investigators. For example, vertical vibrations of an end-
bearing pile and complex stiffness at the pile head were 
investigated by Liu and Yang (2009). In addition, the 
axisymmetrical analytical solutions for vertical vibrations in 
an end-bearing pile in a saturated viscoelastic soil layer 
were obtained by Yang and Pan (2010). The effects of the 
saturated soil parameters, modulus ratio of the pile to soil, 
slenderness ratio of pile and pile’s Poisson ratio on the 
stiffness factor and damping were also examined by Yang 
and Pan (2010). Subsequently, Cui et al. (2016) deduced an 
axisymmetrical analytical solution for the vertical time-
harmonic vibration of a pile in a saturated viscoelastic soil 
layer overlaying bedrock using the method of differential 
operators, and investigated the effect of relative bedrock 
depth to the pile on the dynamic response of pile-soil 
system.   

The aforementioned studies are devoted to the end-
bearing pile case. However, based on an extensive review of 
the literature, for the moment no study has been reported to 
the dynamic behaviour of floating piles in a viscoelastic 
saturated soil using the theory of porous media (TPM) by 
integrating the continuum theory of mixtures with the 
concept of volume fractions. Consequently, the vertical 
vibration of a single floating pile in a poro-visco-elastic soil 
layer is investigated in this study. The saturated soil layer is 
modelled as a two-phase medium, of which the governing 
equations are described in the mentioned porous media 
theory, while the pile is treated as an one-dimensional rod 
and described by the theory of beam vibration (Rayleigh 
1945). Firstly, based on the theory of porous media (TPM), 
the axisymmetrical fundamental solution of the soil reaction 
around the floating pile is obtained in a cylindrical 
coordinate system using the differential operator theory and 
the variable separation method. Secondly, the partial 
differential equations for the vertical vibration of a floating 
pile are established on the basis of the fundamental solution 
presented for the soil reaction around the pile. An analytical 
solution for the vertical displacement at the head of a single  

 
Fig. 1 Dynamic interaction model of a floating pile 

embedded in saturated soil subjected to harmonic axial 

load 
 

 

floating pile is derived by considering the pile-soil 
comparability condition. Finally, the vertical dynamic 
impedance solution of a single floating pile in a saturated 
soil layer is obtained and compared with the existing 
solutions. The effects of the various parameters associated 
with the saturated soil on the vertical impedance solution of 
the pile are also revealed.  
 

 

2. Conceptual model and formulation of governing 
equations 
 

The mechanical model for the problem under 

consideration and the interaction system of a floating pile 

and a saturated soil in cylindrical coordinates subjected to a 

vertical harmonic exciting force are shown in Fig. 1. In this 

model, due to the difficulty of establishing a coupled 

continuum model for the pile-soil interaction in a strictly 

mathematical and physical manner, as suggested by 

Baranov (1967), Novak and Beredugo (1972), Hu (2003), 

and Cai and Hu (2010), the upper soil layer above the level 

of the pile base is considered as a continuum, while the 

lower soil layer is idealized as equivalent spring-dashpot 

elements with a complex stiffness fv. Furthermore, it 

assumes that the vibration of the pile-soil system is 

infinitesimal, and the displacements and stresses at the 

interface between pile and soil are continuous. As the 

cylindrical pile is in a harmonic vertical vibration, the 

motion of the saturated viscoelastic soil layers will also be 

cylindrically symmetric and time-harmonic. 
 

2.1 Governing equations for saturated soil layer  
 

On the basis of the theory of porous media (TPM) by 

integrating the continuum theory of mixtures with the 

concept of volume fractions (De Boer and Liu 1996), the 

three dimensional dynamic governing equations for the 

saturated viscoelastic soil layer can be described using Eqs. 

(1a)-(1c):  

Momentum balance equation for solid skeleton 

 (1a) 

Momentum balance equation for pore liquid, 

 
(1b) 
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Mass balance equation for solid-liquid aggregate, 

 (1c) 

where, λ
S
 and μ

S
 are complex Lamé constants, and SU  and

LU are the displacement vectors for the soil skeleton and 

pore water, respectively. p is the pore pressure of the 

incompressible pore fluid, and
S and

L denote the 

densities of the solid and fluid phases, respectively, n
S
 and 

n
L
 are the volume fractions satisfying 1LS  nn . In Eq. 

(1a), )i1(S  G , 
SS

21

2


v

v


 , where G is the shear 

modulus of soil, 


 is the damping coefficient, and v is the 

Poisson’s ratio. L

LR2L )(

k

n
Sv


 , in Eqs. (1a) and (1b), 

denotes the coupled interaction between the soil skeleton 

and the pore water, in which γ
LR

 is the effective specific 

weight of the liquid and k
L
 is the Darcy’s permeability 

coefficient of the porous medium. It is noted that the last 

term in Eq. (1a) represents the linear drag force of the pore 

liquid exerting on the solid skeleton, and then Sv can be also 

considered as an internal friction coefficient. For totally 

permeable or totally impermeable system, these equations 

are still valid. 

For an interaction system of a pile and saturated soil 

layers subjected to a harmonic axial load   teFtF i
0  (

1i2  ), all field variables are time-harmonic with the term 
te i , i.e., 

 (2a) 

Then one can get their derivatives with respect to time 

as 

 
(2b) 

 
(2c) 

 
(2d) 

where uS and uL represent the radial displacements of the 
soil skeleton and pore water at r direction, wS and wL 
represent the vertical displacements of the soil skeleton and 
pore water at z direction, and wP represents the vertical 
displacement of the pile. 

Furthermore, considering the cylindrically symmetric 
conditions of the interaction system of a pile and saturated 
soil layers under harmonic axial load, Eqs. (1a) to (1c) can 
be expressed in the frequency domain by Eqs. (3a) to (3e) 
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(3e) 
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W
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Henceforth, the non-dimensional quantities and 

variables are introduced by Eqs. (4a) to (4c) 

 
(4a) 
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where E is the elastic modulus of the soil skeleton; 
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Inserting Eqs. (4a) to (4c) into Eqs. (3a) to (3e), Eqs. 

(5a) to (5e) are obtained 
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(5e) 

From the model in Fig. 1, the boundary conditions of the 

soil-pile system is specified in non-dimensional form as 

follows: 

(i) The displacements and stresses are zero at infinity, 

i.e., 

0),(S  zU , 0),(  zrz , etc. ( r ) (6a) 

(ii) The surface of the soil layer is free-traction and 

permeable, i.e., 

0)0,( rz
,

( ,0) 0rz r 
, 0P ,  ( 0z ) (6b) 
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(iii) The stresses and displacements at the interface 

between the saturated soil layer and the lower layer are 

assumed to be continuous, i.e., 
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(6c) 

(iv) The saturated soil and floating pile are bonded on 

their interfaces, and the pile is assumed to be impermeable 

and an one-dimensional Euler-Bernoulli rod. Thus, the 

vertical displacements at the interface are identical, and the 

radial displacements of the liquid and the soil skeleton at 

the interface are zero, i.e., 
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2.2 Fundamental solution for a saturated soil around 
a pile  
 

After rearranging the terms of Eq. (5c) and Eq. (5d), 

then Eqs. (7a) and (7b) are obtained 
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with the substitution of 

Eq. (7a) and Eq. (7b), then one obtains Eq. (8a) 
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Similarly, combining Eq. (7a) and Eq. (7b) according to the 
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expression into Eq. (5e) yields Eq. (8b) 
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Furthermore, Eq. (8a) and Eq. (8b) can be united and 

rewritten in the form 
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On account of the non-trivial solution for Eq. (9), the 

determinant of the coefficient matrix for Eq. (9) should be 

zero, i.e., 
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According to differential operator theory (Senjuntichai 
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Using the variable separation method, and substituting 
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The solutions of Eq. (13) are given by 
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of which the corresponding derivation is expressed in the 

Appendix.  
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in which )( 20 rgI and )( 40 rgI are the modified zero-order 

Bessel functions of the first kind, and )( 40 rgK  is the 

modified zero-order Bessel functions of the second kind, 

respectively. A1, A2, A3, A4, C1, C2, C3 and C4 are 

undetermined coefficients. Moreover, g3 and g4 satisfy the 
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where A5, A6, A7, A8, C5, C6, C7 and C8 are undetermined 

coefficients. 

Taking into account the boundary conditions expressed 

in Eq. (6a), 
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Using Eqs. (17a) to (17c), Eqs. (16a) and (16b) can be 

reduced to 
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where 111 BAC  , 221 BAC  , 333 BAC  , 443 BAC  , 

565 BAC  , and 677 BAC  . 

Substituting Eqs. (18a) and (18b) into Eqs. (6c) and (6d) 

gives 
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Therefore Eqs. (5a) and (5b) can be reduced to the 

following form 
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It is easy to see that Eqs. (21a) and (21b) are 

inhomogeneous equations with respect to SU  and SW , 

respectively. The corresponding homogeneous equations to 

Eqs. (21a) and (21b) are given by 

0)( 1

S2

S
1

S1

2

0

L2

0

S1

S

2S  U
r

UDaaU



 

(22a) 

0)( 1
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2

0
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0
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S
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(22b) 

Setting S

1

2

0

L2

0

S
2

2





Daa 
 , Eqs. (22a) and (22b) can be 

simplified to 

0)
1

( 1

S2

2

2

1

S

2  U
r

U 
 

(23a) 

01

S

2

2

1

S

2  WW 
 

(23b) 

The solutions to Eqs. (23a) and (23b) are given by 

 )()()ee( 61461321

1

S
55 rgIdrgKdddU
zgzg




 
(24a) 

 )()()ee( 80480321

1

S
77 rgIfrgKfffW

zgzg




 
(24b) 

where
2

2

2

6

2

5  gg ,
2

2

2

8

2

7  gg , 0)( 5 gRe , 

0)( 6 gRe , 0)( 7 gRe , 0)( 8 gRe . 

From the boundary conditions expressed in Eq. (6a), 

04 d
, 

04 f
 (25) 

and 

)()ee( 6165

1

S
55 rgKddU
zgzg 


 

(26a) 

)()ee( 8065

1

S
77 rgKffW

zgzg 


 
(26b) 

where 315 ddd  , 326 ddd  , 315 fff  , 326 fff  . 

Substituting Eqs. (20a) and (20b) into Eqs. (21a) and 

(21b), respectively, and with rearrangement produces 
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(27b) 

Since )( 21 rgK and )( 41 rgK are linearly independent, 

then the particular solution to Eq. (27a) can be given by 
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Similarly, the particular solution to Eq. (27b) can be 

given by 
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Inserting Eq. (28a) into Eq.(27a) gives 
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(29b) 
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Following a similar procedure as above, we have 
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(29c) 
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(29d) 

This means the solutions to Eqs. (21a) and (21b) can be 

given by 

)()ee()()ee(
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By substituting Eqs. (30a) and (30b) into

z

W

r

U

r

U
Θ




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


 SSS  gives 

 
(31) 

Considering the boundary conditions in Eq. (6b), further 

expressions can be written as 

65 dd  , 65 ff  . (32) 

Eqs. (30a) and (30b) can then be reduced to 
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(33b) 

Inserting Eqs. (20b), (33a) and (33b) into Eqs. (7a) and 

(7b), respectively, the following can be obtained 
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(34b) 

Substituting Eq. (33b) into Eq. (6c) yields 
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(35) 

Furthermore, inserting Eqs. (33a) and (34a) into Eq. 

(6d), leads to 

0)()()( 418217615  gKdgKdgKd  (36a) 

0)()
i

(

)()
i

()(

41

0

64
L

8

21

0

52
L

7615





gK
Sa

Bgn
d

gK
Sa

Bgn
dgKd

v

v

 

(36b) 

By solving the simultaneous Eqs. (36a) and (36b), the 

following expressions are obtained 
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(37a) 
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(37b) 

Thus, the shear stresses at the pile-soil interface in the 

saturated soil layer can be expressed as 

ωtzgzg
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(38) 

Integrating 1rrz along the cylindrical interface 

between the floating pile and the saturated soil, the 

corresponding fundamental solution of soil reaction against 

pile can be given by 

00
π2ei

rrrz

ωt

ss rFf  
 

(39a) 

Furthermore, introducing non-dimension quantities into 

Eq. (39a) yields 

1

i π2e

0

 rrz

ωt

s
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Gr

f


 
(39b) 

 

2.3 Dynamic pile impedance  
 

Based on the previous fundamental solution of the soil 

reaction against a pile in Eq. (39b), the governing equations 

for the vertical vibration of a pile in a saturated viscoelastic 

soil layer can be expressed by 

2

2
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2
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)(
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P

P
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rE s




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




 
(40) 

where 
tiWtw e)( PP

 ,
ti

ss Ff e ; EP and ρP denote the elastic 

modulus and density of the pile, respectively. 

 
(41) 

After substituting Eq. (41) into Eq. (40) and considering 

the boundary conditions of the floating pile in a saturated 
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viscoelastic soil, we can obtain: 

Dimensionless equation of motion of the pile, 

ωt

rrz

E
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W
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2
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(42a) 

Dimensionless stress continuity (including displacement 

continuity) at the pile bottom, 

2
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P
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(42b) 

Dimensionless stress continuity at the pile head, 

πd

d

P

0
0

P

E

F

z

W
z 

 
(42c) 

The general solution for the homogeneous equation 

corresponding to Eq. (42a) can be given by 

)sin()cos( 21

1

P zazaW  
 

(43a) 

and the particular solution for Eq. (42a) can be given by 
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P
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
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(43b) 

where 0

P

P a
E


  , a1, a2 and Q are undetermined 

coefficients. 

It is found that Eq. (35) is substantially a characteristic 

equation with multi-solution gn which can be solved 

numerically. It is obvious that the linear combination of gn 

also satisfy Eq. (35). Then, 
ωt

rrz

i

1

e


 can be written as the 

following form by the principle of superposition 
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(44) 

where gn is the solution of Eq. (35), and n=1,2,3,∞. 
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3
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Thus, Eq. (43b) can be rewritten as 
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(46) 

By inserting Eq. (45) into Eq. (42a), we have 
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(47) 

Similarly, expanding ),1(S zW  into series form yields 
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)(

)()(

)(
)(

)()(

4143

402122

204
61

6021562
2

nn

nnnn

nn
nn

nnnn
n

gKgk

gKgKggk

gKgk
gKg

gKgKkgg
Y





, 44 gg n  . 

Substituting Eqs. (47) and (48) into Eq. (6d) and 

rearranging produces 
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It is found that the function series )ee(
zgzg nn 

  has the 

orthogonality which is given by, 
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Thus, multiplying both sides of Eq. (50) by 

(e e )m mg z g z
 and integrating it between the limits  00 rL，  

leads to 
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Therefore, Eq. (47) can be rewritten as (i.e., the 

fundamental solution for the vertical vibration of a pile) 
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(51) 

By inserting Eq. (51) into Eqs. (42b) and (42c), 

respectively, leads to 
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(52) 
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where 
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From Eq. (51), the normal stress component in the z 

direction of the pile can be expressed by 

























































1
2
0

2
P

21
2P

1
2
0

2
P

11
1P

P
P

P
P

P

P

)ee(2
)cos(

)ee(2
)sin(

zd

d

dz

d
)(

n n

zgzg
nnn

n n

zgzg
nnn

agE

gXY
zaE

agE

gXY
zaE

W
E

W
EzN

nn

nn







 

(53) 

Therefore, the dynamic impedance of the pile can be 

defined as 
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Furthermore, Eq. (54) can also be rewritten in the 

following non-dimensional form 
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(55) 

If we define the dimensionless dynamic impedance of 

the pile as 

vvd CKK i
 

(56) 

then the real part )(Re dv KK  and the imaginary part 

)(Im dv KC  describe the true stiffness and equivalent 

damping of the pile head, respectively. 

 

 

3. Results and discussions 
 

In this section, numerical results are presented to 

demonstrate the validity of the obtained analytical solutions 

and to investigate the vertical vibration characteristics of the 

floating pile embedded in the saturated porous viscoelastic 

soil. Unless otherwise specified, the following parameter 

values are used, G=20 MPa, 2.0 , 4.0Ln , ρ
S
=1800 

kg/m
3
, ρ

L
=1000 kg/m

3
, Ep=20 GPa, ρp=2500 kg/m

3
, 

k
L
=1×10

-6
 m/s, and the pile slenderness ratio 

150  rLH  (r0=0.25 m).  

 
(a) Real part of the dimensionless impedance of the pile 

 

(b) Imaginary part of the dimensionless impedance of the 

pile 

Fig. 2 Comparison of the impedance solution in reduced 

form (fv→∞) with the end-bearing pile solution of Liu 

and Yang (2009) 

 

 
(a) Real part of the dimensionless impedance of the pile 

 

(b) Imaginary part of the dimensionless impedance of the 

pile 

Fig. 3  Comparison of the impedance solution in 

reduced form ( 0vS , 0L  ) with the single-phase 

soil solution of Hu and Wang (2003) 
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(a) Only varying the real part of the fv 

 
(b) Only varying the imaginary part of the fv 

 

(c) The static impedance of the pile with different pile 

slenderness ratios 

Fig. 4 The dimensionless dynamic impedance vs. the 

dimensionless frequency a0 with different values of the 

impedance fv of the lower soil base 

 
 
3.1 Verification of the present solution  

 
In this section, two examples are presented to verify the 

present solution. First, the impedance solution expressed in 
Eq. (56) for a floating pile can be reduced to describe the 
vertical vibration of an end bearing pile by setting the 
complex stiffness of the equivalent spring-dashpot elements 
beneath the pile base fv→∞. Therefore, based on the same 
parameters, the solution of dK  can be verified by 
comparing it with the existing solutions for an end-bearing 
pile embedded in the saturated viscoelastic soil. Fig. 2 
shows the comparison of the complex impedance in reduced 
form (fv→∞) evaluated using Eqs. (54) to (56) with the 
solution of Liu and Yang (2009). It can be seen that the 
present solution of dynamic impedance with different 
values of the pile slenderness ratio 0rLH   is in very  

 
Fig. 5 The dimensionless dynamic impedance vs. the 

dimensionless frequency a0 with different interaction 

coefficient Sv between the soil skeleton and the pore 

water 

 

 

Fig. 6 The dimensionless dynamic impedance vs. the 

dimensionless frequency a0 with different damping  

coefficient ξ of the porous viscoelastic soil 
 

 

good agreement with that proposed by Liu and Yang (2009). 

Secondly, by setting 0vS  and 0L  , the present 

model can be reduced to describe the vertical vibration of a 

floating pile in the single-phase soil. Fig. 3 shows the 

comparison of the complex impedance in reduced form (

0vS  and 0L  ) with Hu’s solution (2003) for the 

case of single-phase soil. It is clear that the present solution 

agrees well with Hu’s solution. It is noted that in this 

example of comparison, for keeping consistent with Hu’s 

choice of impedance function of the lower soil base, here fv 

follows the simplified form proposed by Lysmer and 

Richart (1966) for the case of single-phase soil which is 

given by 
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(57) 

where the real and imaginary parts denote the true stiffness 

and equivalent damping of the subsoil beneath the pile base, 

respectively.  

In addition, the comparisons for the static impedance at 

the pile head versus pile slenderness ratio are also shown in 

Fig. 4(c). It is observed that the results have a good 

agreement. And with the increase of the pile slenderness 

ratio, the stiffness of the end-bearing pile decreases while 

the stiffness of the floating pile increases. With the increase 

of the pile slenderness ratio, the stiffness finally approaches 

a steady value. These phenomenons are consistent with the 
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reported knowledge for the mechanism of end-bearing piles 

and floating piles in practice engineering. Therefore, the 

validity of the present solution is confirmed with these 

independent comparisons. 

 

3.2 Parametric analyses of the present solution  
 

Fig. 4 shows the effect of the impedance fv of the lower 

soil base on the dynamic impedance of the floating pile. 

Here the saturated soil case is considered, and the 

impedance function proposed by Cai and Hu (2010) for 

poroelastic half-spaces is taken to represent fv. It can be 

seen that the stiffness of the base soil has a significant effect 

on the dynamic impedance of the pile head. As )Re( vf  

increases, the resonant frequency of the pile-soil system 

increases, and the corresponding resonance amplitude and 

static impedance of the pile head increase as well. 

Furthermore, one can see the transformation process of the 

mechanical characteristic from floating piles to end-bearing 

piles with the increase of )Re( vf . In contrast, the dynamic 

impedance of the pile head is less sensitive to the damping 

change of the base soil. 

Fig. 5 shows the effect of the interaction coefficient Sv 

between the soil skeleton and the pore water on the dynamic 

impedance of the pile. Compared with the traditional 

elastodynamic solution for single-phase case obtained by 

Hu and Wang (2003), the proposed poroelastic pile-soil 

system has lower resonant frequencies and higher peak 

values of the dynamic impedance. And the effects of Sv on 

the dynamic impedance are limited. When Sv is rather small 

or very large, it has negligible effects on the pile-soil 

system, which are corresponding to a nice dissipation 

condition and an undrained condition, respectively. 

Furthermore, for the increase of Sv generally means the 

decrease of the permeability coefficient k
L
, the pore liquid 

becomes difficult to dissipate from the soil skeleton pore. 

Thus, within the effective range of Sv, the peak values of 

real part of the dynamic impedance of the pile head 

increase, and the peak values of the imaginary part 

decrease, with the increase of Sv respectively. In contrast, Sv 

has little effects on the resonant frequency of the pile-soil 

system. 
The effects of the damping coefficient ξ of the porous 

viscoelastic soil on the dynamic impedance of the pile are 
shown in Fig. 6. This shows that the damping coefficient ξ 
of the porous viscoelastic soil has significant effect on the 
vertical dynamic impedance of the floating pile. The 
resonance frequencies and the oscillation amplitudes at the 
resonance frequencies of both the real and imaginary parts 
decrease as the damping coefficient ξ of the porous 
viscoelastic soil increases. Obviously, the soil surrounding 
the floating pile can be reduced to a saturated porous elastic 
soil if ξ=0. It is indicated that the resonance frequencies and 
the oscillation amplitudes of the dynamic impedance can be 
overestimated when the viscosity of the saturated soil is 
ignored. 
 

 

4. Conclusions 
 

Based on the theory of porous media (TPM), a new 

mathematical model for the dynamic response of a floating 

pile embedded in a saturated viscoelastic soil layer 

subjected to a vertical harmonic load is proposed. And a 

corresponding frequency-domain solution for the dynamic 

impedance of a floating pile embedded in a saturated 

viscoelastic soil is also derived and subsequently verified by 

comparing it with the existing solutions. 

• The parametric analyses show that the dynamic 

impedance of floating piles significantly depends on the real 

stiffness of the impedance function of the soil base, but is 

less sensitive to its damping variation; due to the existence 

of pore liquid, the mechanical behavior of piles in poro-

visco-elastic soil is obviously different with the single-

phase elastic soil case, and the effect of interaction 

coefficient between soil skeleton and pore liquid on the 

dynamic impedance of the pile head is limited; if the 

viscosity of the saturated porous soil layer is ignored, the 

resonance frequencies and the peak values of dynamic 

impedance of the pile-soil system will be apparently 

overestimated. 

•  The proposed model and obtained solution provide 

an extensive scope of application, compared with the 

related existing solutions. The present solution can be 

reduced to analyze the vertical vibration problem of end-

bearing piles in saturated soil and piles embedded in single-

phase soil described in related previous studies. 

Furthermore, by the combination with different impedance 

functions of the lower soil base fv, the obtained solution can 

be conveniently further extended to investigate the vertical 

vibration problem of floating piles embedded in poro-visco-

elastic half-spaces, and finite soil layers. 
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