
Geomechanics and Engineering, Vol. 14, No. 6 (2018) 589-600 

DOI: https://doi.org/10.12989/gae.2018.14.6.589                                                                  589 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7                                                             ISSN: 2005-307X (Print), 2092-6219 (Online) 

 
1. Introduction 
 

During the operation of Qinghai-Tibet Railway, the 

embankment and its underlain permafrost are affected by 

global warming, which will accelerate the changes of 

thermal state in the frozen foundation. And the temperature 

change will lead to a series of mechanical behavior 

variations of frozen soil (Ma and Wang 2014). Usually, 

these variations are very complex and they will have a 

direct effect on the stability of the embankment in 

permafrost regions. Thus far, many scholars have been 

trying to solve the problems of foundation deformation and 

disaster forecasts in permafrost regions. For example, some 

empirical and semi-empirical formulae were proposed, 

which are easily used in engineering (Liu et al. 2002, Wang, 

et al. 2015, Wang, et al. 2016,). Some in-situ tests were 

carried out to study deformation characteristics of railway 

and highway embankment in permafrost regions (Yu et al. 

2002, Sun et al. 2003, Li et al. 2006, Mohammed et al. 

2015). Furthermore, finite element method (FEM) was 

extensively used to analyze the thermal and mechanical 

stability of frozen embankment because of the advantages 

of low cost and short research turnaround (Wang et al. 

2006, Mao et al. 2006, Lee, et al. 2015). However, all of the 

researches of deformation characteristic for embankment  
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are always deterministic, rather than taking stochastic 

temperature and parameters into account. 

In fact, the property parameters of soil are variable 

because of the complex geological processes (Elkateb et al. 

2003, Dasaka and Zhang 2012, Parinaz and Ehsan 2016, 

Khemis et al. 2016). Especially for permafrost regions, the 

structure of frozen soil varies with the random distribution 

of internal defects. Therefore, its mechanics properties 

exhibit randomness and uncertainty, and the stress-strain 

relationship, especially of warm frozen soil and warm ice-

rich frozen soil, can not be described well deterministically 

(Lai et al. 2008 and 2012). Furthermore, some scholars paid 

their attention on the stochastic thermal analysis in 

permafrost regions, and the random temperature fields of 

railway and highway embankment are obtained by first-

order perturbation technique and Neumann stochastic finite 

element method (Liu et al. 2006, 2007, and 2014, Wang et 

al. 2015, Zhou et al. 2015). For frozen soil, it is obvious 

that the randomness of soil temperature will lead to the 

randomness of mechanical parameters because they are 

closely related. Therefore, it is extremely significant to 

consider the stochastic aspects of the temperature and 

parameters when the stability analysis of displacement 

characteristics for embankment in permafrost regions is to 

be conducted. 

In this paper, at first, a stochastic analysis model of 

deformation characteristics for foundation in permafrost 

regions is developed based on theories of elastic-plastic 

finite element and random field. Afterwards, an 

embankment of Qinghai-Tibet Railway is taken as an 
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example, and the stochastic deformation fields are obtained 

by NSFEM. According to the distributions of mean and 

standard deviation, the change rules of stochastic 

deformation fields are analyzed in detail. From this study, 

some useful conclusions will be drawn, which can provide 

theoretical basis and reference for design, maintenance and 

research on the embankment in permafrost regions. 
 

 

2. Deterministic mathematical equations and finite 
element formulae 
 

According to the earlier studies of stochastic analysis 

model for uncertain temperature characteristics for 

embankment in permafrost regions (Wang et al. 2015), we 

obtained the random temperature fields. This paper focuses 

on the stochastic deformation of foundations in permafrost 

regions. Therefore, we will not introduce the calculation 

process of random temperature fields, repeatedly. 
 

2.1 Governing differential equations  
 

In soil mechanics, the compression is often defined as 

positive. For a static case, the local equilibrium equation is 

obtained as a force balance on a small differential volume 

of deformed frozen soil and is given by (Davis and 

Selvadurai 2002) 

     
T

0f  
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where [ ] denotes the differential operator matrix, and 
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;   is the stress vector, and 

   
T

x y xy    ;  f  is the body force vector, 

   
T

x yf f f . 

Based on the assumption that strain is small and 

compressive strain is assumed positive, the strain-

displacement relation of soil can be defined as 

    u  
 

(2) 

where {ε} is the strain vector, and    
T

x y xy    ; {u} is 

the displacement vector, and    
T

x yu u u . 

 

2.2 Boundary conditions and initial conditions 
 

As a general embankment structure, the stress boundary 

condition and displacement boundary conditions should be 

satisfied on the boundary. It can be expressed as 

    n f
 

(3) 

   u u
 

(4) 

where {n} is the outer normal vector of the boundary;  f is 

the surface force of the boundary, and    x yf f f ;  u  

is the displacement of the boundary, and    x yu u u . 

For the problem of elastic-plastic analysis, the initial 

conditions are as follows 

   0 
 

(5) 

   0u u
 

(6) 

where {σ0} the initial stress vector; {u0} is the initial 

displacement vector. 

 

2.3 Stress-strain relationship 
 

According to the constitutive model for clays (Yao et al. 

2007, 2008 and 2012), Wang (2015) obtained a constitutive 

model for frozen soil, which took the cohesion into account. 

The current yield function and reference yield function in 

the p-q plane can be written as 
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(8) 

where p0 is the spherical stress of current yield surface for 

the initial condition; 0p is the spherical stress of reference 

yield surface for the initial condition; M is the stress ratio at 

the critical state in triaxial compression; pr is a constant, and 

pr=ccotφ; Mf is the potential failure stress ratio; φ(ln p) is 

the curve of isotropic consolidation;  ln p  is the curve 

of critical state;  is the slope of rebound curve in the εv-

lnp plane. 

The potential failure stress ratio Mf can be written as 

  1f hM M R M M   
 

(9) 

where Mh is the slope of Hvorslev envelope in the p-q plane; 

R is the consolidation parameter and 
r

r

p p
R

p p





. 

Based on the classical plastic theory (Zheng et al. 2002), 

the stress-strain relationship is expressed as follows 
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(11) 

where  
ep

D is the elastic-plastic constitutive matrix;  
e

D is 

the elastic constitutive matrix;  
p

D is the plastic 

constitutive matrix; A is the function of hardening 

parameter;g is the plastic potential function, and g=f. 

Substituting Eqs. (7), (8), (9), (11) into (10), the whole 

process of elastic-plastic stress-strain relationship can be 
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calculated. 
 

2.4 Finite element equations 
 

It is impossible to obtain analytical solution for the 
deformation problem. According to the algorithm of 
variable stiffness in finite element method (Xie et al. 1981, 
Meng 1985), the finite elements of computational domain 
can be divided into three kinds of element, namely elastic 
elements, plastic elements and transitional elements. 
Therefore, the following FE formulae are obtained. 

    K R  
 

(12) 
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where  K
 

is the stiffness matrix;  R
 

is the increment 

of equivalent nodal forces vector. [ ]B  
is the element strain 

matrix;  
g

D  is the transitional matrix. 

Based on the algorithm of variable stiffness (Meng 

1985), the transitional matrix can be written as 
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(15) 

where m is the weighting coefficient; A
 is the 

increment of equivalent stress when the finite element 

reaches its yield. B  is the increment of equivalent stress 

caused by load step. 
Both [K] and {ΔR} are deterministic variables in the 

conventional deterministic finite element analysis, so {Δδ} 
of Eq. (12) is a deterministic result. In this paper, [K] are 
not deterministic because the temperature and parameters 
are stochastic. Therefore, {Δδ} of Eq. (12) is a random 
result. 
 

 

3. Stochastic analysis methods of uncertain 
displacement characteristics 
 

3.1 Random fields for soil properties 
 

Based on the random field theory (Vanmarcke 1977 and 
1983), we consider the spatial variability of mechanics 
properties and model the cohesion, angle of internal friction 
and poisson ratio as 2D random fields. When the 2D 
random field is divided by triangular elements (Wang et al. 
2014), the local average random field of an element is 
defined as 

1
( , )

e
e

e

X X x y dxdy
A 

 
 

(16) 

where Ae is the area of e and Ωe is the possessive section of 

e. 

The covariance of two local average elements is  
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(17) 

Table 1 Calculating parameter of Eq. (17) 

M 1 2 3 4 5 6 7 

ω(K)( ω′(R)) 1/20 1/20 1/20 2/15 2/15 2/15 9/20 

Ni
(K)( Ni′

(R)) 1 0 0 0 1/2 1/2 1/3 

Nj
(K)( Nj′

(R)) 0 1 0 1/2 0 1/2 1/3 

Nk
(K)( Nk′

(R)) 0 0 1 1/2 1/2 0 1/3 

 

 

where Ni, Nj and Nk are the shape functions of three nodes 

of element e, respectively; Ni′, Nj′ and Nk′ are the shape 

functions of three nodes of element e′, respectively; M  is 

the number of basis points; ω
(K)

 is the weighted coefficient 

of e and ω′
(R)

 is the weighted coefficient of e′. 

Eq. (17) is the calculating formula of the covariance for 

two local average elements. In order to guarantee the 

calculation accuracy, we assume that 7M  , and Table 1 is 

the calculating parameter of Eq. (17). Because the 

mechanical properties of frozen soil are closely connected 

with temperature, its strength and deformation will change 

greatly with minor temperature variations. The relationship 

will be discussed in more detail later. 

 

3.2 NSFEM of random displacement fields 
 

Because the covariance matrices obtained from Eq. (17) 

are full-rank matrices, calculating the covariance matrices is 

inefficient. Therefore, a set of uncorrelated random 

variables is obtained by orthogonal transformation method 

in this paper (Wang and Zhou 2013). After taking the 

randomness of temperature and parameters into account, the 

random displacement fields of an embankment can be 

obtained by Neumann expansion method (Yamazaki et al. 

1988). According to Eq. (12), the following formulas can be 

obtained 
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(18) 

where [K0]  is the mean of stiffness matrix, [ΔK] is the 

undulatory section. 

Based on probabilistic analysis approach, the mean and 

standard deviation of random displacement fields can be 

obtained, and the computational formulas are  

=1
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(20) 

We have made a stochastic finite element program based 

on aforementioned procedure, which can consider the 

randomness of temperature and parameters. 
 

 

4. Numerical model, parameters, and boundary 
conditions 
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Fig. 1 The computational model. Part I is fill; Part II is 

silty clay and part III is weathered mudstone. (Wang et 

al. 2015) 
 

Table 2 Basic mechanical parameters of media in 

embankment 

Physical parameters γ (kN·m-3) a1 (MPa) b1 a2 b2 a3 b3 

Fill 20 0.03 0.094 23 9.5 0.35 -0.007 

Silty clay 19.6 0.15 0.090 22 8 0.40 -0.008 

Weathered mudstone 20.7 0.10 0.240 28 11 0.25 -0.004 

 

Table 3 Test parameters of media in embankment 

Physical parameters κ Mh a b m n 

Fill 5.07×10-7 1.06 2.12×10^-5 0.70 1.79×10^-4 0.64 

Silty clay 5.12×10-7 1.24 2.28×10^-5 0.72 1.88×10^-4 0.69 

Weathered mudstone 5.23×10-7 1.35 2.42×10^-5 0.74 1.96×10^-4 0.73 

 

 

 

 

 

 

 

 

 

 

0u  0u 
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g

A B
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q

 

Fig. 2 Load and boundary conditions. 
 

 

Fig. 3 Finite element meshes and random field meshes 

(Wang et al. 2015) 
 

Table 4 Different coefficient of variation of mechanical 

parameters 

Case 

Coefficient of variation 

c φ v κ Mh a b m n 

1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

2 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
 

 

Table 5 Relevant distance of mechanical parameters 

Case Vertical direction (m) Horizontal direction (m) 

1 5.0 5.0 

Table 5 Continued 

Case Vertical direction (m) Horizontal direction (m) 

2 5.0 5.0 

3 1.0 2.0 

 

 

A typical embankment section of Qinghai-Tibet Railway 

is taken as a computational model and the cross section of 

the embankment is shown in Fig. 1. In the embankment 

model (Fig. 1), part I is fill, part II is silty clay and part III is 

weathered mudstone. The strength and deformation 

characteristics of embankment in permafrost regions will 

change greatly with small temperature variations because 

the mechanical properties of frozen soil are closely 

connected with temperature. Many literatures show that 

some mechanical parameters of frozen soil are determined 

by the following formulae (Wu et al. 1988, Li 2009). 

1 1

2 2

3 3

| |

| |

| |

T

T

T

c a b T

a b T

v a b T



 


 
    

(21) 

where cT is the cohesive strength; φT is the angle of internal 

friction; vT is the Poisson ratio; ai(i=1,2,3) and bi(i=1,2,3)  

are the experimental coefficients. Their values of 

experimental clay are given in Table 2. If the soil 

temperature is greater than 0
 o
C, bi(i=1,2,3)  is equal to 0. 

T is the soil temperature. 

According to the test results of triaxial compression (Lai 

et al. 2009 and 2010), the curve of isotropic consolidation 

φ(ln p) and the curve of critical state (ln )p can be 

approximated by the following formulae 

 

 

ln

ln

ln

ln

b p

n p

p ae

p me





 


  

(22) 

where a, b, m and n are the experimental coefficients. Their 

values of experimental clay are given in Table 3. 
According to Chinese code for design on railway 

subgrade (Railway Ministry of PRC 2005), Qinghai-Tibet 
Railway belongs to II-level railway whose design speed is 
80 km/h≤v≤120 km/h, and its conversion load is uniform 
load whose intensity is 60.1kPa and width is 3.5 m. Fig. 2 is 
the load and boundary conditions. In detail, the x direction 
and y direction of the native surfaces (AB, BC, CD) are 
free; the x direction of the lateral boundaries (AF, DE) are 
constrained while the y direction of the lateral boundaries 
are free; the x direction of the bottom boundaries (EF) are 
free while the y direction of the bottom boundaries are 
constrained. 

Both the structure and the random fields were 
discretized into triangle elements. The finite element 
meshes and random field meshes is shown in Fig. 3. It can 
be seen that the random field mesh is same with the finite 
element mesh, and they are the same with the discrete mesh 
of thermal analysis (Wang et al. 2015), which greatly 
reduces the programming work. We assumed that the 
embankment is completed on 15 July and the experimental 
coefficients of isotropic consolidation curve and critical 
state curve follow normally distributed random variable. 
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The cohesion, angle of internal friction and poisson ratio for 
the fill and silty clay are taken as three independent random 
fields. Considering three cases where the coefficients of 
variation are 0.1, 0.25 and 0.3. According to the research of 
Zhu and Zhang (2013), we assumed the correlation length is 
5m in both horizontal and vertical direction for case 1 and 
case 2. The relevant distance is 1m in vertical direction, and 
the value of horizontal direction is 20 m for case 3. Tables 4 
and 5 are the details. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Distributions of mean displacement for the 15th 

year after construction (Unit: cm). (a) lateral mean 

displacement on July 15, (b) lateral mean displacement 

on October 15, (c) vertical mean displacement on July 15 

and (d) vertical mean displacement on October 15 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5 Distributions of mean displacement for the 30th 

year after construction (Unit: cm). (a) lateral mean 

displacement on July 15, (b) lateral mean displacement 

on October 15, (c) vertical mean displacement on July 15 

and (d) vertical mean displacement on October 15 

 
 
5. Results and analyses 
 

In order to correspond to the results of random 

temperature field (Wang et al. 2015), we choose and 

analyze the stochastic displacement fields for some specific 

time, which are July 15 and October 15 in the 15th and 30th 

year. 

 

5.1 Results and analyses for the mean displacement 

593



 

Tao Wang, Guoqing Zhou, Jianzhou Wang, Xiaodong Zhao and Leijian Yin 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 Mean settlement curves of characteristic points, (a) 

Top central point, (b) 2 m under the top central point, (c) 

5 m under the top central point and (d) 10 m under the 

top central point 
 

 

Fig. 4 shows the distribution of lateral mean 
displacement and vertical mean displacement on July 15 
and October 15 after 15 years of the construction, 
respectively. From Figs. 4(a) and 4(b), we can see that the 
lateral mean displacement is smaller and the maximum is 
0.45 cm and 0.46 cm on July 15 and October 15. Figs. 4(c) 
and 4(d) show that the vertical mean displacement is bigger 
and the maximum is 9.71cm and 9.73 cm on July 15 and 
October 15. Fig. 5 shows the distribution of lateral mean 
displacement and vertical mean displacement on July 15 
and October 15 after 30 years of the construction, and the  

 
(a) 

 
(b) 

Fig. 7 Comparisons between the measured and computed 

settlement at the positions, (a) Top central point and (b) 

Left shoulder point 
 
 

maximum is 0.47 cm, 0.48 cm, 11.1 cm and 11.2 cm, 
respectively. Comparing Figs. 4(a), 4(b), 5(a) and 5(b), we 
can find that the distributions of lateral mean displacement 
are exactly similar. Therefore, we can conclude that the 
change of random temperature fields have little influence on 
lateral mean displacement. Comparing Figs. 4(c), 4(d), 5(c) 
and 5(d), we can find that the distributions of vertical mean 
displacement are different for different years, and the mean 
in the 30th is bigger than the mean in the 15th because of 
the climatic warming. Therefore, we can conclude that the 
change of random temperature fields has a relatively greater 
impact on vertical mean displacement and the climatic 
warming will lead to its increase. 

Fig. 6 shows the mean settlement of characteristic 
points, which are the top central point (No. D, Fig. 1), 2 m 
under the top central point, 5m under the top central point 
and 10 m under the top central point. From Fig. 6(a), we 
can see that there are three stages for the mean settlement 
curves of the top central point on July 15, October 15, 
January 15 and April 15. From the 1st year to the 3rd year 
after construction, the mean settlement is very evident 
because the construction of embankment will lead to 
widespread melting of permafrost. From the 3rd year to the 
6th year after construction, the mean settlement value is 
positive because the new embankment is refreezing and 
some thawed soils develop into frozen soils. After 7 years 
of the construction, the mean settlement will increase year 
by year because the climatic warming accelerates the 
degradation of permafrost. For Figs. 6(b) and 6(c), a similar 
conclusion can be made. In Fig. 6(d), the three stages aren’t 
obvious because the effect from construction disturbance is 
small. Based on the measured date (Ma et al. 2011, Mu 
2012), Fig. 7(a) presents the measured and computed 
settlement with respect to time at the top central point on 
July 15 after 2 years of the construction. Fig. 7(b) presents 
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the measured and computed settlement with respect to time 
at the left shoulder point on January 15 after 2 years of the 
construction. It is observed that the mean settlement is 
roughly same between statistical measured date and 
computed date. Therefore, according to the law of large 
numbers of Bernoulli, the stochastic analytical model can 
describe the uncertain displacement characteristics for 
embankment in permafrost regions. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 8 Distributions of standard deviation of lateral 

displacement for the 15th year after construction (Unit: 

cm). (a) on July 15, case 1, (b) on October 15, case 1, (c) 

on July 15, case 2, (d) on October 15, case 2, (e) on July 

15, case 3 and (f) on October 15, case 3 

 
(f) 

Fig. 8 Continued 
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(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 9 Distributions of standard deviation of lateral 

displacement for the 30th year after construction (Unit: 

cm). (a) on July 15, case 1, (b) on October 15, case 1, (c) 

on July 15, case 2, (d) on October 15, case 2, (e) on July 

15, case 3 and (f) on October 15, case 3 
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(f) 

Fig. 9 Continued 
 
 

5.2 Results and analyses for the standard deviation 
 

Figs. 8 and 9 show the distribution of standard 
deviations of lateral displacement on July 15 and October 
15 in the 15th and 30th year, respectively. From Figs. 8(a), 
8(b), 9(a) and 9(b), we can see that the standard deviations 
of lateral displacement are smaller and the maximum is 
about 0.05cm. When the coefficients of variation are 0.25, 
Figs. 8(c), 8(d), 9(c) and 9(d) show that the standard 
deviations of lateral displacement are bigger and the 
maximum is about 0.13 cm. When the coefficients of 
variation are 0.3, Figs. 8(e), 8(f), 9(e) and 9(f) show that the 
maximum for the standard deviations of lateral 
displacement is about 0.16 cm. Comparing Figs. 8(a), 8(c) 
and 8(e), 8(b), 8(d) and 8(f), 9(a), 9(c) and 9(e), 9(b), 9(d) 
and 9(f), the standard deviations is bigger for same 
locations when the coefficients of variation are 0.25 and 
0.3, therefore, we can conclude that, for the same time and 
same locations, the bigger the coefficients of variation are, 
the bigger the standard deviations are. Comparing Figs. 
8(a), 8(b), 9(a) and 9(b), we can find that the distributions 
of standard deviation of lateral displacement are exactly 
similar. Therefore, we can conclude that the change of 
random temperature fields have little influence on standard 
deviation of lateral displacement. For Figs. 8(c), 8(d), 9(c) 
and 9(d), a similar conclusion can be made. Figs.10 and 11 
show the distribution of standard deviations of vertical 
displacement on July 15 and October 15 in the 15th and  

 
 

 
(a) 

 
(b) 

Fig. 10 Distributions of standard deviation of vertical 

displacement for the 15th year after construction (Unit: 

cm). (a) on July 15, case 1, (b) on October 15, case 1, (c) 

on July 15, case 2, (d) on October 15, case 2, (e) on July 

15, case 3 and (f) on October 15, case 3 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 10 Distributions of standard deviation of vertical 

displacement for the 15th year after construction (Unit: 

cm). (a) on July 15, case 1, (b) on October 15, case 1, (c) 

on July 15, case 2, (d) on October 15, case 2, (e) on July 

15, case 3 and (f) on October 15, case 3 

 

 

30th year, respectively. Figs. 10(a) and 10(b), 11(a) and 

11(b) show that the larger standard deviation on July 15 is 

at the bottom of the fill while the larger standard deviation 

on October 15 is at the surface of the fill. It means that the 

random temperature fields have a great influence on the 

distribution of standard deviations of vertical displacement. 

Comparing Figs. 10(a) and 11(a), 10(b) and 11(b), we can 

see that the standard deviations in the 30th are bigger than 

the standard deviations in the 15th because of the climatic 

warming. 

In order to evaluate the change of standard deviation for 

the settlement characteristic, Figs. 12, 13 and 14 show the 

standard deviations of characteristic points, which are the 

top central point, 2m under the top central point, 5m under 

the top central point and 10m under the top central point for 

case 1, case 2 and case 3, respectively. It can be found from 

Fig. 12(a)-12(c) that the standard deviation on July 15, 

October 15, January 15 and April 15 increases with time. 

From the 1st year to the 15th years after construction, the 

standard deviation will be increasing very fast because  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 11 Distributions of standard deviation of vertical 

displacement for the 30th year after construction (Unit: 

cm). (a) on July 15, case 1, (b) on October 15, case 1, (c) 

on July 15, case 2, (d) on October 15, case 2, (e) on July 

15, case 3 and (f) on October 15, case 3 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 12 Standard deviation of settlement curves of 

characteristic points for case 1, (a) Top central point, (b) 

2 m under the top central point, (c) 5 m under the top 

central point and (d) 10 m under the top central point 

 
 

the temperature field of the embankment is unstable. Both 
the climate warming and the construction disturbance have 
an effect on the results. After the 15th years, the standard 
deviation will be increasing very slowly because the effect 
of construction disturbance is disappeared. Only the climate 
warming has an effect on the results. For Figs. 12(d), the 
change of standard deviation is continuous because the 
deeper of location is, the smaller of construction 
disturbance is. From Figs. 13(a)-13(d) and 14(a)-14(d), a 
similar conclusion can be made. Therefore, we can 
conclude that, with the passage of time, the settlement 
characteristic of conventional deterministic analysis may be 
farther from the true value. It is necessary to take the 
stochastic aspects of the temperature and parameters into 
account for engineering design. 

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
X (m)

-10

-8

-6

-4

-2

0

2

4

Y
 (

m
)

0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05
(a) SVD30-7-15(0.1)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
X (m)

-10

-8

-6

-4

-2

0

2

4

Y
 (

m
)

0.05

0.15

0.25

0.35

0.55

0.65

0.75

0.85

0.95

1.05

1.25(b) SVD30-10-15(0.1)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
X (m)

-10

-8

-6

-4

-2

0

2

4

Y
 (

m
)

0.1

0.3

0.5

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9
(c) SVD30-7-15(0.25)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
X (m)

-10

-8

-6

-4

-2

0

2

4

Y
 (

m
)

0.1

0.3

0.5

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3
(d) SVD30-10-15(0.25)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
X (m)

-10

-8

-6

-4

-2

0

2

4

Y
 (

m
)

0.2

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
(e) SVD30-7-15(0.3)

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
X (m)

-10

-8

-6

-4

-2

0

2

4

Y
 (

m
)

0.2

0.4

0.6

0.8

1.2

1.6

2

2.2

2.4

2.6

2.8
(f) SVD30-10-15(0.3)

597



 

Tao Wang, Guoqing Zhou, Jianzhou Wang, Xiaodong Zhao and Leijian Yin 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13 Standard deviation of settlement curves of 

characteristic points for case 2, (a) Top central point, (b) 

2 m under the top central point, (c) 5 m under the top 

central point and (d) 10 m under the top central point 
 

 
(a) 

Fig. 14 Standard deviation of settlement curves of 

characteristic points for case 3, (a) Top central point, (b) 

2 m under the top central point, (c) 5 m under the top 

central point and (d) 10 m under the top central point 

 
(b) 

 
(c) 

 
(d) 

Fig. 14 Continued 
 

 

5. Conclusions 
 

In this paper, the stochastic deformation fields of 

foundations in permafrost regions are investigated by 

probabilistic analysis approach. In view of the randomness 

of temperature and parameters, we mode the mechanics 

properties as random fields and consider the influence of 

random temperature on the basic mechanical parameters of 

frozen soil. A stochastic coupling program is compiled by 

MATLAB, and the mean and standard deviation of 

uncertain deformation characteristics for an embankment in 

a permafrost region are obtained by NSFEM. According to 

this study, the following conclusions can be drawn: 

• The change of stochastic temperature has little 

influence on the mean and standard deviation of lateral 

displacement while it has a relatively greater impact on the 

mean and standard deviation of vertical displacement. There 

are three stages for the mean settlement of characteristic 

points due to the effect of construction disturbance and 

climate warming. 
• When the coefficients of variation are different, the 

distributions of mean displacement are the same and the 
distributions of standard deviation are similar for the three 
cases. For the same time and same locations, the bigger the 
coefficients of variation are, the bigger the standard 
deviations are. 

• Considering the stochastic effect of temperature and 

parameters, the standard deviation of settlement increases 
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with time. Therefore, with the passage of time, the 

settlement characteristic of conventional deterministic 

analysis may be farther from the true value. 

At present, there are few theoretical documents on the 

uncertain deformation characteristics of foundations in 

permafrost regions because it involves multi-disciplinary 

knowledge and is difficult to be described by a universal 

theory. In this paper, although stochastic temperature and 

parameters are taken into account in the stochastic analysis 

model and there is much progress compared with previous 

studies on random temperature fields (Liu et al. 2014, Wang 

et al. 2015), some issues remain to be discussed. For 

example, the moisture, heat and stress in permafrost regions 

have an interaction process; the stochastic analysis model 

does not consider the moisture migration problems. Our 

stochastic coupling program needs to be optimized because 

it is inefficient. In addition, we make some assumptions for 

the stochastic mechanics parameters because there are not 

actual statistical data in this paper. Notwithstanding these 

limitations, as a preliminary study, it is expected to provide 

theoretical basis and reference for foundation engineering in 

permafrost regions. 
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