
Geomechanics and Engineering, Vol. 14, No. 3 (2018) 257-269 

DOI: https://doi.org/10.12989/gae.2018.14.3.257                                                                  257 

Copyright ©  2018 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=gae&subpage=7                                                             ISSN: 2005-307X (Print), 2092-6219 (Online) 

 
1. Introduction 
 

The stability of natural and manmade slopes is one of 

the important research issues because of its disastrous 

social, economic and environmental consequences such as 

damages to structures and infrastructures and losses of 

human lives. A wide range of disciplines from engineering 

geology to hydrogeology have had a primary focus on this 

problem. In recent decades this problem is treated as a 

geotechnical engineering problem with many sources of 

uncertainties in geotechnical engineering activities such as 

mining, excavation and transportation construction as well 

as in all types of trenches, retaining walls and embankments 

(stockpiles, tailing dams and waste dumps) (Fleurisson and 

Cojean 2014). A geotechnical engineer may use frequently 

slope stability analysis via different methods ranging from 

the Fellenius’ method known as the conventional method to 

upper bound methods. The methods for dealing with the 

problem mainly include (Cheng and Hoang 2015): 

analytical methods, numerical methods, expert evaluation, 

and soft computing-based techniques with some advantages 

and disadvantages relative to each other. It should be noted 

that expert evaluation is always needed and included in all 

the methods. Soft computing based techniques have 

emerged as more flexible, less assumption dependent and 

potentially self-adaptive approaches to generate predictive 

models for problems which by their nature are complex,  
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nonlinear and dynamic (See and Openshaw 1999). 

The use of soft computing in the slope stability 

assessment is a commonly adopted research area and 

attracted more attention in the recent decade. Sinha and 

Sengupta firstly demonstrate the applicability of an expert 

system in slope stability analysis in 1989 (Sinha and 

Sengupta 1989). Artificial Neural Network was firstly used 

by Feng et al. in 1995 (Xiating et al. 1995) and extensively 

developed for this problem by many others (Lu and 

Rosenbaum 2003, Wang et al. 2005, Cho 2009, Lee et al. 

2009, Lin et al. 2009, Das et al. 2011, Abdalla et al. 2015). 

Relevance Vector Machine (RVM) is applied for this 

problem successfully (Samui 2011, Samui et al. 2011, Zhao 

et al. 2012, Zhang et al. 2014). Support Vector Machine 

(SVM) is also utilized successfully for slope stability 

assessment (Samui 2008, Samui and Kothari 2011, Cheng 

et al. 2012, Cheng and Hoang 2015). The aim of this paper 

is to assess the potential enhancements to the current 

knowledge of slope stability assessment that can be 

achieved through utilizing four relatively new soft 

computing-based techniques not benefited so far in this 

problem.  

Soft computing-based techniques of choice are: M5' 

algorithm, Group Method of Data Handling (GMDH), 

Multivariate Adaptive Regression Splines (MARS), and 

Patient Rule-Induction Method (PRIM). The M5′ algorithm 

was originally introduced by Quinlan (Quinlan 1992). One 

of the advantages of the M5′ compared to other soft 

computing methods such as ANN or SVM, which are 

usually vague, is that its predictive model presents rules that 

are simple and meaningful (Kaveh et al. 2016). Among soft 

computing approaches, the GMDH network and MARS 

algorithms are known as self-organized and non-parametric 
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methods to model and discover the behaviors of unknown 

or complicated systems based on given input–output data 

points (Ivakhnenko 1971, Friedman 1991, Ivakhnenko and 

Ivakhnenko 2000). The GMDH and MARS methods also 

similar to the M5′ algorithm in comparison with ANN 

method present the dependencies between input and output 

parameters in a parametric form as an equation while these 

dependencies are hidden within neural network structures in 

ANN method. PRIM is a relatively new non-parametric 

method introduced by Friedman and Fisher (Friedman and 

Fisher 1999). It has been successfully used in various areas 

such as geology, marketing, management, finance, 

medicine, bioinformatics and process optimization. The 

main features of the PRIM algorithm can be listed as: 

working with high dimensional data, being parsimonious 

with data, handling missing values in a non-ad hoc manner, 

and being based on solid statistical ideas (Nannings et al. 

2008). PRIM can be more practical in those engineering 

problems in which finding subgroups with interesting 

region in high-dimensional data is vital. 
Soft computing-based assessment of slope stability 

analyses like other problems results in predictive models 
using a set of data samples available from past events. The 
developed models should be relatively stable and reflect the 
real variety law of input parameters on output variables (Li 
and Wang 2010). Input parameters are the influential 
parameters mainly affect the slope failure. The output of 
models can be the actual state of the slopes: stable and 
unstable. Many of the current studies, as referred in the 
second paragraph, suffer from low quality and small size of 
samples. Very recently Hoang and Pham (2016) combined 
firefly algorithm and the least squares support vector 
classification to establish an integrated slope prediction 
model considering 6 input influential parameter. They have 
collected a comprehensive set of 168 data samples available 
from previous research works. They have also developed 
three variants of ANN and three other benchmark methods 
to better verify their proposed hybrid method. It is reported 
that their proposed hybrid model results in the best 
prediction performance. 

In the artificial intelligence literature, it is accepted that 
with the accumulation of practical engineering data, the 
variety law of input parameters on output variables 
predicted by these techniques becomes increasingly 
accurate (Li and Wang 2010). It seems that compiling a 
comprehensive database is requisite in generating new 
predictive models. Although the main objective of this 
study is assessing the feasibility, effectiveness and 
practicality comparison of the four new techniques, but the 
same database used by Hoang and Pham (Hoang and Pham 
2016) is benefited here to more accurate evaluation of the 
developed models. Using the same dataset (with high 
quality and size of samples) enables us to make a fair 
comparison with four different methods developed by them. 

The remaining of the paper is organized as follows. 

Next section outlines the algorithms based on the 

considered methods after introducing the data base and 

selected statistical analysis parameters. Section 3 develops 

models and briefly discusses the results independently for 

each model. The forth section presents results and 

discussions for further evaluation the methods and their 

comparison. The penult section applies and evaluates the 

developed models for an engineering application: The 

Yodonghe landslide. At the end, the paper is concluded in 

Section 6.  
 

 

2. Materials and methods 
 

In the present study, the M5′, MARS, GMDH, and 

PRIM algorithms are used to predict the stability of slopes. 

Details of the selected algorithms are presented in the 

following subsections: 

 

2.1 M5′ model tree 
 

M5′ algorithm is an efficient technique for analyzing 

complex systems with very high dimensionality-up to 

hundreds of attributes. Quinlan (Quinlan 1992) presented 

the M5 algorithm to solve regression and classification 

problems. Later, Wang and Witten (Wang and Witten 1996) 

improved the M5 algorithm to so-called M5′ algorithm. The 

M5′ algorithm divides a complex problem into a number of 

simple sub-problems and provides the response to a 

combination of the solutions of these sub-problems. The 

M5′ algorithm generally includes three processes: (i) 

building the initial tree (ii) pruning the tree (iii) smoothing. 

The initial tree is constructed by dividing data space into 

smaller subspaces based on divide and conquer method 

(Bhattacharya and Solomatine 2005). 

There are some splitting values that divide the entire 

data sets to several subsets. These splitting values are 

selected from input variables that maximize the expected 

error reduction at each node. The standard deviation 

reduction, SDR, is calculated as a measure of the error at 

each node as follows (Kaveh et al. 2017) 

(T) (T )
i

i

i

T
SDR sd sd

T
  

 

(1) 

where T is the set of records that reach the node, Ti is the 
resulted set from splitting the node according to the selected 
attribute, and sd is the standard variation. The splitting 
procedure ceases when the class values of all instances that 
reach a node vary by less than 5% of the standard deviation 
of the original instance set, or when only a few instances 
remain. After building the tree, a multivariate linear 
regression is created at the bottommost subspace. An over-
fitting problem may occur during constructing the model 
tree and increasing its prediction accuracy for training set. 
In order to avoid or reduce this problem, pruning procedure 
can be used. This procedure uses an estimate of the 
expected error that will be experienced at each node for the 
test data. First, the absolute difference between the 
predicted value and the actual output value is averaged for 
each of the training instances that reached that node. Since 
the tree has been built exclusively for this dataset, the 
average value might underestimate the expected error for a 
new dataset. To compensate this problem, the output value 
is multiplied by the factor (n+v)/(n-v), where n is the 
number of training instances that reach the node and v is the 
number of attributes in the model that represent the output 
value at that node. If the estimated error at a leaf is higher 
than at the parent, the leaf node can be dropped (Witten and 
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Frank 2005). 
At final step, smoothing process is applied to reduce the 

problem of sharp discontinuousness at the leaves of the 

pruned tree. In the smoothing process, estimated value of 

each leaf is filtered along the path back to the root. The 

value at each node that is joining with the predicted value of 

the linear model for that node is calculated as follows 

'
np kq

P
n k




  
(2) 

where P′ is the prediction passed up to the next higher node, 

p is the prediction passed to the current node from the 

below, q is the value predicted by model at the node, n is 

the number of training instances reach to previous node, and 

k is known as Wang and Witten constant. Finally, the M5′ 

algorithm yields a set of linear multivariable equations 

(rules) to estimate the target value (Kaveh et al. 2017). 

 

2.2 MARS 
 

MARS is a robust nonlinear and nonparametric data 

mining approach proposed by Friedman in 1991 (Friedman 

1991). The nonlinear relationship between the inputs and 

outputs of a system can be modeled by using a series of 

piecewise linear or cubic segments (splines). Each linear or 

cubic segment is presented by an equation known as the 

basis functions (BFs).  The slope of regression functions in 

linear piecewise model or the concavity of each curve in 

cubic splines can be varied from one segment to the next. 

The end points of each segment are called knots. A knot 

marks the end of one region of data and the beginning of 

another. Unlike the widely-used parametric linear 

regression analysis, the MARS algorithm provides more 

flexibility in exploring the nonlinear relationship between 

input variables and an output variable. It detects the 

nonlinear relationship between input and output variables 

without requiring additional effort to verify a priori 

assumption about their relationship, unlike the conventional 

regression approach. To achieve this, MARS searches the 

possible interactions between variables by checking all 

degrees of interactions. As a result, all functional forms and 

interactions between involved variable can be allowed to 

consider by the MARS algorithm. This feature of the 

MARS is more critical for the problems in which tracking 

the complex data structures is needed for high-dimensional 

datasets. The general MARS function can be expressed 

using the following equation (Kaveh et al. 2017) 

 
(3) 

where  is the predicted response, β0 and βm are 
parameters which are estimated to yield the best data fit and 
M is the number of BFs included into the model. The basis 
function in MARS model can be either one single spline 
function or a product of two or more spline functions for 
different predictor variables. The spline basis function, 
λm(x), can be specified as 

( , ) ,

1

( ) [s (x t )]
mk

m km v k m k m

k

x


 
 

(4) 

where km is the number of knots, skm takes either 1 or -1 and 

indicates the right/left regions of the associated step 

function, v(k,m) is the label of the predictor variable and tk,m 

is the location of the knot. 

To generate basis functions, the MARS applies a 

searching algorithm in a stepwise manner. The knot 

locations are selected based on an adaptive regression 

algorithm. An optimal MARS is developed through a two-

stage forward and backward procedure. In the forward 

stage, MARS over-fits data by considering a great number 

of BFs. In the backward, to avoid the over-fitting problem, 

redundant basis functions are deleted from Eq. (3). MARS 

adopts Generalized Cross-Validation (GCV) to delete the 

redundant basis functions. The expression of GCV is given 

as 

2

1

2
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
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 
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(5) 

in which N is the number of data and C(B) is a complexity 

penalty that increases with the number of basis function 

(BF) in the model. It is defined as 

( ) ( 1)C B B dB  
 

(6) 

where d is a penalty for each BF included into the model 

and B is the number of BFs. 

 

2.3 GMDH 
 

GMDH is a learning machine based on the polynomial 

theory of complex systems (Ivakhnenko 1971). For this 

network, the most significant input parameters, the number 

of layers, the number of neurons used in middle layers, and 

optimal topology design of the network are defined 

automatically. Therefore, the GMDH network can be 

categorized as a self-organized model because of these 

active neurons. The structure of the GMDH network is 

determined based on a polynomial model in the training 

stage. The polynomial model that produces the minimum 

error between the predicted value and observed output is 

chosen as the best structure. The formal definition of the 

system identification problem is to find an approximate 

function ˆf  that can be used to predict the actual output 

ŷ or a given input vector consisting of n input variables 

(X=(x1,x2,...,xn)) as close as possible to the actual output. 

Therefore, M observations of multi-input-single-output data 

pairs are considered as 

   1 2 3
, , ,...x    1,2,...,

i i i i in
y f x x x i M 

 
(7) 

The general relationship between input and output 

variables can be expressed by a complicated discrete form 

of the Volterra function, a series in the form of 

n n n n n n

0 i i ij i j ijk i j k
i=1 i 1 j=1 i=1 j=1 k=1

...y w w x w x x w x x x


      
 
(8) 

which is known as the Kolmogorov-Gabor polynomial 

(Amanifard et al. 2008). In the present study, a quadratic 
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polynomial of the GMDH network is used that is written as 

2 2
50 1 2 3 4i j i j i j

ˆ:   Quadratic y w w x w x w x x w x w x     
 
(9) 

The weighting coefficients of Eq. (9) are calculated 

using regression techniques such that the difference 

between actual output (y) and the calculated value ( ŷ ) for 

each pair of xi and xj as input variables is minimized. In this 

way, the weighting coefficients of the quadratic function, 

(Gi) are obtained to optimally fit the output to the whole set 

of input-output data pairs, which is defined as 

2

1

()

min

M

i i
i

y G

E
M



 
 

 


 

(10) 

In this study, the GMDH network is improved using a 

back propagation algorithm. This method includes two main 

steps: (1) the weighting coefficients of the quadratic 

polynomial are determined using the least squares method 

from the input layer to output layer in the form of a forward 

path; and (2) the weighting coefficients are updated using a 

back-propagation algorithm in a backward path. This 

procedure may be continued until the error of the training 

network (E) is minimized. 
 

2.4 PRIM 
 

Patient rule-induction method (PRIM) is a soft 

computing based method introduced by Friedman and 

Fisher (Friedman and Fisher 1999). It is also referred to as a 

bump-hunting (or subgroup discovery) technique. Bump-

hunting algorithms are employed to divide the input 

variable space (or covariate space) into sub-regions that the 

highest or lowest mean value for the outcome occurred in 

them. These sub-regions are described by simple rules; as 

the sub-regions are unions of rectangles in the input space. 

The size of observations in each sub-region is determined 

by a given threshold. A formal setup of PRIM algorithm is 

as follows. Let {xi,yi} be a vector of N observations from 

some joint distribution with unknown probability density 

p(y|x), where y denotes the output variable and x a vector 

consisting of p input variables, xp={x1,x2,…,xp}. The 

variable y can be considered discrete (e.g., y=1 if slope is 

stable and 0, otherwise) or continuous which the discrete 

case is considered here (Kaveh, Hamze-Ziabari et al. 2016). 
The conceptual idea behind of the PRIM algorithm is to 

seek for a region B (called box) in the input space, in which 
the mean of the output variable is remarkably larger than 
the population’s mean. Box boundaries are determined by a 
conjunction of conditions on input variables. A p-
dimensional box B as the conjunction of sub-regions of the 
input variables can be defined as 

 1 1 2 2, [ , ] ... [ , ]p pB l u l u l u   
 

(11) 

where, [lj, uj] is a sub-region of input variables xj. The final 
structure of the PRIM algorithm is stated as a set of boxes 
with different rules. When the ith observation of input 
variable of the rules of box B is satisfied, the input vector of 
that observation is denoted by 𝑥 i ∈ 𝐵. Once a box is 
constructed, its observations are removed from modeling 
process and new boxes are generated based on the 
remaining observations. Each box has two major statistic  

1

6

10

2

89

7

5

43

x1

x2

 

Fig. 1 An illustration of how PRIM finds the first 

subgroup in 10 steps in a two-dimensional space 
 
 
properties. The first one is the support for both training and 
testing datasets, which shows the proportion of observations 
contained in the box by considering the whole dataset and is 
calculated as 

 
1

1
1

N

B i

i

x B
N




 
 

(12) 

where the function 1(.) is equal to 1 when 𝑥 ∈ 𝐵, and zero 

otherwise. The second property is the box outcome that 

represents the predicted values in that box. In fact, the 

algorithm tries to maximize the following objective and 

attributes the maximum of this objective to the mentioned 

box. 

 |B i iObj Ave y x B 
 

(13) 

where the function Ave(.) returns the average of y for the 

observations that satisfy the conditional argument. 

PRIM algorithm finds the optimal boxes by solving the 

following optimization problem under a constraint on the 

support of the box B as follows 

max    Obj

subject to 

B B

B   
(14) 

where β is a desired minimum value of support. To solve 

this problem, the PRIM algorithm carries out two main 

processes to generate a set of boxes: (i) peeling (ii) pasting. 
PRIM uses an iterative process (called peeling) to create a 
box by excluding observations with particular values of 
outcome. In this step, the entire sample space is assumed as 
an initial box, which can be rectangular in the case of two-
dimensional problems and hypercube in general. It then 
starts to shrink each face of hypercube based on a removing 
criterion (α) that is directly specified by the user. α criterion 
is defined as a percentage of observations for the variable at 
that face. It is suggested that α should be selected in the 
range of 0.05 to 0.1 (Friedman and Fisher 1999). The 
patient strategy peels the initial box so that the fraction of 
observation excluded from the reduced box is less than α 
parameter at each peeling step. For further illustration, the 
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steps taken by PRIM to discover a sub-region with a high 
density of output variable are shown in Fig. 1. 

After the peeling stage, pasting stage uses an iterative 

procedure to amend the observations for the generated box 

based upon values of predictor variables. All possible 

ranges of predictor variables for finding the optimum 

output, which is typically defined as the largest cumulative 

incidence, y, are considered at each step of the peeling and 

pasting stages. The final result of peeling and pasting 

procedures are presented as a sequence of boxes, including 

all the boxes involved in the modeling process: from the 

initial box containing all the data to the box that is obtained 

after pasting. 
When a box (subgroup) is determined and fixed, the 

PRIM algorithm removes all the associated observations in 

that box and searches for a new box based on the remaining 

data. Subgroups are always established based on those 

obtained earlier: in other words, users should first remove 

the data corresponding to the earlier boxes to estimate a 

mean outcome of a box (sequential manner should be 

implemented). 

 

 

3. Model development 
 

In this section, the database used is introduced and the 

predictive variables used to develop new models are 

discussed. The models and their modeling processes based 

on the M5′, MARS, GMDH, and the PRIM algorithms are 

presented and discussed. 

 

3.1 Selection of input parameters 
 

Very recently Hoang and Pham developed a 

metaheuristic-optimized least squares support vector 

classification for slope stability assessment (Hoang and 

Pham 2016). They have collected a comprehensive set of 

168 data samples available from previous research works 

(comprised of a number of 46 cases based on (Sah, Sheorey 

et al. 1994), 9 cases based on (Lu and Rosenbaum 2003), 31 

cases based on (Zhou and Chen 2009), 54 cases based on 

(Li and Wang 2010), and 30 cases based on (Xiaoming and 

Xibing 2011)). They have also developed three variants of 

ANN and three other benchmark methods to better verify 

their proposed hybrid method. It is accepted in the artificial 

intelligence literature that with the accumulation of 

practical engineering data, the variety law of input 

parameters on output variables predicted by these 

techniques becomes increasingly accurate (Li and Wang 

2010). It seems that compiling a comprehensive database is 

requisite in generating new predictive models. Although the 

main objective of this study is assessing the feasibility, 

effectiveness and practicality comparison of the four new 

techniques, however, the same database used by Hoang and 

Pham (Hoang and Pham 2016) is benefited here to more 

accurate evaluation of the developed models. Using the 

same dataset (with high quality and size of samples) enables 

us to make a fair comparison with four different methods 

developed by them. Database used contains 168 field case 

histories of which 84 are from the stable slope and the 

remaining 84 are from unstable cases. Details of the data 

used were previously published in (Hoang and Pham 2016). 

The initial step in developing a model was defining the  

 

 

 

Fig. 2 The histograms of the input variables 
 

 

Fig. 3 Boxplots of various predictive variables for stable 

and unstable slopes based on the whole dataset 
 

Table 1 The ranges of predictive variables for training and 

testing datasets 

Parameter Dataset Min Max Mean Std. 

θ (kN/m3) 
Training 12 31.3 21.45 3.81 

Testing 12 31.3 22.35 4.72 

C (kPa) 
Training 0 300 34.17 49.17 

Testing 0 200 34.02 39.17 

Φ (º) 
Training 0 45 27.96 11.30 

Testing 0 45 30.23 8.96 

β (º) 
Training 16 59 35.37 10.51 

Testing 16 58 37.56 9.60 

H (m) 
Training 3.6 511 98.13 134.43 

Testing 3.66 511 116.29 130.67 

Ru (-) 
Training 0 0.5 0.21 0.16 

Testing 0 0.5 0.22 0.15 
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predictive variables that were expected significantly 
influence on the stability status of slopes. Six input 

parameters including bulk density (θ), cohesion (C), angle 

of internal friction (∅), slope angle (β), slope height (H), 

pore water pressure ratio (Ru) were chosen as main 

parameters in slope stability analysis based on previous 

studies (Bishop and Morgenstern 1960, Erzin and Cetin 

2014) which are used also by Hoang and Pham (Hoang and 

Pham 2016) . The histograms of input variables are 

illustrated in Fig. 2. As shown, the data used contains a 

wide range of predictive variables. It should be noted that 

the results of the present study are more reliable in the 

ranges in which data points are more concentrated 

according to Fig. 2. The output variable is also selected as 

SI=1 for stable slopes and SI=0 for unstable slopes. 
Fig. 3 uses box plots to compare the different predictive 

variables for the stable and unstable slopes. To generate 
each box, the predictive variables for the entire dataset are 
sorted from the largest to smallest values and then the 
median value of the sorted dataset is calculated. This 
median value specifies the central mark (red line) of the 
box. The edges of the box are 25

th 
and 75

th
 percentiles. The 

lines extending above and below of each box are defined as 
the whiskers. The whiskers are drawn from the ends of the 
interquartile ranges to the furthest observations within the 
whisker length (the adjacent values). Observations beyond 
the whisker length are marked as outliers. An outlier is a 
value that is more than 1.5 times the interquartile range 
away from the top or bottom of the box. Outliers are shown 
with a red + sign in Fig. 3. Based on this figure, the 
variables that exhibit the largest difference between stable 
and unstable slopes are internal friction angle, slope height, 
cohesion, and slope angle. The differences between ranges 
of internal friction angle for stable and unstable cases are 
remarkable. As shown, the ranges of ∅ for stable cases are 
more than unstable cases, indicating that this parameter has 
a positive effect on stability and increases the resisting 
forces acting on a slope. The same behavior can also be 
observed for cohesion parameter. Based on previous 
studies, it is expected that θ, β, H, and Ru have negative 
effects on the stability of slopes while the box plots of these 
parameters show different behavior for the recorded case 
histories (Florkiewicz and Kubzdela 2013). This 
contradiction can be attributed to the fact that these 
parameters can have interaction with each other. For 
example, very recently based on statistical technique of 
experimental design, it is stated that the effect of cohesion 
is highly dependent on β, H, ∅ and θ (Kostić, Vasović et 
al. 2016). It should also be noted that the difference 
between box plots of stable and unstable slopes for pore 
pressure ratio is negligible. 

To develop new models, the whole dataset is randomly 

divided into two parts: training and testing datasets. Out of 

168 historical cases reported in different sources in 

literature, 2/3 of recorded cases (112 data points) are used to 

train machine learning algorithms. The remaining 56 

records are applied to verify the predictive capability of 

developed models. The ranges of input variables for 

training and testing datasets are presented in Table 1. This 

table contains the minimum (Min), maximum (Max), 

average (Mean), and standard deviation (Std) of each 

predictive variables. 

θ

β

LM3

≤ 24.215 > 24.215

> 42.5

H

≤ 30.55

Ru

LM2LM1

LM4 LM5

≤ 42.5

≤ 0.39 > 0.39

> 30.55

 

Fig. 4 The developed tree based on the M5′ algorithm 
 

 
(a) 

 
(b) 

Fig. 5 Results of the M5′ model for (a) Training dataset 

and (b) Testing dataset 
 
 

To evaluate the performance of the proposed models, the 

following criteria are employed 
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where OA=overall accuracy; P=precision; R=recall; 

TP=total number of stable cases that have been correctly 

predicted; TN=total number of unstable cases that have 

been correctly predicted; FP=sum of unstable instances that 

classified as stable; FN=sum of stable instances that is 

classified as unstable; and β is a measure of the importance 

of recall to precision and can be defined by the user for a 

specific project. 

 

3.2 Developed M5′ 
 

Following the data division, the training data points 

were presented to the M5′ algorithm for model 

development. The main concept behind the M5′ algorithm 

is to divide a complex problem into several subspaces in 

which the response variables can easily be estimated. One 

of the main parameters that should be determined by users 

in M5′ algorithm is the minimum number of instances in 

each subspace. The recommended value for this parameter 

is 4.0 by (Quinlan 1992). However, this parameter should 

be chosen based on the performance of the developed 

model for testing dataset. Therefore, this should be done to 

ensure that the over-fitting problem would not occur in the 

modeling process. For slope stability problem, this value 

was chosen as 15 based on the results of different developed 

models. According to this value, there are at least 15 

historical cases in each developed class. The structure of the 

developed model tree is shown in Fig. 4. The M5′ algorithm 

only presents a linear relationship between input and output 

variables in each class. The developed multivariate linear 

regressions in each class are presented in Eqs. 19 (a)-(e).   
As shown, the M5′ yields transparent and compact 

formulas like empirical equations for prediction of the slope 
stability status while other soft computing methods such as 
ANN act like a black box. These equations also have good 
interpretability. For example, the stability of slope increases 
when internal friction angle increases or slope angle 
decreases in all relations. Furthermore, the unit weight of 
soil can have positive or negative effects on slope stability 
based on Eqs. 19 (a)-19(e). According to these equations, 
the unit weight of soil improved the slope stability up to a 
point (24.2 kN/m

3
) and then, it worsened the stability status. 

For large unit weight (>24.2 kN/m
3
), the slope angle 

parameter determined the behavior of stability status. It 
should be noted that these splitting values do not 
necessarily have any physical interpretation and are 
obtained by minimizing the prediction error. However, most 
of the results obtained by the proposed model are in line 
with the results of the experimental observations and are 
also physically interpretable. 

 
(19(a)) 

 
(19(b)) 

 
(19(c)) 

 
(19(d)) 

 
(19(e)) 

Results of using the above equations for training and 
testing datasets are presented in Fig. 5. As can be seen, there 
is a good agreement between the observed and predicted 
slope status by using these equations. Furthermore, the 
performance of the developed M5′ algorithm is 
approximately similar for both training and testing datasets.  
The similar performance indicates that the developed model 
can be applied for the trained ranges. 
 

3.3 Developed MARS 
 

The basis functions (BFs) of the MARS algorithm can 
be piecewise-cubic or piecewise-linear (Friedman 1991). In 
the present study, the piecewise-linear model is presented 
only due to having better performance in comparison to the 
piecewise-cubic model for slope stability problem. One of 
the main parameters that should be adjusted for developing 
the MARS algorithm is the Generalized Cross-Validation 
(GCV) penalty for each knot. This penalty is usually chosen 
between 2 and 4. In the present study, the recommended 
value of 3 suggested by Friedman (Friedman 1991) is used. 
Applying the MARS algorithm for developing a predictive 
model, the following relationship is obtained for training 
dataset 

1 2 3 4 5

6 7 8 9 10

11 12 13 14

SI  Round( 0.002 0.19 0.0071 0.038 0.0014 0.3

                     0.0072 0.017 0.007 0.0059 0.0018

                      0.14 0.0063 0.01 0.011 0.002

BF BF BF BF BF

BF BF BF BF BF

BF BF BF BF BF

      

     

    15

5

16                      1.5 10 )BF   

(20) 

Table 2 presents the BFs of the developed model. As it 
can be seen, those of 16 BFs, 13 BFs with interaction terms 
are incorporated in this model, indicating that the model is 
not simply additive terms and they play a significantly 
important role in the developed final model. Therefore, the 
MARS algorithm captures the complex relationships 
between the input and output variables without requiring an 
 
 

Table 2 Basis functions of the developed MARS model 

Basis function Equation 

BF1 max(0, θ-27) 

BF2 max(0, 46-H) × max(0, ∅-30) 

BF3 max(0, 70-C) × max(0, θ-27) 

BF4 max(0, 46-H) × max(0, β-30) 

BF5 max(0, 46-H) × max(0, 30-β) × max(0, Ru-0.45) 

BF6 max(0, 46-H) × max(0, 30-β) × max(0, 0.45-Ru) 

BF7 BF6 × max(0, θ -19) 

BF8 BF3 × max(0, ∅ -35) 

BF9 max(0, 70-C) × max(0, θ -27) × max(0, 35- ∅) × max(0, H-290) 

BF10 max(0, H-50) 

BF11 max(0, ∅ -39) 

BF12 max(0, 50-H) × max(0, ∅ -27) 

BF13 max(0, 39- ∅) × max(0, C -30) 

BF14 max(0, 39- ∅) × max(0, C -25) 

BF15 max(0, 27- θ) × max(0, 22- ∅) × max(0, C -25) 

BF16 max(0, 70-C) × max(0, 180-H) × max(0, θ -22) × max(0, 40- β) 

263



 

A. Kaveh, S.M. Hamze-Ziabari and T. Bakhshpoori 

Table 3 ANOVA decomposition of the MARS model 

Function No. STD GCV Variables 

1 0.081 0.095 θ 

2 0.205 0.184 Φ 

3 0.228 0.232 H 

4 0.324 0.342 θ C 

5 0.412 0.505 C Φ 

6 0.351 0.427 Φ H 

7 0.213 0.201 β H 

8 0.352 0.366 θ C θ 

9 0.124 0.108 β H Ru 

10 0.103 0.104 θ C Φ H 

11 0.138 0.124 θ C β H 

12 0.139 0.126 θ C H Ru 

 

 

Fig. 6 The relative importance of the input variables in 

the developed MARS model 

 

 
(a) 

 
(b) 

Fig. 7 Results of the MARS model for (a) Training and 

(b) Testing datasets 

additional effort to verify a priori assumption about the 

relationship between the set of input variables and output 

variable. One of the limitations of the M5′ can be attributed 

to this feature because the algorithm always considers a 

linear relationship between input and output variables. This 

feature can be more critical as the dimension and 

complexity of the problem increase. 

Another important and practical advantage of the MARS 

algorithm is its ability to determine the most influential 

parameters in developing a process of a predictive model. 

Table 3 presents the Analysis of Variances (ANOVA) 

decomposition of the developed MARS models for 

predicting the stability status of slopes. The first column 

lists the number of the ANOVA function. The standard 

deviation of the corresponding ANOVA functions is given 

in the second column. This gives one indication of the 

relative contribution of each function to the overall model 

performance. The third column provides another indication 

of the importance of the corresponding ANOVA function, 

by listing the GCV score for a model with the whole basis 

functions compared to a model in which that particular 

ANOVA function is removed. This can be used to judge 

whether this ANOVA function makes an important 

contribution to the model performance, or whether it only 

slightly helps to improve the global GCV score. The last 

column gives the particular predictor variables associated 

with ANOVA function. This ability of the MARS can be 

used to specify the most important parameters in slope 

stability problem. To achieve this, MARS algorithm 

removes ANOVA functions one by one and then calculates 

the increase of GCV value caused by removing that 

ANOVA function. The ANOVA function that increases the 

GCV value considerably plays important role in developing 

process of the MARS model. In the same way, variables 

included in the ANOVA functions also play an important 

role in developing the process of the MARS model. For 

example, according to Table 3, the ANOVA functions with 

parameters of C and ϕ have improved the amount of GCV 

values remarkably. Therefore, it can be expected that these 

parameters are more important and play more crucial roles 

than other parameters in developing the MARS model. 
Fig. 6 shows the plot of the relative importance of the 

input variables in developing the MARS model. The angle 
of internal friction has the most influence and the pore 
water pressure coefficient has the least influence in the 
developed MARS model. The cohesion, slope height, bulk 
density, and slope angle are recognized as the other 
influential parameters in the order of importance. These 
results are in line with the field observations based on Fig. 
3. The performances of the developed MARS model are 
demonstrated in Fig. 7. As shown, the developed model has 
a good predictive ability. However, the accuracy of 
developed model for testing dataset is less than training 
dataset. 
 

3.4 Developed GMDH 
 

As stated before, the GMDH algorithm presents its 
predictive model as a quadratic polynomial. It determines 
the weighting coefficients of a quadratic polynomial using 
least square method in the forward phase. Then, weighting 
coefficients are enhanced based on a back propagation  
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(a) 

 
(b) 

Fig. 8 Results of the GMDH model for (a) Training 

dataset and (b) Testing dataset 
 

 

Fig. 9 Box decision developed based on the PRIM 

algorithm for slope stability problem 

 
Box1 

Conditions

1.00

Yes

Box2 

Conditions

No

Box3 

Conditions

Yes No

0.95

Box4 

Conditions

No

Box5 

Conditions
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1.00

Yes

1.00
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1.00 Box6 

Conditions

No

Yes

0.75 0.03

No

 

Fig. 10 Illustrative diagram of the predicting procedure 

based on the developed PRIM model 

 
(a) 

 
(b) 

Fig. 11 Results of the PRIM model for (a) Training datset 

and (b) Testing dataset 
 
 
algorithm in a backward phase. This procedure could be 
continued until the error criterion was minimized. In this 
study, according to training dataset, the GMDH algorithm 
returned the following selective polynomials for predicting 
the stability status of slopes 

1

2 2 2

  0.87 0.062  0.097 0.12  0.0012  0.0043

          0.0047  0.00016  0.0013 0.0035
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The criterion for evaluation of neurons and stopping the 

algorithm was chosen based on the best performance of 

both testing and training datasets. The algorithm is allowed 

to generate new layer as long as the error values of 

developed model get better (smaller). The results of the 

developed GMDH for training and testing datasets are 

shown in Fig. 8. From this figure, the predictions of the 

GMDH had an acceptable success rate for training and 

testing datasets. 

 

3.5 Developed PRIM 
 

To select an optimum structure for predicting slope 
stability based on PRIM algorithm, two important 
parameters known as the peeling quantile (α) and the 
minimum support (β) should be adjusted. The value of α is 
recommended between 0.05 and 0.1 (Friedman and Fisher 
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1999). This parameter defines the fraction of data points in 
the current box that is removed in each iteration. The larger 
values of α may lead to increase the risk of missing an 
optimal box. On the other hand, the smaller values of α can 
also result in an over-fitting problem in the peeling process. 
In general, a small value of α makes the algorithm to be 
more “patient”. To find an appropriate value for α, the 
parameter is changed in acceptable ranges between 0.05 and 
0.1. The best value for this parameter is selected 0.07 based 
on the best performances of the developed model for 
training and testing datasets. 

Another important parameter, β, is a criterion that 

determines the fraction of data covered by each box. Values 

that are smaller than 1.0 are treated as the β percent of the 

whole dataset. For example, the value of 0.01 for slope 

stability problem means that there are at least 

0.01×168=16.8 instances in each developed box. In general, 

the performance of the PRIM algorithm decreases as the β 

parameter increases. The smaller value of β may lead to 

higher complexity of the developed model. To obtain an 

optimum structure, this parameter is varied between 0.01 

and 0.5. The best result obtained for β=0.05 (i.e. the number 

of instances in each box should be at least 8 case histories). 

By applying α=0.07 and β=0.05, the PRIM algorithm 

discovers seven subgroups for predicting slope stability 

status as presented in Fig. 9. Each subgroup consists of 

three parts: the fraction of total instances assigned to each 

subgroup (Support), the ranges of predictive variables 

detected by PRIM for each subgroup, and the probability of 

being stable (PSI). To further illustration, the general 

procedure of applying the PRIM algorithm to slope stability 

problem for different ranges of input variables is shown in 

Fig. 9. Out of 168 records, 10 instances remain in Box1 

during the first peeling and pasting process. The remaining 

unassigned records (168-10=158) are considered for 

constructing the second partition. The process of producing 

a new partition based on unassigned instances continues 

until all records assigned to a partition. The instances are 

not included in any high-risk partition are assigned to the 

remainder partition (unstable cases). 

The procedure that decision maker should follow to 

predict slope stability status based on the developed PRIM 

algorithm is illustrated in Fig. 10. The PRIM algorithm 

presents its model in a sequential manner. It means that the 

historical cases with all given predictive variables are firstly 

checked for Box1. This procedure continues until the 

physical parameters related to the cases satisfy the 

necessary conditions in one of the boxes. It should be noted 

that a case can be placed in more than one box but as it is 

clear from the sequential manner in the Fig. 10, the PRIM 

predictions are based on the first box that satisfies all its 

conditions. The first five boxes in the developed PRIM 

algorithm specify the condition that the probability of being 

stable is almost 1.00. The Box6 represents conditions that 

the probability of being stable is 0.75. The main reason of 

smaller probability with respect to the other mentioned 

subgroups can be attributed to the smaller values of 

cohesion parameter in this box. This parameter plays as 

resisting factor in slope stability problem. The lower values 

of cohesion parameter lead to decrease in resisting force 

and as a result, the PRIM algorithm reduces the safety of 

the case histories placed in this box by assigning a 

probability of 0.75. However, the other stabilizing 

parameters are in safe ranges that are classified this box as a 

representative of stable slopes. The results of training and 

testing datasets related to the developed PRIM algorithm 

are depicted in Fig. 11. As shown, the model performances 

for both training and testing datasets are remarkably 

promising. 

 
 

4. Results and discussion 
 

For evaluation of the developed M5′, MARS, GMDH, 

and PRIM algorithms, as stated in subsection 3.1, the  

overall accuracy (OA), precision (P), recall (R), and F score 

statistical parameters related to each model are presented in 

Table 4. OA parameter is a common metric and gives an 

overall accuracy of the developed model for both stable and 

unstable case histories. For example, an accuracy of 0.9 

means that 90% of the whole dataset has been correctly 

estimated. However, it cannot be implied that the developed 

model has particularly 90% accuracy in prediction of the 

unstable cases (or stable cases). This deficiency can be 

more apparent when a class of imbalance exists or the 

number of instances from each class is not equal in the 

whole dataset. 

To compensate this problem, precision and recall 

parameters are defined for each class. The efficiency of 

applying these parameters is significant when there is a 

remarkable class imbalance in the dataset. Precision is an 

accuracy metric that measures the performance of the model 

for a single class. A precision of 1.0 for unstable cases 

indicates that all the predictions of the unstable cases based 

on the developed model are actually observed as unstable 

cases in the field while it does not consider unstable cases 

that are misclassified by the algorithm. On the other hand, 

recall metric measures the accuracy of the developed model 

only based on the prediction values. A recall of 1.0 means  
 

 

Table 4 The results of the developed models for training, 

testing and total datasets  

Model Data set OA 
Stable Unstable 

P R F score P R F score 

GMDH 

Training 0.87 0.86 0.86 0.86 0.88 0.88 0.88 

Testing 0.89 0.90 0.90 0.90 0.87 0.87 0.87 

Total 0.88 0.88 0.88 0.88 0.88 0.88 0.88 

M5′ 

Training 0.92 0.92 0.92 0.92 0.93 0.93 0.93 

Testing 0.87 0.81 0.96 0.87 0.95 0.79 0.86 

Total 0.91 0.88 0.93 0.90 0.94 0.94 0.94 

PRIM 

Training 0.95 0.96 0.94 0.95 0.95 0.96 0.95 

Testing 0.87 0.81 0.96 0.87 0.95 0.79 0.86 

Total 0.93 0.90 0.93 0.91 0.95 0.94 0.94 

MARS 

Training 0.96 0.96 0.96 0.96 0.96 0.96 0.96 

Testing 0.82 0.71 0.95 0.81 0.95 0.71 0.81 

Total 0.91 0.87 0.96 0.91 0.96 0.90 0.93 

 

Table 5 Comparison between the results of 10-fold cross-

validation analysis for different soft computing methods 

Model BDA SCG-ANN RMV SVC MO-LSVC  M5' MARS GMDH PRIM 

 (Hoang and Pham 2016)  Present study 

10-fold cross validation           

OA 0.75 0.81 0.83 0.83 0.86  0.91 0.91 0.87 0.96 
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that the developed model correctly predicts all observed 
unstable cases while it does not consider the real observed 
stable cases that misclassified by the model. There is an 
inverse relationship between recall and precision. An 
increase in precision may lead to a reduction of recall and 
vice versa. To combine these statistical parameters, F score 
parameter is defined as a single statistical evaluation 
parameter. The higher value of F score means the better 
performance of the developed model. In the present paper, 
the harmonic mean of precision and recall using equal 
weights are employed to measure the performance of the 
developed model (β=1). 

The ratio between the numbers of stable cases to 
unstable cases is 0.86:1 for training data set. In fact, there is 
a class of imbalance problem for training dataset. This ratio 
for testing and total datasets is 1.33:1 and 1:1, respectively. 
As mentioned, the OA metric cannot be used alone to 
measure the performances of the developed models. 
Therefore, the OA, P, R, and F score parameters are used to 
evaluate the performances of the M5′, MARS, GMDH and 
PRIM algorithms. The results of these metric parameters for 
training, testing and total datasets are presented in Table 4. 
The OA value for the PRIM algorithm is the highest (0.93) 
and the GMDH algorithm has the lowest value of OA (0.88) 
for total case histories. The M5′ and MARS have the same 
OA values (0.91). It should be noted that all the developed 
models show a remarkable accuracy in prediction of the 
slope stability status. However, the performance of the 
developed PRIM model is slightly better than the other ones 
according to all statistical metrics presented in Table 4. The 
prediction of the unstable slope is more critical than a stable 
one. According to Table 4, the performance of the M5′ and 
PRIM algorithms are the same based on F score for the 
whole dataset, and are the highest. The MARS algorithm 
also shows a promising performance based on F score 
metric (0.93). The F score value of the GMDH algorithm is 
the lowest (0.88) for all unstable cases. However, the 
interesting point about the developed GMDH algorithm is 
that is its nearly identical performance for training, testing, 
and total dataset, while the accuracy of the other developed 
models slightly decreases for testing dataset, especially for 
the MARS algorithm. 

To further evaluation of developed models, their 
performances are also compared with several soft 
computing approaches developed by Hoang and Pham 
(Hoang and Pham 2016). They developed a Metaheuristic-
Optimized Least Squares Support Vector Classification 
(MO-LSVC) by Firefly algorithm to establish an integrated 
slope prediction model (Hoang and Pham 2016). They have 
also developed six extra models using other benchmark 
methods: ANN with three different algorithms such that the 
model obtained by scaled conjugate gradient algorithm 
(SCG-ANN) results was better than the two others, a 
Support Vector Classifier (SVC), a Relevance Vector 
Machine (RMV), and the Bayes Discriminant Analysis 
(BDA). Although it is reported that their proposed hybrid 
model (MO-LSVC) results in the best prediction 
performance, compared to many prediction performance 
evaluations. Table 5 compares the overall accuracy (OA) of 
their best ANN (SCG-ANN), BDA, RMV, SVC and MO-
LSVC models with the proposed ones in this study based on 
10-fold cross validation technique. 

According to Table 5, the MO-LSVC results show a 

remarkable accuracy based on 10-fold cross validation 
technique in comparison to BDA, SCG-ANN, RMV, and 
SVC algorithms. However, all developed models in the 
present study outperform the mentioned algorithms. The 
performance of the GMDH and MO-LSVC are nearly the 
same. However, the M5′, MARS, and PRIM algorithms 
remarkably outperformed the MO-LSVC algorithm. The 
performances of the MARS and M5′ algorithms are the 
same based on 10-fold cross validation technique. In 
general, the accuracy of the PRIM algorithm is the most 
superior in this aspect. The main advantage of the 
developed models, especially the M5′ and PRIM 
algorithms, is that they present simple and compact 
relationships between the input and output variables like 
empirical equations, while other soft computing methods 
such as BDA, SCG-ANN, RMV, SVC, and MO-LSVC act 
like black boxes and the user cannot directly reproduce the 
results without reconstructing the algorithms. 
 

 

5. Engineering application: The Yodonghe landslide 
 

In this section, the proposed models are applied to 

predict the stability status of the Yodonghe landslide. This 

landslide was 2300 m away from the Shuibuya dam site and 

has 18 slopes with high potential to reactivate or fail. The 

landslide occurred with a volume about 0.0235 km
3
, which 

made it as one of the largest prehistoric landslides. The 

stability evaluation of slopes in the mentioned area was 

very crucial for damage management and also assessing the 

geological conditions of dam construction (Wang et al. 

2005). The upper part of the Yodonghe landslide was one of 

the most crucial slopes. In this study, this part of landslide is 

investigated. 

The predictive variables including θ, c, ∅, β, H, and Ru 

were reported as 21.0 kN/m
3
, 20.0 kPa, 24.0º, 21.0º, 85.0 m, 

and 0.0 (under the dry condition) along the sliding surface 

of the upper part of the Yodonghe landslide. After applying 

these input variables to the M5′ model, the mentioned slope 

according to the developed tree in the Fig. 4 is classified in 

LM3, where θ ≤ 24.21 and H>30.55. By computing the 

response of the LM3, the result indicates that the M5′ model 

correctly detects the status of this slope as an unstable 

slope. The PRIM algorithm also classifies this slope in the 

last developed box based on its sequential evaluation, which 

represents an unstable slope. The MARS and GMDH also 

predict this slope as an unstable slope. 

By considering the results of the performance analysis 

and model development process, the M5′, MARS, GMDH, 

and PRIM algorithms can be used as optional tools to 

develop new predictive models in a different domain of 

geotechnical engineering. The PRIM algorithm can be used 

successfully in problems with the binary manner or 

classifying the critical area in a special problem. The M5′ 

algorithm also can be used as a practical tool to develop a 

robust and meaningful rule-based predictive model. 
 

 

6. Conclusions 
 

Soft computing approaches such as M5′, MARS, 
GMDH, and PRIM algorithms are used to develop new 
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predictive models for evaluation of slope stability. Though 
the factor of safety in slope stability analysis is very 
important, developing models to predict merely whether a 
slope is stable or unstable can be very important which is 
the main objective of this study. A comprehensive database 
consisting of 168 case histories reported in different studies 
is used to train the mentioned algorithms. Six basic 
geometrical parameters and soil factors including slope 
height, slope angle, bulk density, cohesion, angle of internal 
friction, and pore water pressure ratio are considered as 
predictive variables. The performances of developed 
models are evaluated by using statistical error metrics. The 
most important outcome of this study can be summarized as 
follows: 

• The M5′ algorithm predicts the stability index based on 

a rule-based structure. The developed model tree and its 

equations are simple and meaningful. This feature makes 

this approach be more practical than most of the soft 

computing approaches like ANN and SVM. It also predicts 

the stability index with 91% morality, indicating the 

effectiveness of approach in the aspect of accuracy.  

• The MARS algorithm with 91% morality shows the 

same performance as the M5′ algorithm. However, the 

developed MARS model is more complicated than the M5′ 

algorithm. One of the main advantages of MARS is its 

ability in finding the most important parameters involved in 

an unknown problem. The sensitivity analysis is performed 

based on the MARS algorithm indicating that the angle of 

internal friction has the most influence and the pore water 

pressure ratio has the least influence. The cohesion, slope 

height, bulk density, and slope angle are the other important 

parameters. 

• The overall accuracy of the GMDH algorithm is less 

than the other developed models with 88% morality. The 

interesting point about the developed GMDH algorithm is 

that it has nearly the same performance for training, testing, 

and total dataset. 

• The PRIM algorithm as a new data mining approach in 

engineering domain is employed to discover the region with 

high safety from the stability point of view. The result 

indicates that the PRIM model shows the best performance 

from the accuracy point of view compared to other 

developed models. 

The accuracy of the developed models is also compared 

with those of BDA, SCG-ANN, RMV, SVC, and MO-

LSVC methods based on 10-fold cross validation technique. 

The results indicated that all the developed models 

outperform the mentioned methods in terms of accuracy. In 

general, it can be concluded that the M5′, MARS, GMDH, 

and PRIM algorithms can be successfully used as reliable 

alternative approaches in geotechnical engineering. 
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