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1. Introduction 
 

The breathtaking volume of production requires an 

extremely high level of industrial and management 

technology to remain in the highly competitive market of 

automotive manufacturing. A very necessary reaction of any 

automotive manufacturer against the market changes is 

diversification of the products. This variety occurs in two 

dimensions: spatial and developmental. Spatial variety is 

referred to the range of different products the company 

offers at a specific point of time, such as Hatchback, Sedan 

and mini SUV products of an automotive platform. On the 

other hand, developmental variety is referred to the range of 

different developmental stages (Suistorana 2003). Due to 

these inevitable changes, a flexible design method is needed 

to minimize the costs and time of replacing the old product 

with a new one or redesigning a variant to obtain a new 

variant of a modular product platform. Martin and Ishii 

(2002) described the Design for Variety (DFV) method, to 

develop standardized and modularized product platforms. 

The authors used the Generational Variety Index (GVI) and 

Coupling Index (CI) to aid in designing a modular product 

platform that can be easily changed in the future. They also 

showed that reducing these indices leads to a robust design 

against the future changes; Meaning that applying changes 

to the design parameters imposes minimum effects to 

satisfaction of the functional requirements. However, while  
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the functional requirements are satisfied, diversification 

may lead to reduce the performance and total efficiency of 

the system in different variants. Hence, the quality of 

operation of the system is also important to be investigated 

in platform product design. 

The floor panel is a component of the underbody 

structure of Body in White (BIW) system which plays an 

important role in foundation of the architecture of the 

automotive platform. From DFV point of view, extending 

the floor pan is an effective solution to absorb the 

uncertainties of wheelbase variation in different variants of 

a modular platform. In this case, the design range is the 

range of variations of the floor pan’s length which is 

considered to support the variety of products which are 

supposed to be produced based on the current platform. If 

the floor pan’s length is changed, the overall characteristics 

of this component will be also changed as a result. So it is 

important to know and to control these characteristics over 

variations of floor pan’s length. The stiffness of floor pan is 

important due to structural reasons and its effect on 

passengers’ comfort and feeling of solidness (Suh et al. 

2007). A conventional approach to judge about stiffness of 

the floor panel is vibration analysis (Mignery). Due to the 

direct relation between the natural frequencies and stiffness, 

the higher the natural frequency, the stiffer structure of the 

panel is expected. On the other hand, weight reduction is an 

important task in automotive engineering which usually has 

conflict with stiffening the structure. Therefore, a 

compromised solution is required to have a road vehicle 

with light weight and high stiffness simultaneously. In such 

cases, a multi-objective optimization problem is needed to 

be solved to obtain the best compromising solution of the 
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objective functions. Classical numerical optimization 

methods are only applicable to continuously differentiable 

functions. So to consider all these objectives, a complex 

multi-objective optimization problem (MOP) must be 

solved. Many different methods were proposed by previous 

researchers for solving MOPs (Lee et al. 2011 and Guillen 

2011). Non-dominated Sorting Genetic Algorithm (NSGA-

II) proposed by Srinivas and Deb (1994), which is a Pareto 

based approach is one of the efficient algorithms for solving 

MOPs. It generates a set of non-dominated solutions (Pareto 

solutions), where a non-dominated solution performs better 

on at least one criterion than the other solutions. To improve 

NSGA-II, Nariman-Zadeh proposed modified NSGA-II 

which uses epsilon-elimination algorithm rather than 

crowding factor (Jamali et al. 2009). This method is 

employed successfully in many recent studies (Khalkhali et 

al. 2011, 2012). A set of non-dominated optimal solutions 

are proposed by NSGA-II after convergence of the 

solutions. One of the main advantages of this method is to 

propose a variety of optimal design vectors to the designer. 

Hence, the designer is able to choose the trade-off solution 

according to his priorities and preferences. In this case, a 

Multi-Criteria Decision Making Method (MCDM) is 

needed to help to choose the best optimal design among the 

non-dominated points of Pareto based on weight 

coefficients which are given to the objective functions 

according to their priorities. Technique for Ordering 

Preferences by Similarity (TOPSIS) is a commonly used 

and successful MCDM method (Khalkhali et al. 2014, 

2016). TOPSIS is based on simultaneous minimization of 

distance from an ideal point and maximization of distance 

from a nadir point. 
Analytical mathematical equations are the most exact 

way of calculating the objective functions in terms of the 
design variables in the multi-objective optimization 
problems. In cases that these equations are expensive and 
time-consuming to solve or it is not possible to find such 
equations and relations (most of the complex physical 
problems such as automotive analyses are included in this 
category), Artificial Neural Networks could help to create a 
linkage between design variables and objective functions in 
a quick way. Artificial Neural Networks (ANNs) are 
computational modeling tools which are able to predict a 
relation between inputs and outputs of a function. Using 
these network leads to take advantage of eliminating a large 
number of experiments or simulations especially in 
parametric studies or multi-objective optimization 
problems. Group Method of Data Handling (GMDH) type 
of neural network algorithm is the heuristic self-
organization method for modeling complex systems. This 
method is successfully being used to shortage the run-time 
of multi-objective optimization algorithms in the recent 
years (Khalkhali et al. 2010, 2012). 

In this paper, the floor pan of a modular automotive 
platform is considered to be variable in length in order to 
cover the changes of wheelbase in different product 
variants. Due to the future uncertainties, a 150 mm range is 
considered for variations of the floor pan’s length. Since it 
is desired to have the optimum characteristics of the floor 
pan including stiffness and weight of the panel 
simultaneously, a multi-objective optimization is needed for 
different lengths of the floor pan in the design range. For 

this purpose, geometrical parameters of the floor pan are 
chosen as the design variables. Artificial neural networks 
are employed in this paper to find the mathematical relation 
between the objective functions (First natural frequency and 
mass of the panel) and the design variables. NSGAII 
algorithm is then used to find a set of non-dominated 
optimum design vectors which offers the compromised 
solution of the problem for each designated panel length. 
Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) is then used as a Multi-Criteria Decision 
Making (MCDM) method to choose the trade-off designs 
among these non-dominated optimum design vectors. Since 
a limited number of length levels are considered to be 
analyzed, a linear interpolation between the trade-off 
designs is assumed as the final guideline of design for the 
future uncertainties of the wheelbase. 
 

 

2. Design process overview 
 

Two logical strategies to extend the length of wheelbase 

of an automotive are extending the front floor and 

extending the center floor as modular parts respectively. 

These two concepts are shown in Fig. 1. As a DFV 

investigation of the design team, the first strategy is selected 

to be used in this study. The case study is the new National 

Platform project (NP01) which is under development by 

Iran University of Science and Technology (IUST). Position 

of the floor panel which is supposed to be considered as a 

modular part to be used to extend or shorten the wheelbase 

is shown in Fig. 2 which also depicts the overall BIW 

model of NP01 sedan product. To cover the range of 

shortest to longest variants of this platform which are the 

hatchback and mini SUV cases respectively, the length of 

floor pan (Le) is supposed to lie in the following range 

1400 ≤ 𝐿𝑒 ≤ 1550 (1) 

The previous researches have shown that a flexible BIW 

platform will be more profitable when the degree of future 

uncertainty increases (Suh 2005). Therefore, in the design 

process it is assumed that the design parameter (Le) could 

have any arbitrary real values in the range of Eq. (1).   

First natural frequency of the panel as a criteria to judge 

about the overall stiffness and weight of the panel as a 

parameter which has capability of influencing fuel economy 

and environmental protection of the final product are 

considered as the functional requirements of this component 

which are being submitted to a multi-objective optimization 

to obtain the best compromised combination of the 

objective functions (mass and first natural frequency of the 

floor pan). Thickness of the floor pan and geometrical 

details of the floor pan’s embossments are considered as the 

design variables. Since known mathematical relations 

between the design variables and the objective functions are 

not available in this problem such as many other industrial 

problems, artificial neural networks of GMDH type are 

employed to use estimating models and relations predicting 

the first natural frequency and weight of the floor pan in 

terms of the geometrical design variables. 

A Finite element model of the floor pan is created and 

submitted to the modal analysis. To verify the FE model 
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Fig. 1  Different strategies for extending the length of 

wheelbase 

 

 

Fig. 2  Position of the floor pan in the BIW of NP01 

project 

 

 

Fig. 3 Proposed flexible design process algorithm 
 

 

Table 1 Designated levels of the design features 

Level Number t (mm) w (mm) l (mm) d (mm) 

1 0.65 20 80 2 

2 0.8 30 103 5 

3 0.9 40 143 10 

4 1.2 48 173 15 

 

Table 2 Configuration of the experiments proposed by 

Taguchi 𝐿16 orthogonal array 

Analysis number Level of (t) Level of (w) Level of (l) Level of (d) 

1 1 1 1 1 

Table 2 Continued 

Analysis number Level of (t) Level of (w) Level of (l) Level of (d) 

2 1 2 2 2 

3 1 3 3 3 

4 1 4 4 4 

5 2 1 2 3 

6 2 2 1 4 

7 2 3 4 1 

8 2 4 3 2 

9 3 1 3 4 

10 3 2 4 3 

11 3 3 1 2 

12 3 4 2 1 

13 4 1 4 2 

14 4 2 3 1 

15 4 3 2 4 

16 4 4 1 3 

 

 

and simulation, the real model is produced and an 

experimental modal test is performed on it. Taguchi method 

is then used to generate the training samples of the GMDH 

type of ANN. After extracting the mathematical relations 

between the design variables and objective functions, 

modified NSGA-II algorithm is used to find the non-

dominated design vectors. The optimization problem is 

configured and solved for six different values of Le to cover 

the 150 mm range of changes of the wheelbase. Then, 

TOPSIS as a commonly used MCDM method is employed 

to find the trade-off design vectors proposed based on three 

different strategies of design, among the all of non-

dominated proposed design vectors found by modified 

NSGA-II. Finally, an interpolation between the six obtained 

trade-off designs corresponding to different Le values is 

calculated to find the optimum design relations of the floor 

pan for any arbitrary wheelbase lengths. The simplified 

flowchart of the explained procedure is shown in Fig. 3. 
 

 

3. Design of experiment 
 

Four geometrical parameters are considered as the 
design features affecting two output functions: first natural 
frequency and total mass of the floor pan. These design 
features are shown in Fig. 4. Based on design and 
production restrictions, the upper and lower bounds for 
variations of the design features are supposed as follows 

 

(2) 

where t is the thickness of the panel and w, l and d are the 

width, length and depth of the panel’s embosses. The higher 

the number of levels, the lower effects of nonlinearity error 

in the parametric study becomes. However, four levels of 

variations are considered for each geometrical feature based 
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on time and financial resources including t (0.65, 0.8, 0.9, 

and 1.2), w (20, 30, 40, and 48), l (80, 103, 143, and 173) 

and d (2, 5, 10, and 15). Values of the four variables 

corresponding to each level are summarized in Table 1. The 

total number of possible combinations of these variables 

according to number of levels and variables is equal to 256. 

In Taguchi method, two main parameters are needed to be 

specified. First is control factor or the vector of design 

features; another is the noise factor that denotes all factors 

that cause variation.  

Taguchi proposed orthogonal arrays to acquire the 

attribute data and to analyze the performance measure of 

the data to decide the optimal process parameters (Senthil 

Kumar, Kalidas, Sivakumar, Hariharan, Fautham, Ethiraj 

2013). In this study, 𝐿16  orthogonal array is employed. 

This array is suitable for the cases with four design 

variables and four levels for each design variable. The total 

number of experiments is 16 and the corresponding 

configuration of the experiments is shown in Table 2. To 

investigate the effect of length uncertainties, the platform 

wheelbase variation parameter (Le) is subjected to six levels 

(1400, 1430, 1460, 1490, 1520 and 1550) in such a way that 

uniformly covers the range of Eq. 1. Therefore, the total 

number of simulation samples is equal to 96. Note that Le is 

not supposed to be considered as a design variable in the 

optimization process. But the variation of this factor is 

considered to generate data samples for training the 

Artificial Neural Networks.  

 

 

4. Experimental modal analysis 
 

In this section, details of the modal experiment on the 

floor pan of the new developing platform (NP01) are 

explained. The aim of this experiment is to validate the 

results of the FE modeling and simulation with the real 

values. A physical model of the floor pan is generated and 

submitted to modal experimental test. The fabrication 

method is stamping by soft tools, drawing operation and 

trimming is carried out by laser cut. The experiment details 

are explained as follows. A roving hammer test is the most 

common type of impact test. An accelerometer is fixed at a 

single DOF, and the structure is subjected to impacts at as 

many DOFs as desired to define the mode shapes of the 

structure. Using a two channel Fast Fourier Transform 

(FFT) analyzer, Frequency Response Functions (FRFs) are 

computed between each impact DOF and the fixed response 

DOF. A suitable grid is usually marked on the structure to 

define the impact points. 

In this research, the charge type hammer has been used to 

excite the frame. To cover frequency ranges of interest, a 

rubber tip has been utilized. Excitation point has been 

selected so that the maximum mode shapes could be 

obtained (It must not be on the nodal points of any mode of 

interest). In order to reduce the noises in the measurements, 

each of the stage results have been obtained by averaging 

10 measurements of the same kind. 
The frame was suspended using cables having the 

elasticity suitable enough for the natural mode extraction. In 
order to get first 4 natural frequencies of the panel, 48 
points were marked on it for accelerometers installation 

 

Fig. 4 Geometrical shape, overall dimensions and design 

features of the basic floor pan 

 

Table 3 Geometrical configuration of the base design 

Thickness of the floor 

panel (t) (mm) 

Width of the embosses 

(w) (mm) 

Length of the embosses 

(l) (mm) 

Depth of the embosses 

(d) (mm) 

0.65 20 80 2 

 

 

locations. A geometrical model of the system was created 

using six coordinates required for each node. Each node 

corresponds to a point on the panel. The tri-directional 

accelerometers were attached to these points. 

The most general purpose parameter estimation 

technique called Time Domain MDOF Analysis has been 

used. It provides a complete and accurate modal model 

from single input multiple output frequency response 

functions. It uses global estimators; means that it analyzes 

all the data records simultaneously in order to estimate the 

structure’s characteristics. With this approach, a unique 

estimation of the pole values (natural frequencies) is 

obtained. 

 

 

5. Finite element modeling and simulation 
 

The geometrical shape and overall dimensions of the 

floor pan are shown in Fig. 4. Geometrical details of the 

basic model of floor pan are presented in Table 3. This 

model is supposed to be compared in finite element 

simulation and experimental test to verify the FE model and 

simulation. Steel is considered as the constituting material 

of the panel with mechanical properties of 

𝜌 = 7800
𝑘𝑔

𝑚3 , 𝐸 = 210𝐺𝑃𝑎 𝑎𝑛𝑑 𝜈 = 0.3 (Sun et al. 2015). 

The boundary edges of the model are supposed to be free. 

Due to the low aspect of thickness to the other dimensions, 

the complex 3D model is replaced by 2D shell elements. As 

a result of a mesh independence investigation, the model is 

divided to 6309 elements including 5966 quadratic and 343 

triangular elements. 

 

 

6. Artificial neural networks 
 

GMDH-type of artificial neural networks is employed in 
this paper to find an approximated mathematical relation 
between geometrical features of the floor pan and final 
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characteristics of this component including the first natural 
frequency and mass. GMDH finds the output function in terms 
of the input parameters and a set of cascaded neurons which 
are found in terms of the prior level neurons or input variables. 
In other words, the structure of network has a cascaded form 
and composition of two neurons results in generation of a new 
neuron. The final neuron represents the output of the network. 
In GMDH-type of neural networks, this composition is 
performed using (usually) the quadratic form of Ivakhnenko 
polynomial (Ivakhnenko 1971) as follows. The general and 
quadratic forms of Ivakhnenko polynomial are described in 
Eqs. (3) and (4) respectively 

 

(3) 

𝑦 = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎3𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2 (4) 

 

 
7. Artificial neural networks 

 
A multi-objective optimization problem (MOP) is defined 

when it is desired to optimize more than one objective 

functions simultaneously. In these problems, there are several 

objectives or cost functions (a vector of objectives) to be 

optimized (minimized or maximized) simultaneously. These 

objectives often conflict with each other so that improving one 

of them will deteriorate another. Therefore, an optimization 

algorithm is needed to find the best values of design variables 

in order to achieve the best compromising values of the 

objective functions. In such cases, there is not a single optimal 

solution which satisfies all of the objective functions at the 

same time, instead there is a set of optimal solutions, known as 

Pareto front which proposes a set of solutions in the space of 

objective functions that are non-dominated to each other. 

Having a stiffer panel without improving material is usually 

possible with section improvement and mass enhancement. 

Therefore, we face to a multi-objective optimization problem 

in this study. Non-dominated sorting genetic algorithm 

(NSGA-II) is a Pareto-based evolutionary algorithm that is 

employed here to solve the MOP. The current problem is 

configured as follows 

Objective functions: 

Maximize 𝑓1,    Is calculated using the ANN model 

(Appendix A) 

Minimize m,     Is calculated using the ANN model 

(Appendix A) 

Design Variables: 

As described in Eq. (2) 

(5) 

It is important to note that the length of Panel (𝐿𝑒) is 

assumed to be constant in the optimization process. Therefore, 

six MOP problems associated with six different values of 𝐿𝑒 

are solved separately. 

Table 4 Strategy definition and corresponding weight factors 

Strategy Weight Coefficient of 𝑓1 Weight Coefficient of m 

St1 0.2 0.8 

St2 0.5 0.5 

St3 0.8 0.2 

 
 
8. Multi-criteria decision making (MCDM) 
 

MCDM is widely applied to select one or more alternatives 

among the available ones. In this paper, three different 

strategies for selecting the trade-off design among a set of non-

dominated optimal designs are investigated. The three 

strategies are described in Table 4.  

The first strategy (St1) is describing the situation that 

importance of weight reduction is in priority with respect to 

importance of stiffness. The second strategy (St2) corresponds 

to the situation that mass reduction and stiffness improvement 

have equal importance for designer. The third strategy (St3) is 

reversed of the first case. Technique for Order of Preference by 

Similarity to Ideal Solution (TOPSIS) (Khalkhali et al. 2014) is 

an MCDM method which is employed in this study. The 

objective of TOPSIS is to determine the best compromised 

solution based on its distance from the positive, (S
+
), and 

negative, (S
-
), ideal solutions according to the weights 

appointed for every criterion. The best solution is the closest 

one to the positive ideal solution and the farthest one from the 

negative ideal solution. 
 

 

9. Results and discussion 
 

9.1 Experimental results and Validation of the FE 
model 
 

First four natural frequencies of the floor panel found by 

the experiment and FE simulation are listed in Table 5. A 

comparison with the FEM results shows the maximum and 

average error of 4.2% and 2.67% respectively. Furthermore, 

first natural mode shapes of the panel found by the FE 

simulation and test are depicted and compared in Fig. 5. A 

good accordance between the results is observed. Therefore, 

the finite element model and simulation method are accurate 

along with a reasonable error. A good accordance between the 

results is observed.  
 

9.2 ANN modeling 
 

Among the 96-sized set of data samples generated by 

Taguchi and simulated by FEM , the first 76 samples are used 

to train the network and the last 20 ones are used as the testing 

data. The good ability of GMDH-type neural networks for 

modeling and prediction of numerically obtained first natural 

frequency (𝑓1) data are depicted in Fig. 6 both for training 

and testing data. Such behaviors are also shown for the mass of 

panel both for training and testing data in Fig. 7. Distribution 

of ANN modeling and FE simulation results with respect to 

𝑦 = 𝑥 line shows the accuracy of models. It is evident in these 

figures that the evolved GMDH-type neural network in terms 

of quadratic equations can successfully model and predict the 
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output of testing data that are not used during the training 

process. As a more quantitative criterion, the MAPE error in 

modeling the training and testing samples of mass and the first 

natural frequency of panel are shown in Table 6. The 

corresponding polynomial representation for both of the 

objective functions is given in Appendix A. 

 

 

Table 5 First four natural frequencies of the floor pan’s basic 

model of NP01 project found by FEM and Experiment 

Mode Number 
Frequency (Hz) 

FEM 

Frequency (Hz) 

Experiment 

 

Error (%) 

1 4.14 4.24 2.36 

2 7.76 7.91 1.90 

3 12.99 13.56 4.20 

4 13.66 13.97 2.22 

Average - - 2.67 

 

  

(a) (b) 

Fig. 5 First natural mode shapes of the panel found by the 

FE simulation and test (a) FEM and (b) Experiment 

 

 
Fig. 6 Accuracy of the ANN model in predicting the first 

natural frequency of floor pan (𝑓1) for training and testing 

data samples 

 

 

Fig. 7 Accuracy of the ANN model in predicting the total 

mass of floor pan (𝑚) for training and testing data samples 

Table 6 The MAPE error in modeling the training and testing 

samples of mass and the first natural frequency of the floor 

panel 

 Training Samples Testing Samples 

𝑓1 1.70% 1.78% 

m 0.99% 4.12% 

  

 
Fig. 8 Pareto front for mass and the first natural 

frequency of the panel along with 16 Taguchi proposed 

designs 

 

 

Fig. 9 Comparison of Pareto fronts associated with 

different values of Le and TOPSIS proposed trade-offs 
 

 

9.3 Finding the optimal solution 
 

Six different optimization problems are solved in this study. 

Each problem corresponds to a different variant of the 

platform. As previously stated, each variant differs from the  
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Fig. 10  Optimal value of the first natural frequency for 

constant mass of 8.07 Kg 

  

Table 7 The trade-off design proposed by TOPSIS according to 

three different strategies 

 t (mm) W (mm) L (mm) D (mm) m (Kg) 𝑓1 (Hz) 

St1 

0.65 47.96 160.41 1.64 4.098813 4.74173 

0.65 48 163.34 2.23 4.126017 4.793088 

0.65 47.98 160.51 3.21 4.188861 4.958074 

0.65 47.98 165.8 2.06 4.090929 4.418275 

0.65 47.98 159.55 2.04 4.084548 4.281189 

0.65 47.98 160.31 2.02 4.07324 4.089555 

St2 

0.65 48 171.48 8.29 4.649049 6.164929 

0.65 47.98 169.23 8.33 4.63433 6.049131 

0.65 47.99 167.66 8.71 4.654005 5.964145 

0.65 48 166.15 8.79 4.646252 5.835863 

0.65 48 162.84 8.71 4.624371 5.680929 

0.65 48 160.63 9.12 4.650419 5.570853 

St3 

1.2 41.05 120.54 13.74 9.100755 9.434678 

1.2 45.75 160.79 14.66 9.575601 9.538923 

1.19 47.28 121.87 12.73 8.996694 9.296525 

1.17 47.96 125.76 11.48 8.725228 8.971377 

1.19 47.72 138.22 12.31 9.154848 9.019497 

1.2 47.77 138.25 12.98 9.39708 8.937752 

 

Table 8 Different values of parameter y with respect to the 

number of design variable and length of the floor pan based on 

TOPSIS results and St2 

Le 𝑦1 𝑦2 𝑦3 𝑦4 

1400 0.65 48 171.48 8.29 

1430 0.65 47.98 169.23 8.33 

1460 0.65 47.99 167.66 8.71 

1490 0.65 48 166.15 8.79 

1520 0.65 48 162.84 8.71 

1550 0.65 48 160.63 9.12 

 
 

other variants by the length of wheelbase which is embedded 

to length of the floor pan (𝐿𝑒) as explained in Section 2. The 

Pareto fronts associated with the different values of 𝐿𝑒 are 

depicted in Fig. 8. As it is obvious in this figure, the initial 

designs suggested by Taguchi are laid below the Pareto in all of 

the cases. This fact shows the improvement of results in the 

way of reducing the mass and increasing the first natural 

frequency of the floor pan. This comparison demonstrates that 

using NSGA-II for optimization not only gives a set of 

optimum designs which the designer is able to choose the best 

one among them according to priorities of the objective 

functions, but also the final results are remarkably improved 

and more trustable compared to the initial samples. 

Fig. 9 shows a comparison between the Pareto fronts 

presented in the previous figure. According to this figure, an 

obvious correlation exists between the optimal designs of 

different product variants. This correlation is further 

demonstrated in Fig. 10 by a comparison between the optimal 

value of first natural frequency for a fixed value of mass in 

different lengths of the floor pan. As a result, the higher the 

value of 𝐿𝑒, the lower value of the first natural frequency of the 

panel is expected for a fixed value of weight. The trade-off 

designs found by TOPSIS for the three different strategies are 

shown in Fig. 9 and further described in Table 7. It is shown in 

this figure, that the left and right ends of the Pareto front for 

different values of 𝐿𝑒 are related to trade-off designs of St1 

and St3 respectively. Furthermore, a point near the fracture 

location of the Pareto fronts is related to St2 trade-off design in 

all values of 𝐿𝑒. 
Due to future uncertainties, a product with a definite 

wheelbase length is not necessarily predictable. This fact 
originates form different roots of uncertainty which is always 
inevitable in designing an automotive platform. Hence, a 
solution to find the optimum design for an arbitrary length of 
wheelbase in the defined range of Eq. (1), is a linear 
interpolation between the results found for six different values 
of 𝐿𝑒 . This interpolation is performed and the interpolated 
optimal values of the four design variables are presented in Eq. 
6. 

 

(6) 

In this equation, 𝐷𝑃𝑖  denotes the interpolated value of i-th 

design parameter (𝐷𝑃1 = 𝑡 , 𝐷𝑃2 = 𝑤 , 𝐷𝑃3 = 𝑙 , 𝐷𝑃4 = 𝑑 . 
Furthermore, 𝑦𝑖,𝐿 is the i-th design parameter Corresponding 

to each length range which is determined based on TOPSIS 

analysis and St2. Different values of this parameter are 

described in Table 8. 

 

 

10. Conclusions 
 

In this paper, the floor pan of a modular automotive 

platform was subjected to variation in length. This variation 

was considered to change the wheelbase in order to generate 

different product variants with different lengths such as 

hatchback, sedan and mini-SUV. Due to wanted and unwanted 

uncertainties in definite length of the future products, it is 
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important to propose a solution which covers all of the possible 

values of the floor pan’s length. For this purpose, the variation 

range of the platform length was replaced by six different 

values of this parameter which are uniformly distributed in the 

range. To investigate the operation quality of the floor pan, two 

important parameters were considered: 1- The first natural 

frequency 2- The mass of the panel. A finite element model 

was developed to perform the modal analysis. Validation of 

this modeling and simulation was investigated by an 

experimental test on the real model of the floor pan. Maximum 

error of 4.2% showed the good accuracy of the FE model and 

simulation. Multi-objective optimization was then performed 

to optimize the quality of operation of the floor pan. To 

improve the running time and simplifying the operations, an 

artificial neural network of GMDH-type was trained and tested 

using 96 data samples which were generated using Taguchi 

method and FE simulation. The accuracy of this model was 

also investigated and the MAPE error observed to be less than 

4.12%. This study is also concluded to the following results: 

1- A set of optimal designs exist for a multi-objective 

optimization problem such as the current case. The designer is 

free to use an optimum design among these non-dominated 

solutions. The priorities of the objective functions determine 

the trade-off design. MCDM methods such as TOPSIS could 

be employed in this situation to assign weights to the objective 

functions to sort the final results. 

2- A correlation between the optimum solutions of the floor 

pans with different lengths exists. The correlation shows that 

the longer the floor pan’s length, the worse the optimum 

solution is. 

3- As a comparison between the optimum results, for a 

constant mass of the panel, the optimal first natural frequency 

decreases by reduction of the floor pan’s length. 

4- A good method to make robust the optimality of the 

results against to the future uncertainties is a linear 

interpolation between the optimal results associated with the 

different values of the variable parameter if a good correlation 

exists between the optimal solutions of different variable 

values. 
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