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Abstract.    The localized shear and the slip lines are easily observed in elastic-brittle-plastic rock. After yielding, the 
strength of the brittle rock suddenly drops from the peak value to the residual value, and there are slip lines which 
divide the macro rock into numbers of elements. There are slippages of elements along the slip lines and the 
displacement field in the plastic region is discontinuous. With some restraints, the discontinuities can be described by 
the combination of two smooth functions, one is for the meaning of averaging the original function, and the other is 
for characterizing the breaks of the original function. The slip lines around the circular opening in the plastic region of 
an isotropic H-B rock which subjected to a hydrostatic in situ stress can be described by the logarithmic spirals. After 
failure, the deformation mechanism of the plastic region is mainly attributed to the slippage, and a slippage parameter 
is introduced. A new analytical solution is presented for the plane strain analysis of displacements around circular 
openings. The displacements obtained by using the new solution are found to be well coincide with the exact 
solutions from the published sources. 
 
Keywords:    brittle plastic rock; H-B strength criterion; slip lines; slippage parameter 
 
 
1. Introduction 
 

Prediction of the displacement in the rock mass around circular openings at great depth is a 
common and important problem in mining, tunnels and boreholes. Until now, the mostly widely 
used models in analyzing the deformation of the rock mass around the circular openings are the 
elastic-strain-softening model and elastic-brittle-plastic model. Park (2014) derived the similarity 
solution for a circular opening by employing the elastic-strain-softening model. Alejano et al. 
(2012) used the strain-softening model to study the deformation of the rock mass around the tunnel. 
Many other researchers also successfully obtained the deformation and mechanical behavior of the 
rock mass around the circular openings based on the strain-softening model (Zhang et al. 2012, 
Serrano et al. 2011). However, compared with the widely use of the strain-softening model in the 
analysis of the rock masses, the deformation analysis of the circular opening by using the elastic-
brittle-plastic model in recent years is rarely. Brown et al. (1983) presented closed-form solutions 
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for the displacements of circular openings in elastic-brittle-plastic media. Wang (1996) pointed out 
the errors in the solutions of Brown et al. and presented a numerical solution for the displacement 
based on the iterative procedure. Carranza and Fairhurst (Carranza 2004, Carranza and Fairhurst 
1999) presented a self-similarity solution for the displacement around circular openings in elastic-
brittle-plastic rock by using the dimensionless formulation of the H-B criterion. Later, Sharan 
(2005) pointed out the errors in the solutions by Wang and Brown et al. (1983) and presented a 
simple closed-form solution for the displacement of circular openings in the elastic-brittle-plastic 
media. Park and Kim (2006) made a concise review on the above works and derived the analytical 
solutions for a circular opening in elastic-brittle-plastic rock. 

However, the solutions of the displacement around the circular openings mentioned above all 
don't take that the rock masses and the displacement field in the plastic region are discontinuous 
into consideration. In fact, the mechanism of plastic strain is connected with localized shear and 
there are slip lines in the plastic region of the rock mass (Kachanov 1971, Revuzhenko and 
Shemyakin 1977). Besides, the rocks are quasi-brittle materials and the deformation process of 
rock-like materials is mainly governed by elastic deformation and brittle cracking (Qi et al. 2014). 
Carranza and Fairhurst (1999) pointed out that the insight into the general nature of the solution 
that can be gained from the classical solution is an important attribute that should not be 
overlooked. Many practical situations show that compared with the liner M-C yield criterion, the 
non-liner H-B yield criterion is more appropriate to describe the failure of the rock masses (Hoek 
and Brown 1980, Sharan 2005, Mohammadi and Tavakoli 2015). 

In addition, after yielding there are large numbers of slip lines in the plastic rock, the rock in 
the plastic region is divided into larger numbers of small elements by the slip lines (Kachanov 
1971). The plasticity limit of the elements is higher than that of the macro rock mass, the rock and 
the displacement fields in the plastic region are discontinuous (Kachanov 1971, Revuzhenko and 
Shemyakin 1977). In the plastic region, the deformation consists of two parts, the first part is the 
deformation of the elements, and the second part is caused by the slippages of the elements along 
the slip lines. Compared with the deformation caused by the slippages, the deformation of the 
elements is insignificant and can be neglected (Revuzhenko and Shemyakin 1977), i.e., after 
failure, the deformation of the plastic region is the result of slippages However, this mechanism 
lacks theoretical study, therefore, obtaining an analytical displacement solution of the rock mass 
around the circular opening based on this mechanism and the Hoek-Brown criterion seems 
meaningful and necessary. 

This paper deals with an analytical solution of the radial displacement around the circular 
opening in elastic-brittle-plastic rock mass with slip lines, the rock mass is assumed to obey the H-
B yield criterion. Two smooth functions' combination is adopted to describe the discontinuities of 
the displacement field in the plastic region. A slippage parameter is introduced and a new solution 
of the displacement, which has direct relations with the slippages of the elements along the slip 
lines, is presented. In the end, displacements around the circular openings in different cases are 
calculated by using the presented method. 
 
 

2. Mathematic description of the discontinuities 
 

When disturbed, there are localized shear and slip lines in the plastic rock, the plastic rock is 
divided into large numbers of elements by the slip lines, the rock and the displacement field on the 
shear surfaces are discontinuous (Kachanov 1971, Revuzhenko and Shemyakin 1977).With several 
restraints, the discontinuous displacement field can be described by the combination of two 
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smooth functions, u(r) and A(r). The first one is for the meaning of averaging the original 
displacement field, and the second one is for characterizing the breaks of the original displacement 
field. Describing the displacement field with this method means together with the smooth 
(averaged) field of the displacement, the information about the discontinuities, which are lost in 
the displacement field's averaging process, can also be taken into consideration. 

A vector variable in plane problem can be denoted by r = x1e1 + x2e2, and the vector function is 
U = U1e1 + U2e2 (Huang et al. 2003). Assume that: (1) U is smooth enough within the elements 
(the characteristic sizes of the elements are denoted by l, l << 1) and u(r) is an averaged and 
smooth function for the original displacement field; (2) In the center of the element ri, there is u(ri) 
= U(ri); (3) The discontinuities of U(r) on the boundaries of two adjacent elements (their centers 
are in ri and ri+1, respectively) equal A(ri)(ri+1 ‒ ri), its degree of accuracy ups to |ri+1 ‒ ri|

2; (4) A is 
a second-order tensor with four smooth components Akm, where k, m = 1, 2. Then the original 
discontinuous displacement field can be described by the combination of a smooth vector field u(r) 
and a tensor field A(r), of which, the components of tensor A can be expressed as 
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where k, m = 1, 2, assume that during the shear process the density of the rock mass is invariant, 
and the four components of tensor A are determined only by two invariant functions Γ and Ω 

 

,2cos11  A ,2cos22  A ,2sin21  A  2sin12A (2)
 

Eq. (2) shows that the components A11 and A22, which normal to the sides of the elements in the 
non-averaged displacement field are continuous, and Ω can be expressed as 
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Let's introduce ω, then Eq. (3) can be expressed as 
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where U1 and U2 are the projections of the original displacement field onto the ox1 and ox2 axes; u1 
and u2 are the projections of the averaged displacement field onto the ox1 and ox2 axes; Ω 
represents the difference of the original curl and the averaged displacement field; ω represents half 
of the curl of the original displacement field. Since the slip lines in the plastic region around the 
circular opening are axial symmetry and orthogonal (Kachanov 1971), in order to describe them 
conveniently, the orthogonal curvilinear coordinates are adopted, and they are defined as 
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where λ1, λ2 are the basic vectors of the orthogonal curvilinear coordinates. The Cauchy Motion 
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Law in the orthogonal curvilinear coordinates can be expressed as (Eringen and Suhubi 1975) 
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and the strain tensor in the orthogonal curvilinear coordinates can be expressed as (Eringen and 
Suhubi 1975) 
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where gkgl = δmn (∂xm/∂λk)(∂xn/∂λl), gkgl = 0 (k ≠ 1), gm = (∂xk/∂λm)ik, g is the basic vector of the 
curvilinear coordinates. 

Fig. 1 shows that λ1 and λ2 are the basic vector of the curvilinear coordinates, but we can also 
regard them as two orthogonal slip lines, θ is the included angle between the principal stress and 
the ox1 axis, the included angle between the tangent to λ1 and the ox1 axis is θ ‒ π/4, hence, we can 
obtain the following expressions (Revuzhenko and Shemyakin 1977) 
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where ,11111 gla   22222 gla   are the Lame constants between the orthogonal 
curvilinear coordinates and the Cartesian coordinates, l1 and l2 are the lengths of the arcs along the 
corresponding slip lines, λ1 and λ2. To describe the slip net, we also need the element dimension. 
Assume that the two coordinate lines λ1, λ2 = const are divided into elemental segments as 

 

  ,111   f     222 f  (9)
 

and the lengths of the element sides at point (λ1, λ2) equal 
 

    ,, 211111   afl       212222 ,afl  (10)
 
The denseness of the slip net is determined by the stress field, but in this paper, we won't 
 
 

 

Fig. 1 Cartesian coordinates and Curvilinear coordinates 
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investigate the development process of the slip lines from regions with higher stresses into regions 
with lower stresses. In addition, the denseness of the slip net, which is denoted by functions f1χ and 
f2χ are assumed to be known. According to Eq. (6), the equilibrium equations in the orthogonal 
curvilinear coordinates can be expressed as 
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where 
0
1X  and 

0
2X  are the projections of the body force vectors onto the tangents to the slip lines 

λ1 and λ2; ,0
11 ,0

12 0
22  and 

0
21  are the stress components on the slip lines. 

The deformation of the media consists of two parts: the deformation within the elements, and 
the localized shear deformation on the slip lines. As aforementioned, the elastic strains of the 
elements can be neglected, and in the plane strain problem the deformation normal to the element 
sides are continuous and can be expressed as (Revuzhenko and Shemyakin 1977) 
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where 
0
11  and 

0
22  are strains that normal to the element sides. From Eq. (7), the strains can be 

also expressed as 
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In addition, the localized shear strain tangent to the side of the elements can be calculated as 
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Generally speaking, for the brittle-plastic rock, ,0
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According to Eqs. (3), (10) and (14), the slippage on the sides of the elements can be calculated 
as 
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where 

0
12 and 

0
21  are the localized shear on the slip lines; l1 and l2 are the lengths of the element 

sides, which can be also interpreted as inhomogeneous characteristics of the material having the 
dimension of length. Considering that the shear stresses, which can develop along the slip lines, 
are determined by the localized shear strain, and then the stress-strain relationship on the slip lines 
can be expressed as 
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Based on Eqs. (12)-(17), on the slip lines the relationship between the stresses and the slippages 

can be expressed as 
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 (18)

 
According to Eq. (18), we can obtain the real slippages on the sides of the element, in an 

elastoplastic body, we can also find that the deformation of the elements is the combination of the 
stresses 

0
km (i.e., ), 0

21
0
12   and the moment, the forces between the elements in the plastic region 

are transmitted via the stresses distributed over their sides. 
 
 
3. Analysis of the plastic rock with slip lines 
 

Fig. 2 shows that according to the experimental observations (both in the numerical test and the 
model test), slip lines are easily observed in the elastoplastic material. Assume that the elastic-
brittle-plastic rock around the circular opening at great depth is isotropic homogenous, thus, as 
shown in Figs. 2(c) and (d), after excavation, the slip lines in the plastic rock can be described by 
the logarithmic spirals (Kachanov 1971). 

494



 
 
 
 
 
 

A displacement solution for circular openings in an elastic-brittle-plastic rock 

  
(a) Numerical result by Andre et al. (2014) (b) Experimental result by Van den Hoek (2001) 

 

 

 

 

(c) Model of the slip lines around the circular opening (d) Two of the slip lines around the circular opening

Fig. 2 Slip lines around circular opening 
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where λ1, λ2 denote the two slip lines, and when the slip lines are logarithmic spirals, it is 
convenient to describe them with the polar coordinates. The Lame constants between the polar 
coordinates and the orthogonal curvilinear coordinates are a1 = a2 = r, and then Eq. (18) can be 
rewritten as 
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where S() represents an operation, considering that the displacements in the surrounding rock are 
axial symmetry and the dimensions of the elements don’t depend on θ, then f1(λ1) = f2(λ2) = 1, l1= l2 
= χr, in this situation the denseness of the slip lines is described only by χ. Assume that σθr = σrθ = 
0, uθ = 0, Xr = 0, Xθ = 0, under the axial symmetry condition, we obtain 
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by substituting Eq. (21) into Eq. (20), we have 
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where τ = (σθ ‒ σr)/2,        .20
21

0
12    

We can obtain the dimensionless radial displacement from Eqs. (21)-(22) and the displace-ment 
can be expressed as 
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where C1 and C2 are integration constants which depend on the boundary conditions. 
 
 

4. Simplified deformation process around circular openings 
and properties of rock mass 

 
4.1 Simplified deformation process 

 
As shown in the following Fig. 3, the rock mass is assumed to be homogeneous, isotropic, 

infinitely large and subjected to a hydrostatic in situ stress σ0. During the excavation process, as 
the internal pressure p0 on the opening surface reduced gradually, the radial displacement occurs 
and a plastic region develops around the opening. After yielding, the strength of the rock suddenly 
drops from the peak value to the residual value, at the same time the slip lines occurs and the 
slippages develops rapidly in the plastic region. 

 
Fig. 3 shows the deformation process around the circular opening. At point S1, the shear 

stresses in range of r0 ≤ r ≤ R and the displacement on the opening surface both reach their peak 
values within the rock's elastic stage. From S1 to S2, in range of r0 ≤ r ≤ R, the strength of the rock 
mass suddenly drops from its peak value to its residual value, and at the same time, there are slip 
lines’ development and the elements’ slippages. In order to simplify the analysis, the slip lines’ 
development and the elements’ slippages along the slip lines are assumed to be all completed at 
point S2. 

The rock mass is divided into numbers of elements by the slip lines, the plasticity limit of the 
elements separated by the slip lines is much higher than that of the macro rock mass. Compared 
with the deformation caused by the slippages, the deformation of the elements is insignificant and 
can be neglected, thus, the deformation takes place between points S1 and S2 in range of r0 ≤ r ≤ R 
should be attributed to the slippages of the elements along the slip lines. 
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Fig. 3 Slip lines, material behavior and deformation process around circular openings 
 
 
The analysis also shows that the displacement on the opening surface in elastic-brittle-plastic 

rock with slip lines can be regarded as the composition of two parts: the first part corresponding to 
point S1, in this case: (1) The rock mass and the displacement fields around the circular opening 
are both continuous; (2) The shear stresses in range of r0 ≤ r ≤ R and the displacement on the 
opening surface both reach their peak values within the elastic stage of the rock. In addition, the 
other part is caused by the localized shear, i.e., the slippages of the elements along the slip lines. 
The second part starts from S1 and ends at point S2, as shown in Fig. 3. For that the compatibility 
which is connected with the variability of the curvature of the slip lines will be fulfilled only for 
sufficiently small strains, thus, the deformation in the surrounding rock with slip lines studied in 
our paper is also belonging to the small strain problem. 

 
4.2 Material properties 
 
Until now, numbers of criteria such as the revised H-B criterion and those proposed by Xiao et 

al. (2012a) and Yao et al. (2004) have been proposed to deal with the rock deformation with 
considering the effect of the intermediate principal stress. Besides, Xiao et al. (2012b) have also 
proposed a cross-anisotropic criterion to solve the anisotropic rock deformation problem. The 
aforementioned criteria have provided us with more ways to well deal with the rock deformation 
problem and we will try to calculate the deformation of surrounding rock by using more criteria in 
the future. However, for it is our first attempt to calculate the displacement by adopting the 
slippage mechanism, therefore, in order to simplify the following derivation process, in addition to 
the aforementioned assumptions, the rock behavior is also assumed to be governed by the H-B 
criterion given by 

2
331 cc sm    (24)

 
because it is an axial symmetry plane problem, the radial and circumferential stresses are the 
principal stresses, i.e., σr = σ3, σθ = σ1, then Eq. (24) can be expressed as 

For peak strength 
2

000 crcr sm    (25)

 
For residual strength: 
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2
111 crrcrr sm    (26)

 
by substituting Eqs. (25)-(26) into Eq. (21), the expressions of the radial stresses corresponding to 
the peak strength and residual strength can be respectively expressed as 
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For residual strength 
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the close-form solution for the radius of the elastic-plastic interface can be obtained by considering 
the continuity of the radial stress at the elastic-plastic interface 
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where 
 

 ]161688[2 0
2

01 cccrrcrcrc smmmmmmsF    (30)

 

 crrc spmF   02 16  (31)
 

and by substituting Eq. (29) into Eq. (28), the radial stress at the elastic-plastic interface can be 
obtained as 
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the radial and circumferential stresses in the elastic region are given by Lame solution and can be 
expressed as 
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According to Eqs. (25)-(26) and τ = (σθ ‒ σr)/2, the shear stresses in ranges of r0 ≤ r ≤ R (plastic 
region) are given by 

2
01 2

1
crcp sm    (34)
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For elastic state in range of r > R 
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According to Eq. (23) and Eqs. (34)-(35), when there is plastic region around the circular 

opening, the new analytical solution for the dimensionless radial displacement on the opening 
surface can be expressed as 
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if the rock around the circular opening is elastic, there is no slip line around the circular opening, 

i.e., 
 
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 in this situation, the dimensionless radial displacement around the circular opening 
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In this case, the shear stress in range of r ≥ r0 can be expressed as   ,
2
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then Eq. (37) can be rewritten as 
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 In Eq. (36), u0/r0 is the dimensionless radial displacement on the opening surface, 
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 is the dimensionless radial displacement caused by the slippages of the elements 

along the slip lines. δ(τ) is the slippages on the element sides and it is measurable, l is the length of 
the element sides. Theoretically, the value of δ(τ)/l can be determined by tests and is approximately 
equal to the axial strain in the uniaxial compression tests corresponding to the situation that the 

localized shear is completed. 
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r

p r
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denotes the dimensionless radial displacement corres-

ponding to the situation that the shear stresses in range of r0 ≤ r ≤ R reach their maximum values. 

r
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e d
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
denotes the dimensionless radial displacement caused by the elastic strain in range of r 

> R. 
 
 
5. Examples and results 
 

Several example cases are analyzed with the dimensionless displacement expression presented 
above; displacements computed by using the method in this paper are compared with that obtained 
by Sharan (2005). Data and properties of the rocks for underground openings are taken from 
published papers and are presented in Table 1. 
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Table 1 Properties of rock mass and data for underground openings used for test example cases 

No. Ref. E (GPa) v σc m s mr sr r0 (m) σ0 (MPa) p0 (MPa)

1 Carranze et al. (1999) 5.5 0.25 30 1.70 0.0039 1.0 0.0 5.0 30.0 5.0 

2 

Hoek et al. (1998) 

60.0 0.20 210 10.84 0.296 1.0 0.01 10.0 100.0 0.0 

3 90.0 0.20 200 16.0 0.33 1.0 0.01 10.0 90.0 0.0 

4 25.0 0.30 150 8.35 0.032 1.0 0.01 Var. 38.0 0.0 

5 

Hoek et al. (1980) 

40.0 0.20 300 7.5 0.1 0.3 0.001 4.0 Var. 0.0 

6 1.38 0.20 69 0.5 0.001 0.1 0.0 5.33 3.31 Var. 

7 27.6 0.20 69 1.5 0.004 Var. 0.0 6.1 20.7 Var. 

 
 

Table 2 Results obtained by presented method (data in parenthesis are exact solutions 
by Sharan (2005)) 

No. Plastic behavior R/r0 δ(τ)/l u0/r0(%) Error (%) 

1 

Brittle plastic 1.885 0.0082 1.439 (1.439) 0 

Brittle plastic 1.885 0.0120 1.796 (1.794) -0.09 

Brittle plastic 1.885 0.0168 2.247 (2.247) 0 

2 

Brittle plastic 1.293 0.0011 0.365 (0.368) 0.75 

Brittle plastic 1.293 0.0122 0.868 (0.868) 0 

Brittle plastic 1.293 0.0363 1.960 (1.960) 0 

3 

Brittle plastic 1.188 0.0004 0.184 (0.184) 0 

Brittle plastic 1.188 0.0090 0.456 (0.454) -0.35 

Brittle plastic 1.188 0.0278 1.051 (1.051) 0 

 
 

Table 3 Results obtained by presented method (data in parenthesis are exact solutions by Sharan 
(2005)) 

No. 
Variable 

parameter 
Value of var. 

parameter 
Plastic behavior R/r0 δ(τ)/l u0/r0 (%) 

Error 
(%) 

4 r0 

2.5 (m) Brittle plastic 1.170 0.0273 1.034 (1.034) 0 

5.0 (m) Brittle plastic 1.170 0.0273 1.034 (1.034) 0 

10.0 (m) Brittle plastic 1.170 0.0273 1.034 (1.034) 0 

5 σ0 

54 (MPa) Brittle plastic 1.091 0.0253 0.617 (0.617) 0 

81 (MPa) Brittle plastic 1.415 0.1368 8.547 (8.544) -0.03 

108 (MPa) Brittle plastic 1.747 0.3720 32.769 (32.772) 0.01 

6 p0 

0.0 Brittle plastic 1.865 0.0779 7.863 (7.866) -0.08 

0.055 Brittle plastic 1.560 0.0348 2.975 (2.978) 0.11 

0.172 Brittle plastic 1.360 0.0188 1.382 (1.384) 0.14 

7 
mr 

(p0 = 5 MPa)

0.3 Brittle plastic 1.201 0.0015 0.132 (0.133) 1.10 

0.08 Brittle plastic 1.425 0.003 0.306 (0.307) 0.41 

0.015 Brittle plastic 2.266 0.0173 2.149 (2.154) 0.22 
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As shown in Table 1, in order to show the results obtained by using the new analytical solution 
and the effect of the slippage parameter on the displacement, the ranges of data, which are tested in 
our paper are wide, where E = 1.3890 GPa, v = 0.2~0.3, σc = 30~300 Mpa, m = 0.5~1.6, s = 0.001~ 
0.33, mr = 0.015~1, sr = 0~0.01, r0 = 2.5~10 m, σ0 = 3.31~108 Mpa, p0 = 0~5 MPa. Considering 
that the extent disturbed by the excavation is limited, thus, we only analysis the deformation in 
range of r0 ≤ r ≤ 20r0. 

As shown in Tables 2 and 3, the rock behavior around the circular openings is elastic-brittle-
plastic, the slippage parameter, the extent of the plastic region and the displacement on the opening 
surface are presented in terms of dimensionless forms, δ(τ)/l, R/r0 and u0/r0, respectively. The 
errors between the results obtained by using our method and the exact solutions by Sharan (2005) 
are insignificant. 

Besides, the slippage parameter is influenced by so many parameters, such as the opening 
radius r0, the in situ stress σ0, the internal pressure p0 and the parameter mr. 

Example 1 (or 2, or 3) was analyzed to show that the slippage parameter will have a direct 
influence on the dimensionless radial displacement. With the other conditions kept invariably, the 
dimensionless radial displacement will increase with the increasing of the slippage parameter. 

Example 4 was analyzed for three different opening radiuses, i.e., r0 = 2.5, 5.0 and 10.0 m. It 
shows that with all the other conditions kept invariably, the increasing of the opening radius has no 
effect on the slippage parameter. For example, the slippage parameter kept invariably and equals 
0.0284, although the opening radius increases from 2.5 m to 10.0 m. 

Example 5 was analyzed for the in situ stress ranging from σ0 = 54 Mpa to σ0 = 108 MPa. It 
shows that, if the in situ stress is the only variable parameter, then the slippage parameter will 
increase with the increasing of the in situ stress σ0. From σ0 = 54 MPa to σ0 = 81 MPa, the in situ 
stress increased by 50%, at the same time, the slippage parameter increased by 462.38%. From σ0 
= 81 MPa to σ0 = 108 MPa, the in situ stress also increased by 50%, but the slippage parameter 
only increased by 177.99%. It means if the in situ stress is lower, with the increasing of the in situ 
stress, there is an obvious increase on the slippage parameter, while the in situ stress reaches a 
relatively high value, the effect of the in situ stress's increase on the increase of the slippage 
parameter is limited. 

Example 6 was analyzed to show that with other conditions kept invariantly, the increase of the 
internal pressure p0 can obviously decrease the slippage parameter. For example, the slippage 
parameter will decrease from 0.0874 to 0.0197 with the internal pressure increase from 0 to 0.172 
MPa. 

Example 7 was analyzed for several values of mr ranging from 0.015 to 0.3. For that the lower 
the value of mr, the poorer the residual strength of the rock mass. As mr decrease from 0.3 to 0.015, 
the slippage parameter will increase from 0.0016 to 0.0171, i.e., with the other conditions kept 
invariably, the decrease of mr will lead to the increase of the slippage parameter. 

 
 

6. Conclusions 
 

In this paper, the elastic-brittle-plastic model is adopted, and in the plastic region, both the 
deformations and the discontinuities of the displacement fields are attributed to the slippages of the 
elements along the slip lines. The discontinuities are described by the combination of two smooth 
functions, a slippage parameter is introduced to characterize the effect of the slippage on the 
displacement. A new analytical solution of displacement around the circular openings is presented, 
and the following conclusions are drawn: 
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 If there are elastic and plastic regions around the circular opening, the dimensionless radial 
displacement on the circular opening surface in an isotropic homogeneous rock subjected 
to a hydrostatic in situ stress can be obtained by using Eq. (36), but if the surrounding rock 
is elastic, we can obtain the dimensionless radial displacement by using Eq. (37). 

 The slippage parameter δ(τ)/l, whose value is approximately equal to the axial strain in the 
uniaxial compression tests corresponding to the situation that the localized shear is 
completed, has direct influences on the deformation of the plastic region, if there is plastic 
region around the circular opening, the displacement on the opening surface will linearly 
increase with the increasing of the slippage parameter. 

 For rock mass, the slippage parameter is variable, but with other conditions kept invariantly, 
the slippage parameter will increase with the increasing of the in situ stressv, whereas, it 
will decrease with the increasing of the internal pressure p0 and parameter mr. Generally, 
the initial stress, the supporting stress and the properties of the rock mass affect the value of 
δ(τ)/l obviously. 

 For the elastic-brittle-plastic rock in different cases, the slippage parameter is different; the 
errors between the displacements obtained by using our method and that by Sharan (2005) 
are insignificant. 

 It is our first attempt to calculate the radial displacement around the circular openings with 
considering the slippage mechanism, therefore, there are still many issues to be further 
studied. In our future study, in addition to embedding other criteria into our analysis, we 
will also try to take the Weibull function distribution of the rock brittleness into 
consideration, so that to make the solution more in line with the practical engineering. 

 
 
Acknowledgments 
 

The authors would like to express their sincere gratitude to the financial support by the National 
Key Basic Research Program of China (Grant No. 2013CB036005), National Natural Science 
Foundation of China (Grant No. 51527810, 51408607, 51679249); in addition, their appreciation 
also goes to the editor and the anonymous reviewers for their comments. 

 
 

References 
 
Alejano, L.R., Dono, R.A. and Veiga, M. (2012), “Platic radii and longitudinal deformation profiles of 

tunnels excavated in strain-softening rock masses”, Tunn. Undergr. Sp. Technol., 30, 169-182. 
Brown, E.T., Bray, J.W. and Ladanyi, B. (1983), “Ground response curves for rock tunnel”, ASCE J. 

Geotech. Eng., 109(1), 15-39. 
Carranze, T.C. (2004), “Elastoplastic solution of tunnel problems using the generalized form of Hoek-Brown 

failure criterion”, Int. J. Rock. Mech. Min. Sci., 41(3), 629-639. 
Carranze, T.C. and Fairhurst, C. (1999), “The elatio-plastic response of underground excavations in rock 

masses that satisfy the Hoek-Brown failure criteria”, Int. J. Rock. Mech. Min. Sci., 36(6), 777-809. 
Eringen, A.C. and Suhubi, E.S. (1975), Elastodynamics:Finite Motions, Academic Press, New York-London. 
Hoek, E. and Brown, E.T. (1980), Underground Excavations in Rock, The Institution of Mining and 

Metallurgy, London, UK. 
Hoek, E., Kaiser, P.K. and Bawden, W.F. (1998), Support of Underground Excavations in Hard Rock, 

Balkema, Rotterdam, Netherlands. 
Huang, H.X., Fan, P.X., Li, J., Wang, M.Y. and Rong, X.L. (2016), “A theoretical explanation for rock core 

502



 
 
 
 
 
 

A displacement solution for circular openings in an elastic-brittle-plastic rock 

disking in triaxial unloading test by considering local tensile stress”, Acta Geophys., 64(5), 430-1445. 
Huang, K.Z., Xue, M.D. and Lu, W.M. (2003), Tensor Analysis, TsingHua Press, Beijing, China. 
Jaegar, J.C. and Cook, N.G.W. (1979), Fundamental of Rock Mechanics, Champman and Hall, London, UK. 
Kachanov, L.M. (1971), Foundations of the Theory of Plasticity, Elsevier. 
Liu, X.R., Li, D.L., Wang, J.B. and Wang, Z. (2015), “Surrounding rock pressure of shallow-buried bilateral 

bias tunnels under earthquake”, Geomech. Eng., Int. J., 9(4), 19-37. 
Mohammadi, M. and Tavakoli, H. (2015), “Comparing the generalized Hoek-Brown and Mohr-Coulomb 

failure criteria for stress analysis on the rocks failure plane”, Geomech. Eng., Int. J., 9(1), 115-124. 
Müller, A.L., do Amaral Vargas, E. and Gonçalves, C.J. (2014), “Numerical simulation of solids production 

in slip-lines type breakout modes using standard and Cosserat continua”, J. Petrol. Sci. Eng., 122, 134-
148. 

Park, K.H. (2014), “Similarity solution for a spherical or circular opening in elastic-strain softening rock 
mass”, Int. J. Rock. Mech. Min. Sci., 71, 151-159. 

Park, K.H. and Kim, Y.J. (2006), “Analytical solution for a circular opening in an elastic-brittle-plastic 
rock”, Int. J. Rock. Mech. Min. Sci., 43(4), 616-622. 

Qi, C.Z., Wang, M.Y., Bai, J.P. and Li, K.R. (2014), “Mechanism underlying dynamic size effect on rock 
mass strength”, Int. J. Impact Eng., 68, 1-7. 

Revuzhenko, A.F. and Shemyakin, E.I. (1977), “Problem of plane strain of hardening and softening plastic 
materials”, J. Appl. Mech. Tech. Phys., 18(3), 406-420. 

Sharan, S.K. (2005), “Exact and approximate solutions for displacements around circular openings in 
elastic-brittle-plastic Hoek-Brown rock”, Int. J. Rock. Mech. Min. Sci., 42(4), 542-549. 

Serrano, A., Olalla, C. and Reig, I. (2011), “Convergence of circular tunnels in elastoplastic rock masses 
with non-linear failure criteria and non-associated flow laws”, Int. J. Rock. Mech. Min. Sci., 48(6), 878-
887. 

Van den Hoek, P.J. (2001), “Prediction of different types of cavity failure using bifurcation theory”, 
Proceedings of the 38th Symposium of the American Rock Mechanics Association, Washington, D.C., 
USA, July, pp. 45-52. 

Vincenzo, S. and Ghassan, A.S. (2012), “Analytical solution for undrained plane strain expansion of 
cylindrical cavity in modified cam clay”, Geomech. Eng., Int. J., 4(1), 19-37. 

Vu, T.M., Sulem, J., Subrin, D. and Monin, N. (2013), “Semi-analytical solution for stresses and displace-
ments in a tunnel excavated in transversely isotropic formation with non-linear behavior”, Rock Mech. 
Rock Eng., 46(2), 213-229. 

Wang, Y. (1996), “Ground response of circular tunnel in poorly consolidated rock”, ASCE J. Geotech. Eng, 
122(9), 703-708. 

Wang, S.L., Zheng, H., Li, C.G. and Ge, X.R. (2011), “A finite element implementation of strain-softening 
rock mass”, Int. J. Rock. Mech. Min. Sci., 48(1), 67-76. 

Xiao, Y., Liu, H.L., Zhu, J.G. and Shi, W.C. (2012a), “Modeling and behaviours of rockfill materials in 
three-dimensional stress space”, Sci. China Tech. Sci., 55(10), 2877-2892. 

Xiao, Y., Liu, H. and Yang, G. (2012b), “Formulation of cross-anisotropic failure criterion for granular 
material”, Int. J. Geomech., 12(2), 182-188. 

Xiao, Y., Liu, H., Desai, C.S., Sun, Y. and Liu, H. (2016), “Effect of intermediate principal-stress ratio on 
particle breakage of rockfill material”, J. Geotech. Geoenviron. Eng., 142(4), 06015017. 

Yao, Y.P., Lu, D.C., Zhou, A.N. and Zou, B. (2004), “Generalized non-linear strength theory and 
transformed stress space”, Sci. China Tech. Sci., 47(6), 691-709. 

Zhang, Q., Jiang, B.S., Wang, S.L., Ge, X.R. and Zhang H.Q. (2012), “Elasto-plastic analysis of a circular 
opening in strain-softening rock mass”, Int. J. Rock. Mech. Min. Sci., 50, 38-46. 

 
CC 
 
 

503



 
 
 
 
 
 

Houxu Huang, Jie Li, Xiaoli Rong, Yiqing Hao and Xin Dong 

List of symbols 
 

H-B Hoek-Brown 0
21

0
12 , localized shear on the slip lines 

M-C Mohr-Coulomb δmn Kronecker delta 

u(r) smooth vector field X projections of vector of the body force 

A(r) smooth tensor field μ shear modulus 

U(r) vector function v Poisson's ratio 

Γ maximum principal shear strain r0 opening radius 

g basic vector of the curvilinear coordinates f · χ denseness of the slip lines 

ik basic vector of the Cartesian coordinates σ0 in situ stress 

e1, e2 orthogonal basis m, s H-B constants for rock before yielding 

σr radial stress mr, sr H-B constants for rock after yielding 

σθ circumferential stress ur radial displacement component 

σr0 radial stress before yielding uθ Circumferential displacement component 

σθ0 circumferential stress before yielding p0 internal pressure on the opening surface 

σr1 radial stress after yielding σR radial stress at elastic-plastic interface 

σθ1 circumferential stress after yielding R plastic radius 

σre radial stress in elastic region τe shear stress in range of r > R 

σθe circumferential stress in elastic region l average length of the element sides 

u0 radial displacement on the opening surface δ(τ)/l dimensionless slippage parameter 

σc uniaxial compressive strength of intact rock δ(τ) averaged slippage displacement 

a1, a2 
Lame constants between the polar and the 
orthogonal curvilinear coordinates 

w1, w2
projections of the displacement vectors 
onto the normal to the slip lines λ1 and λ2 

λ1, λ2 
basic vector of the orthogonal curvilinear 
coordinates, or two slip lines 

ω 
half of the curl of the original displace-
ment field 

U1 
projection of the original displacement 
field onto the ox1 axis 

v 
different curl of the original and the 
averaged displacement fields 

U2 
projection of the original displacement 
field onto the ox2 axis 

τp1 
shear stress before yielding in range of 
r0 ≤ r ≤ R 

u1 
projection of the averaged displacement 
field onto the ox1 axis 

τp2 
shear stress after yielding in range of 
r0 ≤ r ≤ R 

u2 
projection of the averaged displacement 
field onto the ox2 axis 

χ 
denseness of the orthogonal slip lines 
around the circular opening when f = 1 

Um 
projection of the original displacement 
vector onto the m direction 

um 
projection of the averaged displacement 
vector onto the m direction 

Un 
projection of the original displacement 
vector onto the n direction 

un 
projection of the averaged displacement 
vector onto the n direction 
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