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Abstract.   A Spectral Element Method for 3D seismic wave propagation simulation is derived based on the three-
dimensional fluctuating elastic dynamic equation. Considering the 3D real terrain and the attenuation characteristics 
of the medium, the topographic effect of Wenchuan earthquake is simulated by using the Spectral Element Method 
(SEM) algorithm and the ASTER DEM model. Results show that the high PGA (peak ground acceleration) region 
was distributed along the peak and the slope side away from the epicenter in the epicenter area. The overall 
distribution direction of high PGA and high PGV (peak ground velocity) region is parallel to the direction of the 
seismogenic fault. In the epicenter of the earthquake, the ground motion is to some extent amplified under the 
influence of the terrain. The amplification effect of the terrain on PGA is complicated. It does not exactly lead to 
amplification of PGA at the ridge and the summit or attenuation of PGA in the valley. 
 

Keywords:    topographic effect; Spectral Element Method; seismogenic; peak ground acceleration; peak 
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1. Introduction 
 

The distribution patterns of ground motion can provide important information for the study of 
earthquake-induced secondary geological disasters. A lot of researches have been done on the 
topographic effect of ground motion. Todorovska et al. (2015) studied the effects of the site 
conditions using synthetic earthquake ground motion at the ground surface, generated by the 
SYNACC method. Rizzitano et al. (2014) confirmed that a complex interaction existed between 
stratigraphic and topographic effects on the amplification of the ground motion and that the two 
effects cannot be evaluated independently and easily uncoupled. Barani et al. (2014) examined the 
role of topographic effects on the prediction of earthquake ground motion. Using landslide maps 
from the epicentral area of earthquakes near Northridge, California, Chi-Chi, Taiwan, and the 
Finisterre Mountains of Papua New Guinea, Meunier et al. (2008) investigated the control of these 
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site effects over the location of earthquake-induced slope failure. In these examples, earthquake-
triggered landslides clustered near ridge crests, where the susceptibility to landsliding was greatest. 
Topographic effect and other aspects of ground motion were also analyzed and interpreted in these 
studies. However, the calculations were based on two-dimensional equivalent model of terrain, and 
the real three-dimensional topographic effect of ground motion was rarely involved. 

The calculation of topographic effect should be started by solving the seismic wave field. 
Because of the computational complexity of the seismic wave field, only a small number of 
analytic solutions of the regular terrain can be obtained (Zhang et al. 2015, Gao and Zhang 2013). 
Therefore, numerical methods are adopted in the computation of seismic wave field, such as Finite 
Difference Method (FDM) (Shao and Ma 2016), Finite Element Method (FEM) (Gao and Zhao 
2016), Boundary Element method (BEM) (Gao et al. 2016, Zhao et al. 2015, Liu et al. 2016), 
Pseudo-Spectral Method (PSM) (Chaljub et al. 2015, Sugan and Vuan 2014) and Spectral Element 
Method (SEM) (Liu et al. 2015), etc. Among these methods, SEM belongs to the generalized finite 
element method and was first used in fluid dynamics calculations. Based on the integration of 
PSM with FEM, it takes full advantage of the high precision and rapid convergence speed of the 
former, and the geometric flexibility of the latter, reducing the computation load and data storage 
demands (Tarinejad and Pirboudaghi 2015), and making high-efficiency parallel computing 
possible (Galvez et al. 2014). SEM not noly can be used to calculate 2D and 3D seismic wave 
field in inhomogeneous media and complex geological body, also can be used to to simulate the 
propagation of seismic waves in the world. 

Due to the above advantages of SEM in seismic wave field simulation, the Spectral Element 
Method algorithm is derived in this paper on the basis of three-dimensional fluctuating elastic 
dynamic equation. By combining this method with the ASTER DEM model, the real 3D 
topographic effect of ground motion in Longmen Mountain area caused by the Wenchuan 
earthquake is simulated, and the distribution of high PGA region and high PGV region is studied. 
 
 

2. 3-D seismic wave propagation modeling based on SEM 
 

The fundamental purpose of establishing the propagation model of seismic wave is to solve the 
equations of motion in a continuous medium characterized by displacement (velocity and accelera-
tion). In general expression of the elastic theory, displacement of an element within the medium is 
connected with stress and external force acting on the element. Thus, the three-dimensional 
fluctuating elastic dynamic equation of an element is (Udías 2008, Yan et al. 2009) 
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Where ρ(x) is the mass, u(x, t) is the displacement field, σ(x, t) is the stress field,  is ∂/∂x and 
f(x, t) represents seismic source. The formula is expressed as a component of u, that is 
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Or ),3 ,2 ,1(,  ifu ijiji   where σij,j is the derivative of σij in the direction of j, and σij is 

obtained according to the Hooke’s law 
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,ij ijkl kl ijkl k lc c u    (3)
 
Based on the above three formulas, the basic algorithm of SEM can be derived. 
 
2.1 The weak form of three-dimensional fluctuating elastic dynamic equation 
 
Fig. 1 is the schematic diagram of SEM calculation model. In the figure, Ω represents the 

model domain, ∂Ω represents the free boundary surface, Γ represents the absorbing boundary 
surface, and n̂  is the normal vector of each boundary. The seismic trigger source xs can be located 
anywhere within Ω (Komatitsch and Tromp 1999). By multiplying both ends of Eq. (1) by the test 
vector w(x) and integration in the whole model domain, the following is obtained: 

 

d d dw u x w σ x wf x
  

      (4)

 
The second item on the left side of Eq. (4) is integrated in the model domain and the model 

boundary 

d d d dwρu x w σ x wσ x wf x
   

         (5)

 
σ∂Ω on the free boundary ∂Ω is 0; and σG on the absorbing boundary Γ can be expressed as 
 

G =σ ρvu& (6)
 
Where v is velocity. Then Eq. (5) becomes 
 

d d d dwρu x w ρvu x wσ x wf x
   

          (7)

 
This formula is the weak form of the integral form of Eq. (1), and the right side of it represents 

the seismic source. 
Eq. (7) is suitable for any test vector w(x), and it meets the natural boundary condition. 

Therefore, it is relatively easy to process the free surface boundary. However, the selection of test 
vector should be made wherever possible so that the theoretical analysis and numerical calculation 
are easier. Compared with the surface wave simulation results based on strong form, Eq. (7) is 

 
 

Fig. 1 Schematic diagram of SEM calculation model 
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Fig. 2 Sub-domains Ωe in the model domain Ω 
 
 
more accurate (Yoshimatsu and Abe 2006). 

 
2.2 Domain discretion and mapping functions 
 
Combined with various types of geological interface in the model domain Ω (Komatitsch and 

Tromp 2002), Ω is divided into ne sub-domains (Fig. 2), and . en

e e  If the sub-domains are 

2D, they are discretized into quadrilateral elements; if 3D, they are discretized into hexahedral 
elements. 

Based on Fig. 2, the weak form of the integral form of the motion equations for each sub-
domain can be expressed as follows 

 

e e e
d d d d

   
       wρu x w ρvu x wσ x wf x 

    1, 2, , ee n   
(8)

 

Each unit sub-domain Ωe is mapped to the three-dimensional local coordinate system Λ3 = Λ = 
Λ  Λ  Λ, where  is tensor product and Λ  [-1, 1]. Then the mapping function Fe: Λ → Ωe is 
defined by the following formula 
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Where 
e
ax  is the nath control point of eth element. According to the order N of Lagrange 

polynomial, the 3D element may contain eight control points (N = 1) or 27 control points (N = 2), 
as shown in Fig. 3. The control points of each hexahedral surface center and hexahedral center are 
often ignored in actual calculation, so there are a total of 20 control points (the filled circles in Fig. 
3(b)). 

For a hexahedral element, n̂  of each face exists. According to Eq. (9), Jacobi matrix Je of the 
element is a 3 × 3 matrix, and can be obtained by taking the derivative of Eq. (9) 
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The whole matrix form of Eq. (10) is 
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(a) N = 1 (b) N = 2 

Fig. 3 Control points on the surface of hexahedral elements 
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Let ,det ee J  and 
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Eq. (12) describes the volume change in the element when a hexahedral element in the global 
coordinate is mapped to the local coordinate, that is 

 

edxdydz d d d    (13)
 
2.3 Interpolation function of element 
 
Lagrange interpolation of three-dimensional element is carried out independently along each 

coordinate direction. It can be expressed in the form of tensor product 
 

=N N N N
ijk i j kL      (14)

 

Where N is the order of the Lagrange polynomial, and 1 is Lagrange operator. In order to meet 
the accuracy requirement of SEM, High-end (4 ≤ N ≤ 8) Lagrange polynomial is used to interpolate 
(Komatitsch and Tromp 1999). 

For a scalar function g, its 3D interpolation is 
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By substituting Eq. (14) into Eq. (15), the following is obtained 
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According to the nature of the Lagrange polynomial 
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For a vector with three components, its interpolation is 
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According to Eqs. (17)-(18), the value of Lagrange polynomial at the control point ξijk = (ξi, ηj, 
ζk) is 1. Therefore, after the interpolation, Eq. (19) is true for control point ξijk. The partial 
derivative of Eq. (19) is 
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Gradient of the scalar function g in the global coordinate system x can be determined by the 
following formula 
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With the inverse matrix ∂lξ = ∂ξ / ∂xl of Jacobi matrix, when calculating any GLL (Gauss 
Lobatto Legendr) point x(ξα, ηβ, ζγ), Eq. (21) can be simplified to 
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It should be noted that Eq. (22) is true only when 0e
 (i.e., Je is a nonsingular matrix). Eq. 

(22) also shows that in the inverse mapping from the local coordinates to global coordinates, 9 
components of Je should be calculated, which are ∂ξi / ∂xj (i, j = 1, 2, 3), where ξ1 = ξ, ξ2 = η and ξ3 
= ζ. 

 

2.4 Element mass matrix and force calculation 
 

In order to obtain the diagonalizable mass matrix of element, the GLL integration is needed. 
The integration rule is as follows 
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Where ωi is the weight of GLL integration; g(ξ) is an arbitrary function defined in Λ  [-1, 1], 
gijk is the abbreviation of g(ξi, ηj, ζk) and 

e
ijkJ is the abbreviation of Je (ξ, η, ζ). GLL integration is 

accurate for polynomials with an order not more than 2N-1. For a homogeneous element without 
deformation, GLL integration also involves the product of two N order polynomials, one derived 
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from the interpolation of displacement, and the other derived from the test function or vectors. 
Therefore, integral of 2N-order polynomial has certain errors, especially for the solving of the 
inhomogeneous medium and deformation elements. However, such errors can be ignored in the 
SEM in order to obtain the element’s mass matrix with a diagonal structure (Komatitsch and 
Tromp 1999). 

The inner product of test vector w and displacement field u is 
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So the test function can be set to w = (δ1i, δ2i, δ3i) for each displacement component ui, and each 

displacement component can be calculated separately. Similarly, the inner product of the other two 
vectors of Eq. (8) can be treated in the same way. Thus, integration of the first item on the left side 
of Eq. (8) is 
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During the derivation of Eq. (25), the coordinate mapping and interpolation of Jacobi matrix, 

and GLL integration are used. In order to simplify the calculation formula, Terms similar to u(ξl, 
ηm, ζn) are represented by ulmn and ωrωsωt in Eq. (25) is abbreviated to ωrst. Because the test 
function is an arbitrary function, let wijk = 1, and the above formula can be further simplified as 
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Where α = lmn, β = ijk, β = 1, ..., (N + 1)3, α and δ(lmn)(ijk) = δliδmjδnk. 
In this equation, eM  is the mass matrix of an element, which can be expressed as the product 

of the mass ρ of the point (ξi, ηj, ζk), Jacobi determinant and weight of GLL integration. 
 

e = = ijk ijk ijkM         
    

 0i j k N  ，， ， ，  (27)
 

According to Eq. (26), the relationship between α, β and ijk can be expressed as 
 

       
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1 1 1
N

i j k

i j k 


       (28)

 

The element stiffness matrix Ke can be obtained by the integral of the third item on the left side 
of Eq. (8), the derivation of which is similar to that of Eqs. (25)-(26) and (28). 

 

2.5 Node force of element 
 

To calculate the node force of an element, nine elements of the strain tensor of the given point 
ξαβγ = (ξα, ξβ, ξγ) should be determined. According to the displacement gradient u 

 

    i ju  x      
0

, ,
N

ij l
l

lu        


    
 

 

     
0

, ,
N

m ij m
m

u        


 
   

       
0

, ,
N

ij n
n

nu        


 
    

 

(29)

 

Where u(j)αβγ is the jth element of the displacement vector of ξαβγ = (ξα, ξβ, ξγ). According to Eq. 
(3), the stress tensor at this point is 

 

             σ x c x u x  (30)
 

w·σ (v has three components, and σ is a 3 × 3 tensor) in Eq. (8) can be expressed as 
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Through the interpolation and GLL integration of ∂wi/∂ξk in Eq. (31), the following is obtained 
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2.6 Calculation of 3D seismic source 
 
In most seismic studies, seismic source mechanism is described by the moment tensor Me. 

When describing a specific instance of earthquake, related information and focal mechanism 
solutions can be downloaded from the CMT website. 

The seismic source term f on the right side of Eq. (8) can be expressed as 
 

   e- - s S t f M x x  (33)

 
Where S(t) is the time function of seismic source, and δ(x-xs) is Dirac Delta distribution of 

seismic source. With the integral nature of the distribution, Moment tensor Me can be expressed as 
 

   e sdx S t
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Where Me : w can be calculated by the formula below 
 

3

e
1

3 3 3

1 1 1

= ij j i
i j

i i
ij j k ik

i k j i kk k

M w

w w
M G

 



  

 

   
      



  

M w
，

， ，

：

 (35)

 
As shown in Fig. 1, the seismic source is the point source, and xs = x(ξαs, ξβs, ξγs). Then the term 

on the right side of Eq. (8) can be calculated by the following formula 
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(36)

 
If xs coincides with GLL integration points, Eq. (36) can be simplified to 
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If the seismic source is located on the fault plane, the element boundary should be made 
coincident with the fault plane during mesh generation and Me : w xs should be substituted by the 
following formula 
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In the equation above, gik can be obtained as follows 
 

3

1
ik ij j k

j

g m 


   (39)

 

Where mij is density tensor of the moment; xa, xb represent grids on the fault plane, and xg 
represents the gird perpendicular to the fault plane. 

 

2.7 Global aggregate calculation 
 

With the FEM for cell aggregation and the above derivation, calculation of the domain model 
shown in Fig. 1 can be expressed as 

 

MU + CU + KU = F   (40)
 
Where M is global mass matrix (see Eq. (26) for its derivation); U is global displacement 

matrix; C is global matrix of absorbing boundary (obtained by the integration of the second term in 
Eq. (7)); K is global stiffness matrix (obtained by the integration of the third term in Eq. (7)); and 
F is seismic source. 
 
 

3. Case study 
 

3.1 The establishment of the model 
 

The calculation region is 30.1°N-31.9°N and 102.35°E-103.15°E. With a length of 175.46 km 
in x direction and 196.46 km in y direction, it covers an area of 34471.41 km2, which is as shown 
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in Fig. 4. In Fig. 4(a), the area in blue box is the calculation region of this paper; the area in red 
box (Fig. 4(b)) near the seismic source is focus of this paper (As the earthquake occurred in this 
area before and the earthquake information was recorded clearly by the nearby monitoring stations, 
this area is selected as the calculation region. Besides, there are ridges, peaks, valleys, etc. in this 
area, which is helpful to research the influence of the different terrain on seismic wave.). The black 
triangles represent virtual stations, which are used to receive seismic signals from the program. 
They are located in the ridges, peaks, valleys, etc. The red five-pointed star represents the 
macroscopic epicenter and it coincides with ST3. Along the x and y directions, there are 96 
spectral elements. z direction, based on LOH-3 reference model of the Pacific Earthquake 
Engineering Research Center, is divided into 15 spectral elements (Fig. 5). In the model, each 
spectral element contains 53 GLL points. Therefore, the model contains a total of 138,240 spectral 
elements, 9,088,756 mesh points, and a total degree of freedom of 27,266,268. 

 
 

Fig. 4 Calculation region 
 
 

Fig. 5 Model calculation mesh 
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Fig. 6 Mesh quality histogram of model 
 
 

Table 1 Model calculation parameters 

Model number ρ/kg·m-3 vp/m·s
-1 vs/ m·s

-1 Number of spectrum element Qμ 

I 2600 4000 2000 1 40 

II 2700 6000 3464 7 69.3 

III 2950 6800 3800 7 76 
 
 
Along the depth direction, the model is divided into three isotropic elastic bedrock materials. 

Velocity model is mainly based on P-wave velocity vp; S-wave velocity vs and the quality factor Qμ 
are determined by the empirical formula (Brocher 2007). 

 

 1.732 2

0.02

v v
s p

Q v
u s

  


 

 (41)

 
As shown in Fig. 5, the blue grid is model I, the green grid is model II, and the red grid is 

model III. All the models represent the bedrock. 
The mesh quality histogram of model is shown in Fig. 6. According to Fig. 6, it is easy to know 

that skewness values of most mesh are lower than 0.1. 
Model calculation parameters are shown in Table 1. 
In this paper, the SPECFEM3D SEM Program is the core code for calculation. The topographic 

effect and attenuation characteristics of the medium are taken into consideration. The calculation 
involves 6000 time steps and each step is 0.004 seconds. Therefore, it can simulate the propagation 
of seismic wave and its wave field in 24 seconds. In this calculation, eight computers with a total 
of 64 CPUs were used to perform parallel computing. It occupied about 16 Gb cluster memory and 
took about 6.8 h to complete. Generic Mapping tools (GMT) were used for data visualization and 
post-processing. 

 
3.2 Seismic moment tensor solution and source time function 

 
According to Eq. (33), the seismic source term can be solved by seismic moment tensor. The 
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Fig. 7 Seismic moment parameters and focal mechanism solution of Wenchuan earthquake 
 
 

point source moment tensor parameters and the focal mechanism solution of Wenchuan earthquake 
are shown in Fig. 7. 

According to the moment tensor parameters in Fig. 7, seismic moment tensor Me (dyne·cm) is 
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And the seismic scalar moment is 

 

( )
1 2 21

0

1
: 0.897 10 N m

2
e eM = 뺨 ?M M  (43)

 
Eq. (43) shows that the released scalar moment is 0.897 × 1021 N·m. 
In this paper, Gaussian function is adopted as the source time function of the point source. 
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Where α is the delay rate of the seismic source, with a value of 1.628; τ is the semi-duration of 

the seismic source (i.e., the value of the half duration in Fig. 7). 
 
 

4. Analysis of three-dimensional topographic effects of ground motion 
 

4.1 Post-processing of simulation results 
 
Generic Mapping Tools (GMT) and Seismic Analysis Code (SAC2000) were used for data 

visualization and post-processing of simulation results. The former combined with bash script was 
mainly used for data processing and visualization, and the support of netCDF library was also 
needed; the latter was mainly used for processing of synthetic seismic wave signals and graphics 
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rendering. 
The following steps shall be followed when using GMT to take wave field snapshots and post-

process the peak ground acceleration distribution: Extract data (awk) → Convert raw data to 
netCDF format (xyz2grd) → Prepare the color palette (makecpt) based on numerical range → 
Resample (grdsample) → Draw the wave field and the peak ground acceleration distribution  
graphs or contour (grdimage or grdcontour), where texts in the parentheses are the Linux operating 
commands or GMT subroutines used in post-processing. 

 

4.2 Distribution of peak ground acceleration 
 

Figs. 8-10 show the distribution of the peak ground acceleration (PGA), peak ground velocity 
(PGV) and peak ground displacement (PGD), respectively, in the epicenter area (Fig. 4(b)). 

Fig. 8 shows that the maximum value of PGA in Fig. 4(b) is 1060 cm/s2, about 1.08 g. It is 
close to the value measured at Wolong Station, which to some extent verifies the accuracy of the 

 
 

Fig. 8 Distribution of PGA 
 
 

Fig. 9 Distribution of PGV 
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Fig. 10 Distribution of PGD 
 
 

formula derivation and numerical simulation in this paper. The high PGA areas are distributed 
along the peak, the slope side away from the epicenter in the epicenter area, and a few ridges. The 
overall distribution direction of high PGA areas is parallel to the direction of the seismogenic fault. 
Meanwhile, the distribution of the high PGA areas is relatively discrete and most of them are 
located in the hanging wall of the seismogenic fault; there is also one high-profile PGA area at 
southeast ST10 in the footwall of the seismogenic fault, with a value of more than 400 cm/s2. 

Similar to the distribution of PGA, the high PGV areas are also discrete, as shown in Fig. 9. 
The overall distribution direction of high PGV region is also parallel to the direction of the 
seismogenic fault. In the southwest and northwest regions at higher elevations, high PGV values 
are observed, with the maximum being 119.8 cm/s throughout the region. As a whole, PGV values 
in the hanging wall of the seismogenic fault are greater than those in the footwall. It shows that 
there are significant differences between the ground motion in hanging wall and the footwall of the 
seismogenic fault. 

In Fig. 10, the relationship between the distribution of PGD and the strike of the seismogenic 
fault is more clearly seen. All of the high PGD areas are located in the hanging wall of the 
seismogenic fault, with the maximum value, 31.75 cm, found on the summit of the northwest area. 
PGD values in the footwall of seismogenic fault are small, about 5cm. 

 
4.3 Relative topographic amplification effect on ground motion 
 
As can be seen from the distribution of PGA, PGV and PGD, the topographic amplification 

effect on ground motion is obvious. In order to further study such effect, the same seismic moment 
parameters are used in this paper for calculating the PGA distribution of the model without 
topographic term in the same region, as shown in Fig. 11. 

The relative topographic amplification effect on PGA can be obtained by the following formula 
(Lee et al. 2009a, b) 

100%T F
PGA

F

PGA PGA
AF

PGA


   (45)

 
Where AFPGA is the relative topographic magnification of PGA; PGAT is the distribution of 

426



 
 
 
 
 
 

The topographic effect of ground motion based on spectral element method 

Fig. 11 PGA distribution of the model without topographic term 
 
 

PGA of the real topographic model; PGAF is the distribution of PGA of the model without local 
topography. Then according to Eq. (45), the relative magnification of PGA in the region shown in 
Fig. 4(b) is given in Fig. 12. 

As shown in Fig. 12, the ground motion is amplified under the influence of the terrain in most 
of the area, generally by 10% to 20%. Distribution of the high relative amplification area is similar 
to that in Fig. 8, with most of the high relative amplification area near the ridge and the summit, 
while the negative relative amplification area is small. Distribution described above shows that the 
topographic amplification effect on PGA is extremely complex; it does not exactly lead to 
amplification of PGA at the ridge and the summit or attenuation of PGA in the valley. In Fig. 12, 
what should be noticed are the narrow negative relative amplification area between ST5 and ST3 
and the negative relative amplification area along the ridge in the southwest. Compared with Fig. 8, 
although the region where the narrow area belongs to stretches over the ridge to the valley, it is a 
relatively low PGA distribution zone (only 150 cm/s2-200 cm/s2). 

 
 

 

Fig. 12 PGA amplification under real terrain 
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5. Conclusions 
 

The Spectral Element Method is a high-order Finite Element Method (FEM) characterized by 
high calculation accuracy and convergence speed. It can also be used to simulate the effect of 
complex terrain on seismic wave propagation. 

 
 The Spectral Element Method (SEM) algorithm for simulation of 3D seismic wave 

propagation is derived based on the three-dimensional fluctuating elastic dynamic equation. 
 The simulation results show that the high PGA areas are distributed along the peak and the 

slope side away from the epicenter. Their overall distribution direction is parallel to the 
direction of the seismogenic fault. 

 The distribution of the high PGA areas is relatively discrete and most of them are located in 
the hanging wall of the seismogenic fault. The distribution of high PGD areas is also 
discrete, with an overall distribution direction parallel to the direction of the seismogenic 
fault. From the distribution of PGA, PGV and PGD areas, it is obvious that the terrain has 
certain amplification effect on the ground motion. Meanwhile, the topographic amplification 
effect on PGA is relatively complex. It does not exactly lead to amplification of PGA at the 
ridge and the summit or attenuation of PGA in the valley. 
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