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Abstract.    Stability of vertical escarpments has been the subject of discussion for long time. However, available 
literature provides scarce knowledge about the effect of the formation of undercut and surface cracks on the stability 
of a vertical escarpment. The present study deals with a systematic analysis of the effect of surface cracks and 
undercut on slope stability using finite element based lower bound limit analysis. In the present analysis, the non-
dimensional stability factor (γH/c) is used to inspect the degrading effect of undercut and cracks developed at 
different offset distances from the edge of the vertical escarpment. Failure patterns are also studied in detail to 
understand the extent and the type of failure zone which may generate during the state of collapse. 
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1. Introduction 
 

Vertical slopes can be subjected to physical weathering from wind, water etc., which may result 
in the development of undercuts and tension cracks. These can drastically reduce the stability of 
vertical slopes. Historically, degradation of slope stability due to natural wear and tear has been 
dealt by numerous researchers. Deformations of a horizontally layered rock slope with partly 
exposed vertical joints was investigated by Tsesarsky et al. (2005) using a combination of finite 
element method and a technique namely discontinuous deformation analysis. Abderahman (2007) 
measured annual rate of undercutting of slopes with changes in sand content, porosity and 
identified their optimum values which controls the rate. Based on experimental study, Chu-Agor et 
al. (2008) concluded that the impact of turbulent river current on bank undercutting decreases its 
stability significantly. Zhang et al. (2012) reported case studies of slope failures due to human 
alterations, mainly because of the slope excavations for widening a highway. Michalowski (2012, 
2013) investigated the impact of cracks on slope stability in the presence of seepage forces in the 
slope emphasizing the formation of a single large crack as one of the primary conditions of slope 
failure. Zhao (2015) provided the analytical solutions for horizontal crack propagation in a coal 
layer and underlying strata interface and also studied its effect on coal tunnel stability. Assuming 
rock slopes as a Mohr-Coulomb material, Miscevic and Vlastelica (2014) studied its strength 
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reduction with weathering cycles. Regarding the available literature on the stability of vertical 
slope without any undercut and tension crack, Taylor (1937) provided stability charts using ϕ-
circle method (an upper bound solution). By using the upper bound limit analysis technique, Chen 
et al. (1969) derived the slope stability charts. Bekaert (1995) used single and multiple rotation 
mechanisms (both upper bound in principle) to calculate the stability of slope. Florkiewicz and 
Kubzdela (2013) used statistical analysis to calculate slope safety factors. Michalowski (2002) 
presented slope stability charts using upper bound limit analysis in the presence of pore pressure. 
Yang and Pan (2015) and Gao et al. (2016) used upper bound limit analysis to assess the seismic 
stability of three dimensional steep slopes. Liu and Chen (2015) highlighted the strain localization 
in a slope using a strain softening material model. Hence, it is evident that the research on vertical 
slopes is quite common and well explored under different conditions with an exception of the 
effect of slope undercutting combined with vertical cracks resulting in a slope failure. The major 
contributions of this paper include (i) the estimation of reduction in stability of a vertical 
escarpment in presence of a horizontal undercuts; and (ii) the influence of vertical surface cracks 
on the stability of a vertical escarpment in the presence of undercuts. The present analysis is 
performed by using the lower bound finite element limit analysis with plain strain consideration. 
The stability of the vertical escarpment is expressed in terms of non-dimensional stability factor 
(γH/c). 
 
 
2. Problem definition 
 

An undercut with a vertical depth of v (along y-axis) and a horizontal width of w (along x-axis) 
is present in a vertical escarpment of height (H) [refer Fig. 1(a)]. The change in the magnitude of 
stability factor (γH/c) is required to be determined under the influence of different parameters, 
such as, the shape ratio of undercut (w/v), the crack depth ratio (d/v) and the offset ratio (f/v) for 
different magnitudes of H/v [refer Fig. 1(a)]. Stability charts are provided for cohesive-frictional 
materials. The Mohr-Coulomb yield criterion and an associated flow rule are assumed to be valid. 

As the slopes generally collapse under self-load, the unit weight (γ) is maximized in the present 
optimization problem under a set of constraints discussed in the ‘Analysis’ section of the 
manuscript. The value of unknown γ is calculated for a certain value of cohesion (c) and height of 
the slope (H). However, representation of γ as γH/c, a non-dimensional factor, helps in treating all 
the three variables in the expression as unknown design parameter while reading it from the chart. 
This way of expressing γ as γH/c can be found in various research papers using limit analysis 
involving a γ maximization technique. The presentation puts forward γH/c as a measure of slope 
stability and thus the percentage reductions refer to the negative effect of slope stability from the 
undercut and the surface cracks. 

It should be noted that in reality, the shape of the undercut cannot be a perfect rectangle. Thus, 
the sides of the cut which may be slanting or rugged are simplified as a straight line for a particular 
value of w/v. In addition, irregular shapes create limitation to a proper study with parametric 
variations. 
 
 
3. Mesh details and boundary conditions 
 

A finite element mesh with three nodded triangular elements is used for the present study. The 
chosen domain and the stress boundary conditions are indicated in Fig. 1(a). Along the free 
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Fig. 1 (a) The schematic diagram of the problem with the appropriate boundary conditions; and (b) the 
finite element mesh with details developed for the analysis and mesh details exemplifying the 
numerical condition to introduce a vertical crack 

 
 

boundaries (i.e., along AB, BC, CD, DE and EF) the normal stress (σns) and shear stress (τns) both 
are defined as zero (i.e., σns = τns = 0). In addition, a vertical crack is introduced by using τnc = 0 as 
another boundary condition along IK [refer Figs. 1(a) and 1(b)]. The size of the domain with 
vertical extent (Lv) and horizontal extent (Lh) are carefully chosen to eliminate the boundary effect 
on the results and save computation time. A typical finite element mesh used for the analysis with 
H/v = 5, d/v = 1, w/v = 5 and ϕ = 30° is presented in Fig. 1(b). This figure also provides specific 
values of different parameters, like N, E, Di and Nc which refer to the total number of (i) nodes in 
the domain; (ii) elements in the domain; (iii) discontinuities in the domain; and (iv) nodes along 
the free surface of the domain, respectively. 

 
 

4. Analysis 
 

Following Lysmer (1970) and Sloan (1988), a finite element based lower bound formulation is 
used for the present study. Each node has three unknown stress variables, i.e., σx, σy and τxy. The 
unit weight (γ) of the in-situ material is considered as the objective function for linear optimization 
(as the only load resulting failure is the self-weight) and finally expressed as the non-dimensional 
stability factor (γH/c) for usefulness. The unit weight is maximized subjected to a number of 
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equality constraints satisfying (i) the equations of equilibrium; (ii) the continuity of the shear and 
normal stresses through adjacent elements; (iii) the stress boundary conditions, and also inequality 
constraints satisfying the linearized Mohr-Coulomb yield criterion (Bottero et al. 1980). For 
detailed numerical formulation one can refer to Chakraborty and Kumar (2013a). 

Finally, after assembling all the equality and inequality constraints the expression for a linear 
optimization problem can be represented as follows 

 

Maximize:              γ (1a)
 

Subjected to:          11][ cXE   (1b)
 

                  22 ][ cXE   (1c)
 

where [E1] is the global matrix of equality constraints, [E2] is the global matrix of inequality 
constraint, {c1} is the global vector of equality constraint, and {c2} is the global vector of 
inequality constraint, and {X} indicates a vector incorporating nodal unknown stresses and unit 
weight as 
 

    NxyNyNxxyyxxyyx
T

NX ,,,2,2,2,1,1,1,)13( ........  
 

For carrying out the present analysis, a code is developed in MATLAB. The optimization is 
carried out by using LINPROG library function which is embedded in MATLAB. 
 
 
5. Results and comparison 
 

The variations of γH/c with w/v for different values of H/v and ϕ are presented in Fig. 2. This 
figure shows that the presence of an undercut in a vertical escarpment can reduce its stability 
substantially. Furthermore, the effect of a single vertical crack is introduced by using a parameter 
d/v (crack depth ratio) at a crack distance (f) from the face of the escarpment [side BC in Fig. 1(a)]. 

 
 

(a) (b) 

Fig. 2 The variation of stability factor (γH/c) with w/v at different values of ϕ for (a) H/v = 3; 
(b) H/v = 4; (c) H/v = 5; (d) H/v = 6; (e) H/v = 7; and (f) H/v = 8 
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(c) (d) 
  

(e) (f) 

Fig. 2 Continued 
 
 

For f/v = 1 with w/v = 1, 2 and 3 the effect of d/v (crack depth ratio) on the stability factor is 
presented in Figs. 3 and 4. Similarly, for f/v = 3 with w/v = 1, 2 and 3 the effect of d/v on the 
stability factor is presented in Figs. 5 and 6. In all the cases the friction angle of the in-situ material 
(ϕ) is varied in the range of 0°-30°. 

It can be noted that for f/v = 1, the stability factor reduces remarkably for H/v = 3. However, for 
H/v = 7 this effect almost vanishes. 

On the other hand, for f/v = 3 the stability factor is noted to remain almost unaffected for H/v = 
3. However, as H/v increases to 5 and 7, the stability factor is found to reduce significantly. This 
aspect is elaborated in the failure pattern section making use of failure plots. 

The effects of undercut (w/v) on the stability of vertical escarpment are illustrated in Fig. 7(a). 
The reduction factor (η), which is a ratio of the stability factor (γH/c) with undercut to without 
undercut, is plotted along the y-axis with w/v along the x-axis. Noticeably, this ratio decreases with 
increase in ϕ for all H/v. It indicates higher rate of reduction in stability with increase in the 
friction angle. As expected, η increases with increase in H/v and decreases with increase in w/v. 
The minimum values of η (signifying the maximum reduction in stability) are observed at w/v = 5 
for H/v = 3, 5 and 7 with ϕ = 0° as 0.064, 0.177 and 0.286 and with ϕ = 30° as 0.033, 0.100 and 
0.174, respectively. 
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(a) (b) 
 
 

 
 

(c) (d) 
 
 

 
 

(e) (f) 

Fig. 3 The variation of stability factor (γH/c) with d/v for different values of H/v when f/v = 1 for 
(a) w/v = 1, ϕ = 0°; (b) w/v = 1, ϕ = 10°; (c) w/v = 1, ϕ = 20°; (d) w/v = 1, ϕ = 30°; (e) w/v = 2, 
ϕ = 0°; (f) w/v = 2, ϕ = 10°; (g) w/v = 2, ϕ = 20°; and (h) w/v = 2, ϕ = 30° 
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(g) (h) 

Fig. 3 Continued 
 
 

(a) (b) 
 

(c) (d) 

Fig. 4 The variation of stability factor (γH/c) with d/v for different values of H/v when f/v = 1 for 
(a) w/v = 3, ϕ = 0°; (b) w/v = 3, ϕ = 10°; (c) w/v = 3, ϕ = 20°; and (d) w/v = 3, ϕ = 30° 
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(a) (b) 
 
 

 
 

(c) (d) 
 
 

 
 

(e) (f) 

Fig. 5 The variation of stability factor (γH/c) with d/v for different values of H/v when f/v = 3 for 
(a) w/v = 1, ϕ = 0°; (b) w/v = 1, ϕ = 10°; (c) w/v = 1, ϕ = 20°; (d) w/v = 1, ϕ = 30°; 
(e) w/v = 2, ϕ = 0°; (f) w/v = 2, ϕ = 10°; (g) w/v = 2, ϕ = 20°; and (h) w/v = 2, ϕ = 30° 
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(g) (h) 

Fig. 5 Continued 
 
 

(a) (b) 
  

(c) (d) 

Fig. 6 The variation of stability number (γH/c) with d/v for different values of H/v when f/v = 3 for 
(a) w/v = 3, ϕ = 0°; (b) w/v = 3, ϕ = 10°; (c) w/v = 3, ϕ = 20°; and (d) w/v = 3, ϕ = 30° 
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(a) 
 

 

(b) 

Fig. 7 (a) The variation of η with w/v for different values of ϕ and H/v; and (b) comparison of the 
present lower bound results with the available literature without any undercut and crack 

 
 
As stability calculations of a vertical escarpment with undercuts and surface cracks are 

unavailable in literature, the same calculations for the escarpment are done without these 
weathering effects. These results calculated by using the lower bound limit analyses are 
subsequently compared with widely popular results available in literature (Taylor 1937, Chen et al. 
1969, Bekaert 1995). The comparison is presented in Fig. 7(b). A good agreement is noted between 
the present lower bound results and the results available in literature. 
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6. Proximity of the stress state at a point with respect to the yield 
 
The proximity of the stress state at a point with respect to the yield can provide an idea about 

the nature and the extent of high stress zones close to the failure condition. This is determined in 
terms of a ratio, a/d, where a = (σx ‒ σy)

 2 + (2τxy) 
2 and d = {2c cosϕ – (σx + σy) sinϕ}2. The 

magnitude of a/d can vary between 0 and 1. For a point at the yield state of stress, the value of a/d 
 
 

 
 

 
 

 

Fig. 8 Proximity to yield state plots observed for a vertical slope with undercut at H/v = 5, d/v = 0 
and ϕ = 20° for (a) w/v = 1; (b) w/v = 3; and (c) w/v = 5 
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Fig. 9 Proximity to yield state plots observed for a vertical slope affected by crack offset ratio (f/v) with 
ϕ = 20°, w/v = 1, d/v = 3 for (a) H/v = 5, f/v = 1; (b) H/v = 5, f/v = 3; and (c) H/v = 7, f/v = 3 

 
 

becomes simply equal to unity. On the other hand, for non-yielding points, the value of a/d will 
remain smaller than 1. The proximity of the stress state to the yield plots of a vertical escarpment 
for different values of w/v at H/v = 5, ϕ = 20° and f/v = 0 (no crack), are presented through Figs. 
8(a)-(c). While Figs. 9(a) and (b) show the effect of crack offset ratio f/v on the failure patterns at 
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H/v = 5, ϕ = 20° and d/v = 3. Fig. 9(c) shows the same effect for H/v = 7. 
It can be clearly observed that as the size of the undercut increases (w/v = 1 to 5), the failure 

zone widens near the top surface of the vertical slope and shrinking towards its base [see Figs. 
8(a)-8(c)]. Also, it shifts away from the vertical face [towards BC in Fig. 1(a)]. The zone of failure 
can also be observed to be reducing from about 7D to 5D along the x-axis for an increase in w/v 
from 1 to 5. 

Fig. 9(a) shows a small spread of the black area or a local zone very close to failure or yielding. 
This represents a situation when the crack is relatively close to the vertical wall of the escarpment 
(f/v = 1). At this relative position of the crack, the close to yielded zone changes into a wider, 
conventional slope failure when H/v = 7 (not shown in the contour plot). This can be understood 
from the less affected values of γH/c for higher H/v in Figs. 3 and 4. This widening of the failure 
zone can also be observed as the crack moves away from the wall (f/v = 3) [see Figs. 9(b) and 9(c)]. 
This is governed by the self-weight of the material. The splayed yielded zone signifies the 
degrading influence of a crack on the slope stability. Also as expected, the effect of the crack on 
the stability can be seen to increase with H/v (from 5 to 7) [see Figs. 9(b) and 9(c)]. This fact is 
further supported by Figs. 6(a)-6(d) for a larger crack depth of d/v = 3. 

It should be clearly mentioned here that though the light dark areas (a/d <1 or non-plastic areas) 
in Figs. 8(b), 8(c) and 9(c) extend to the domain boundary on the right, it does not in any way 
affect the stability factor values; i.e., increasing the domain extent does not resulted in change in 
γH/c. 

Note that the present analysis is erected on a mesh density which if altered with an increase or 
decrease, negligibly affects the results. Hence, the failure patterns developed is also consistent and 
is unlikely to vary with mesh variation. 

 
 

7. Few comments and explanations on various aspects of 
the present problem are point-wise discussed in this section 

 
 It should be mentioned here that the stability factor considered in this problem is same as the 

standard stability factor. However, the Taylor’s stability number is the reciprocal of this 
factor. 

 The effort is made to find out the effect of the parameters representing the undercut in non-
dimensional form. The case of a slope without an undercut can be indicated by an undercut 
of zero thickness (w = 0), resulting in w/v = 0. This means, as we assume a height of an 
undercut hypothetically, its width of zero clearly suggests the absence of it. 

 Note that in reality the shape of the undercut may be irregular; however, for simplicity and 
also for carrying out a suitable parametric study, the undercut considered in the present 
problem is generalized as rectangular in shape. It should be mentioned here that in case of 
an undercut of irregular shape the effect may be approximately dealt with by considering an 
equivalent cross-sectional area (w×v) for a particular w/v ratio; where w and v are the 
approximate width and depth of the undercut of irregular shape, respectively. As w and v are 
presented as a ratio, both can be variables. For illustration, at w/v = 2, w can attain value 1, 2, 
3, 4 and v will take 0.5, 1, 2/3 and 2, respectively. 

 The cracks in the surface of a vertical slope may develop as a result of slope failure from 
undercutting. Also, it is quite possible that weathering agents like freeze and thaw may also 
result in the vertical cracks which then pose instability to the slope as a separate cause and 
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not as a coupled effect of undercutting. The second case is considered in the present 
problem. 

 It should be mentioned that the quantitative conclusions are made after observing the global 
trend over the ranges of the various parameters like H/v, w/v and f/v. For example, the 
values of γH/c for a vertical slope without undercut and vertical crack (H/v = ∞, w/v = 0, f/v 
= 0) are 3.70, 4.45, 5.31 for ϕ = 0°, 10° and 20°, respectively (refer the present results 
obtained from Fig. 7b). Whereas, γH/c results obtained for H/v = 7, w/v = 1, f/v = 0 are 3.02, 
3.46 and 3.94 for ϕ = 0°, 10° and 20°, respectively (refer Fig. 2(e)). This reduction in γH/c 
can be presented as a percentage reduction of 18.38%, 22.25% and 25.8%, respectively. 

 It should be noted that the soil heterogeneity conditions like layered soils, inclusion of 
geotextiles, directional anisotropy can be modeled using the bound theorems of finite 
element based limit analysis. For example, to model a layered soil as a Mohr-Coulomb 
material, the nodes in different layers are assigned different c-ϕ values representing their 
variation in properties. In the same fashion, a soil in which the cohesion increases with 
depth can be modeled (Davis and Booker 1973, Sloan 1988, Sloan and Kleeman 1995). 
Inclusion of geotextiles can be modeled by using the proposed formulation of Chakraborty 
and Kumar (2013b). 

 In the current work, heterogeneity is not directly introduced; however, following the 
conversion chart for heterogeneous soils by Poulos and Davis (1980), heterogeneity 
condition can be addressed by the present problem. 

 
 

8. Conclusions 
 
In the present problem, the vertical soil slope is assumed to be unsupported. Therefore, the use 

of retaining walls, bracings or ground improvement techniques like soil nailing, soil grouting etc. 
will only increase the escarpment stability. In general, evaluating the effects of an undercut at the 
base of a vertical slope and a vertical crack which propagates vertically from its surface, the 
following conclusions can be drawn: 

 
 The creation of an undercut significantly reduces the stability of a vertical escarpment with a 

maximum reduction of 96.7% at H/v = 3 and 82.6% at H/v = 7 within the boundaries of the 
present data analysis. 

 The reduction in slope stability due to the presence of undercut is found to have a higher 
impact with increase in the friction angle of the in-situ material. 

 Presence of vertically propagating cracks close to the face of the vertical escarpment results 
in localized failures. For f/v = 1; the crack depth ratio (d/v) of 2 has recessed the escarpment 
stability by 100% compared to the same at d/v = 0, irrespective of the change in the shape 
ratio of undercut (w/v). 

 Cracks formed with higher offset (f/v) tend to affect stability of higher (H/v) slopes than 
smaller ones. 

 
Finally, it is expected that the charts provided in this paper will be useful for the practicing 

engineers to predict the loss of a slope when the material strength is expressed in terms of c and ϕ. 
The effect of undercut and cracks caused by weathering on slope stability can be captured from the 
charts. This can provide a good understanding on the health of a slope while monitoring these 
weathering parameters. Thus it can help in a better management of a slope failure by comparing 

978



 
 
 
 
 
 

Influence of undercut and surface crack on the stability of a vertical escarpment 

the field γH/c (measuring the height of the slope H, in-situ γ and in-situ c) with the presented 
values. 
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Nomenclature 
 

E1 = global matrix of equality constraint defined in Eq. 1(b) 

E2 = global matrix of inequality constraint defined in Eq. 1(c) 

c1 = is the global vector defined in Eq. 1(b) 

c2 = is the global vector defined in Eq. 1(c) 

c = cohesion of the material 

d = depth of the vertical crack 

v = depth of the undercut along y-axis 

w = width of the undercut along x-axis 

E = total number of elements in domain 

H = height of the vertical escarpment 

f = offset distance of the crack from the edge of escarpment 

Lv = vertical extent of material domain considered 

Lh = horizontal extent of material domain considered 

N = total number of nodes in domain 

Nc = total number of nodes along free surface of the domain where normal and shear stresses are zero

X = global vector containing all unknown nodal stress and unit weight of the in-situ material 

ϕ = angle of internal friction of the in-situ material 

γ = unit weight of the material 

σns = normal stress component along AB, BC, CD, DE and EF 

σx = normal stress component along x-axis 

σy = normal stress component along y-axis 

τnc = shear stress component along IK 

τns = shear stress component along AB, BC, CD, DE and EF 

τxy = shear stress component in x-y plane 
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