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Abstract.  Indirect measure of the tensile strength of laboratory samples is an important topic in rock engineering. 

One of the most important tests, the Brazilian strength test is performed to obtain the tensile strength of rock, concrete 

and other quasi brittle materials. Because the measurements are provided indirectly and the inspected rock materials 

may have heterogeneous properties, uncertainty quantification is required for a reliable test evaluation. In addition to 

the conventional measurement evaluation uncertainty methods recommended by the Guide to the Expression of 

Uncertainty in Measurement (GUM), such as Taylor‟s and Monte Carlo Methods, a fuzzy set-based approach is also 

proposed and resulting uncertainties are discussed. The results showed that when a tensile strength measurement is 

measured by a laboratory test, its uncertainty can also be expressed by one of the methods presented. 
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1. Introduction 
 

Rocks are heterogeneous materials and they contain numerous microcracks. As novel 

approaches, holographic interferometry and digital image processing techniques can be used to 

determine the fracture process zone of rock and concrete (Castro-Montero et al. 1995, Yue et al. 

2013). Since rocks are much weaker in tension than in compression or shear, tensile failure also 

serve a function in rock engineering in the field of drilling, blasting and cutting of rocks, 

exploitation of rock slopes (Rojek et al. 2011, Wan et al. 2016). Laboratory methods to measure 

the tensile strength of rocks contain the direct uniaxial tensile test and indirect tensile tests 

(Hudson and Harrison 1997). Although the direct uniaxial method seems to be a suitable method, 

it is difficult to perform it in practice for rock materials. 

The most commonly used test is the diametrical compression of thin discs, referred to as the 

Brazilian test (Rocco et al. 1999). To provide the indirect tensile strength from the Brazilian 

method, one must know the principal tensile stress, in particular at the rock disc center, where a 

crack initiates (Wosatko et al. 2011). From a metrological perspective, an indirect indication is a 

measurement in which the value of the unknown quantity sought is provided using measurements 

of other quantities related to the measurand as stated by Rabinovich (2013). 

Because tensile strength is closely related to the stress threshold for fracture initiation in 

compression, recently alternative tensile testing methods such as sleeve fracturing test, the beam 
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bending test, and the modified tension test have been also suggested (Perras and Diederichs 2014). 

Measuring the tensile strength of rock is conducted by the International Society for Rock 

Mechanics standard Bieniawski and Hawkes (2007) which summarizes both direct and indirect 

Brazilian test methods (Erarslan et al. 2012, Bieniawski and Hawkes 2007). 

As in various engineering sciences, in rock mechanics laboratory, there are two main sources of 

uncertainties can be distinguished: due to natural variability and due to laboratory measure (device, 

method etc.) (Adl-Zarrabi et al. 2009). In addition to these factors, indirect characteristics of the 

Brazilian test is that the stress state at the centre of the testing disc is not a purely tensile mode 

(Chen and Hsu 2001), can be added. Thus, a big amount of uncertainties can be mentioned. 

Therefore, evaluation of uncertainties in test measurements and making reliable uncertainty 

quantification is primarily required. Measurement uncertainties have to decide whether new 

theories or applications should be accepted or discarded. Up to present, to implement the 

measurement uncertainty analyses in rock engineering laboratory, some limited availability of 

studies has been presented. In these studies, it is aimed to evaluate uncertainties by conventional 

methods (Kuhinek et al. 2011, Chen 2012). 

In the GUM (Guide to the Expression of Uncertainty in Measurement) framework, two 

propagation methods for measurement uncertainties are expressed: Taylor‟s and Monte Carlo (MC) 

methods (BIPM 2008a, b). In the first approach, to appraise the random uncertainty, a combined 

uncertainty model which is based on the relative contribution of the errors and combined 

variations are used. In the second approach, the MC method integrates and generates distributions 

rather than propagating uncertainties (Pavese 2009). Both the methods calculate the potential 

uncertainties on the ground o probabilistic point of view. On the other hand, fuzzy set theory may 

cover a wide spectrum to focus on the problem. Following the fundamental sources on fuzzy sets, 

uncertainty and information (Klir 2005), fuzzy set-based measurement uncertainty evaluation has 

been discussed in different works (Mauris et al. 2001, Salicone 2007, Müller 2009). 

The true value of a physical quantity (tensile strength) in question is assessed by a suitably 

constructed estimator. In this paper, in addition to the conventional measurement uncertainty 

quantification tools such as Taylor‟s and MC methods, a fuzzy set based measurement uncertainty 

evaluation is also practiced. By using the fuzzy membership functions, fuzzy arithmetic and alpha-

cut approaches, lack of knowledge and extended uncertainties are expressed on the ground of 

possibility-probability transformation. 

In the next section, the problem and solution methodologies are presented. Section 3 addresses 

the measurement uncertainty measures. Applications and a brief discussion are also given in the 

section. Section 4 concludes the paper. 
 

 

2. Methodology 
 

2.1 A reminder on Brazilian indirect test method 
 

Tensile strength is among the most important parameters influencing deformability results. In 

general, rocks are heterogeneous materials and they include numerous microcracks. Therefore, 

rocks show different behaviour under tensile and compressive conditions (Gui et al. 2015). The 

modulus Ec and the compressive strength 𝜎𝑐  are easy to measure in the laboratory by uniaxial 

compression tests. However, the tensile strength 𝜎𝑡  is difficult to obtain by direct tension tests 

(Claesson and Bohloli 2002). The Bieniawski and Hawkes (2007) suggested the Brazilian test for 

determining the tensile strength of rock materials. In this indirect testing method, a disc is 
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Fig. 1 Brazilian test method 

 

 

compressed by forces applied at opposite ends of a diameter to failure. Because many rock types 

are anisotropic, it is necessary to find an uncertainty evaluation method for appraising the tensile 

strength of the rocks from the Brazilian test. 

Fig. 1 illustrates the general mechanism of the test. Even though the Brazilian test is the famous 

conventional indirect method used in rock and concrete sciences, the main shortcoming of this test 

is that the stress state at the centre of the testing disc is not a purely tensile mode (Chen and Hsu 

2001). The specific forms of measurement equations can be considered as mathematical models of 

specific indirect measurements. The tensile strength of rocks 𝜎𝑡  has been obtained by the 

following expression (Li and Wong 2013) 
 

𝜎𝑡 =
0.636𝑥𝐹

𝐷𝑥𝑡
 (𝑀𝑃𝑎) (1) 

 

where, F denotes the failure load (N), D (mm) and t (mm) represent diameter and thickness, 

respectively. Eq. (1) is based on the theory of elasticity for isotropic media. The expression 

presents the tensile stress perpendicular to the loaded diameter at the center of the disc at the time 

of failure when the applied force is F (Claesson and Bohloli 2002). 

From a general evaluation perspective, to calculate the uncertainty of tensile strength 

measurement, firstly the sources of uncertainty in measurements are identified. Then the amount of 

the uncertainty from each source is estimated. As a consequence, to give an overall figure the 

individual uncertainties are combined.  
 

2.2 GUM-Taylor’s method 
 

The guide to the expression of uncertainty in measurement (GUM) is concerned with the 

expression of uncertainty in the measurement of a well-defined physical quantity, the measurand. 

The guide mainly suggests two conventional methods such as Taylor‟s and Monte Carlo methods 

for evaluating and expressing uncertainty in experimental measurements. 

The conventional method, ISO-GUM (Taylor‟s) model obtains a unique relationship in most 

cases between the measurand (analytical result) Y and N input quantities X1, X2,..., XN, given as 
 

𝑌 = 𝑓 𝑋1 , 𝑋2 , … , 𝑋𝑁 . (2) 
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The Taylor‟s method considers the standard uncertainties of input quantities and the relative 

contribution of the errors. The estimated variation connected with the measurand y, is described as 

the combined standard uncertainty and represented by uc(y), and it is calculated from the estimated 

standard deviation connected with each input estimate u(xi). Propagation of uncertainty is carried 

out on the ground of a first order Taylor series approximation as follows 
 

𝑌 = 𝑓 𝑋1 , 𝑋2 , … , 𝑋𝑁 = 𝑦 𝑥1 , 𝑥2 , … 𝑥𝑁 +  𝑐𝑖

𝑁

𝑖=1

𝑋𝑖  (3) 

 

where ci denote the sensitivity coefficients (partial derivatives), which present how the estimate y 

varies with changes in the values of the factors (inputs) xi. In particular, the change in y produced 

by the standard uncertainty of the estimate xi, is presented by  ∆𝑦 𝑖 =  𝜕𝑓/𝜕𝑥𝑖  ∆𝑥𝑖 . This 

change is generated by the standard uncertainty of the estimate xi, and the corresponding variation 

in y is  𝜕𝑓/𝜕𝑥𝑖 𝑢 𝑥𝑖 . When the input quantities are correlated, the appropriate expression should 

be structured by the combined variance 𝑢𝑐
2(𝑦) and the estimated correlation coefficient r. (BIPM 

2008a). 

The combined uncertainty uc(y) is linear sum of terms representing the variation of y. It can be 

obtained from the positive square root of the combined variance 𝑢𝑐
2 𝑦  

 

 𝑢𝑐
2 𝑦 =   

𝜕𝑓

𝜕𝑥𝑖
 

2

𝑢2

𝑁

𝑖=1

 𝑥𝑖  (4) 

 

The combined uncertainty uc(y) can be used to define the uncertainty of a measurement result. 

It is essential to describe a measure of uncertainty that expresses an interval concerning the 

measurand that may be anticipated to cover a large fraction of the distribution of values. For this 

purpose, GUM Uncertainty Framework suggests an interval-based uncertainty that is an expanded 

uncertainty, U. The expanded uncertainty is provided by multiplying uc(y) by a coverage factor k 
 

𝑈 = 𝑘𝑢𝑐 𝑦 ,     𝑦 − 𝑈 ≤ 𝑌 ≤ 𝑦 + 𝑈. (5) 
 

If there is no enough degrees of freedom to set k = 2.0 (95% confidence level), it is necessary to 

estimate the degrees of freedom for the total uncertainty. The GUM proposes the Welch-

Satterthwaite formula and t-distribution to estimate the effective degrees of freedom (BIPM 

2008a). 
 

2.3 Monte Carlo Method 
 

From an analytical approach, when a probability density function (PDF) for each input variable 

is known, a PDF for the measured value Y can be determined. This process can be performed using 

a reliable simulation approach in general cases. The MCM can be used to determine a PDF for the 

target variable based on PDFs of input variables (Desenfant et al. 2009). In this approach, for each 

error source, an appropriate PDF function is chosen. The method does not require the computation 

of derivatives. In addition, it does not rely on the capacity of a linear approximation to the 

measurement function f in a neighbourhood of the measurand whose size is comparable with the 

measurement uncertainties of the input quantities (Müller et al. 2009). 
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 BIPM (2008b) is concerned with the propagation of probability distributions using a Monte 

Carlo method. M vectors xr, r = 1, 2,....,M, are drawn from the PDFs 𝑔𝑋𝑖
 𝜀𝑖  for the N input 

quantities Xi. The expected (model) values and their averages can be calculated as follows 
 

𝑦𝑟 = 𝑓 𝑥𝑟 , 𝑟 = 1,2, … , 𝑀. (6) 

 

𝑦 =  
1

𝑀
 𝑦𝑟

𝑀

𝑟=1

. (7) 

 

The overall standard uncertainty u(y) is estimated by the sample standard deviation of the 

draws, that is 

 𝑢2 𝑦  =  
1

𝑀 − 1
  𝑦𝑟 − 𝑦  2

𝑀

𝑟=1

. (8) 

 

In the MC method, the process is recurrent until a converged value is obtained for the standard 

deviation (Steele and Douglas 2009). This deviation is then the estimate of the combined standard 

uncertainty uc. Based on the simulation results, confidence intervals for y can be provided and 

other statistical information can be drawn from the sample 𝑦
(1), 𝑦(2), … , 𝑦(𝑀). 

 

2.4 Fuzzy set-based method 
 

Fuzzy set m provides a natural way of dealing with problems in which the source of 

imprecision is the absence of sharply defined criteria of class membership rather than the presence 

of random variables (Zimmermann 2010). As discussed in Tutmez (2009), the fuzzy 

methodologies can have a large impact in analyzing of mechanical properties of construction and 

building materials. 

A fuzzy variable X is described by its membership function 𝜇𝑋 𝑥  which satisfies the 

condition 0 ≤ 𝜇𝑋 𝑥 ≤ 1. A membership function can also be expressed with regard to α-cuts at 

different vertical levels α. An alpha-cut 𝑋𝛼  is described as 
 

𝑋𝛼 =  𝑥|𝜇𝑋(𝑥) ≥ 𝛼 . (9) 
 

Fig. 2 illustrates a graphical representation for triangular membership function which is also a 

subset. In the graph, F0 denotes the support and F1 called the kernel. Fα addresses an interval at a 

presumption level. 

Although various types encountered in fuzzy set literature, the membership functions 

comprising of straight segments are often used in practice for their simplicity. In the present study, 

because we have limited number of measurements, the trapezoidal membership functions were 

preferred. They can be described by a minimal amount of information. In addition, data relating to 

the corner points of a function are hereby sufficient. 

Suppose, a quantity X is described as the sum of two independent quantities X1 and X2. The 

distribution for X is a symmetric trapezoidal distribution Trap (a, b, β) with lower bound a and 

upper bound b, and a parameter β equal to the ratio of the semi-width of the top of the trapezoid to 

that of the base (BIPM 2008b). Fig. 3 illustrates the trapezoidal probability density function 

constructed by rectangular independent quantities. The parameters of the trapezoidal distribution 
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Fig. 2 A representation for triangular function and alpha-cut 

 

 
can be calculated as 

 

𝛽 =
𝜆1

𝜆2
,           𝜆1 =

  𝑏1 − 𝑎1  𝑏2 − 𝑎2  

2
,           𝜆2 =

𝑏 − 𝑎

2
 (10) 

 

In measurement uncertainty analysis, to specify a region of confidence and to structure the data 

for a trapezoidal membership variable, variance of the quantity X is be utilized. The variance 

derived from distribution can be formulated as follows 
 

𝑉 𝑋 =
 𝑏 − 𝑎 2

24
 1 + 𝛽2 . (11) 

 

 

 

Fig. 3 Trapezoidal density function and critical parameters (BIPM 2008b) 
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In Eq. (11), 0 ≤ 𝛽 ≤ 1 and as 𝛽 → 1, this trapezoidal distribution approaches the rectangular 

distribution, while for 𝛽 = 0, it is a triangular distribution (BIPM 2008b). The other parameters a 

and b represent upper and lower limits, respectively. Following the construction of membership 

functions, integration is required. The arithmetic operations utilized in this study such as sum, 

difference and division have been discussed in Hanss (2005). In a similar manner, the level of 

confidence is defined on the ground of fuzzy α-cut level. The method perceives, for example, each 

confidence interval level of 1-α, with each α-cut of a fuzzy subset (Müller 2009). 
 

 

3. Results and discussion 
 

To apply the conventional and fuzzy set-based uncertainty evaluation methods for rock test 

measurement, the sample data set given in Ulusay et al. (2011) was considered. The data set 

consists of 10 laboratory measurements applied to sandstones sampled from different depths. In 

addition to geometrical parameters (diameter and thickness), the data also include the failure loads 

observed from the loading test unit. 

The tests had been carried out in accordance with the Bieniawski and Hawkes (2007) standard 

test method stated in Bieniawski and Hawkes (2007). To determine the tensile strength of rock 

specimens, first 54 mm diameter NX-size cylindrical core samples, having a thickness less than 27 

mm had been prepared. The surfaces of the specimens had been made free from any irregularities 

across the thickness using polishing machine. The samples were loaded into the Brazilian test 

apparatus across its diameter. The load at the speed of 200 N/s was applied continuously at a 

constant such that failure materializes within 15-30 seconds. 

First all covered quantities F, D, t require to be described by their first two moments, standard 

deviation and mean value, for the GUM uncertainty framework. As explained in Section 2, all the 

parameters of the sampled rocks are considered as trapezoidal distributions. 

Next, providing the sensitivity coefficients of the measurement function some partial 

derivations have been performed as suggested in the standard GUM uncertainty framework. For 

example, the sensitivity coefficient of F has been provided as follows 
 

𝑐𝐹 =
𝜕

𝜕𝐹

𝐹

𝐷𝑡
=

159

250 ∗ 𝐷 ∗ 𝑡
= 0.00043  MPa . (12) 

 

The expected values of the distributions, the standard uncertainties, and the uncertainty budgets 

(sensitivity coefficients) obtained from the measurements are outlined in Table 1. As seen in Fig. 4, 

some weak correlations were recorded. The amount of Pearson‟s r values, which measures the 

strength and direction of the linear relationships between the variables, were recorded as smaller 

than 0.4. Therefore, the correlations have not been considered to provide the combined 

uncertainties. 
 

 

Table 1 Input quantities 

Input quantity Expected value Uncertainty Budget (c) 

F 15.790 0.417 0.00043 

D 54.030 0.387 -0.00013 

t 27.087 0.671 -0.00026 
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Fig. 4 Correlations between input variables 

 

 

Table 2 Estimations and measurement uncertainties 

ISO Method Strength (MPa) Combined uncertainty 

GUM 6.979 0.256 

MC 6.984 0.257 

 

 

Table 3 Approximation of MC method 

Confidence level Coverage factor-k Coverage interval 

99% 2.58 [6.321-7.647] 

95% 1.96 [6.481-7.488] 

90% 1.64 [6.563-7.406] 

68% 1.0 [6.727-7.241] 

 

 

The major parts of the computer implementations were conducted using NIST Uncertainty 

Machine (Lafarge and Possolo 2015) and R packages such as „metRology‟ (Ellison 2015). Table 2 

indicates the results obtained for both the GUM and the MC methods. The MC simulation was 

performed using 106 replicates. Table 3 summarizes the coverage intervals produced by MC 

method at different levels with the coverage factors. For example, at 99% confidence level upper 

limit has been determined as follows 
 

7.647 = 6.984 + 2.58 ∗ 0.257 (13) 
 

Both the computer implementations produced Gaussian type output function in accordance 

with the GUM theoretical framework. The density functions addressed similar smooth histograms 

as presented in Figs. 5(a)-(b). 

Fuzzy set-based applications were made by fuzzy trapezoidal membership functions. Fuzzy 

arithmetic operations and alpha-cut identification was also performed by a code written in 

MATLAB Environment (MATLAB-R2009b 2009). The estimate of the resulting function, the 

878



 

 

 

 

 

 

Comparison of measurement uncertainty calculation methods on example of indirect... 

 

(a) 

 

 

(b) 

Fig. 5 Density functions for tensile strength: (a) GUM-Taylor method; (b) MC method 

 

 

tensile strength of rock, can be considered as the maximum (peak) of the membership function. 

The midpoint of the resulting interval corresponds to the estimate. Fig. 6 illustrates the final 

membership function. The alpha-cut at a level of 0.33 identifies a confidence interval with a level 

of confidence of 1 ‒ 0.33 = 0.67. This α-cut has been considered to calculate a confidence interval 
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Fig. 6 Final membership function for tensile strength 

 

 

which can be compared to the standard uncertainty. An interval containing approximately 67% of 

all possible values of [6.678, 7.412] is given in Fig. 6. The half-interval width is determined as 

(7.412 ‒ 6.678)/2 = 0.367. 

Even though the MC approach has produced [6.72-7.25] coverage interval for 67% confidence 

level, a larger interval [6.678-7.412] has been recorded for the fuzzy approach. The main reason 

for the larger confidence interval by fuzzy set approach can be explained by the transformation 

between probability and possibility. Although a possibility measure exhibits an inexact but 

consistent knowledge, a probability measure addresses precise but varied knowledge. For the 

evaluation of uncertainties by an alternative way, the use of probability density function-based 

fuzzy approach provided some satisfactory results. The method has transparency and flexibility. It 

can also be applied by a limited number of data. 

In other respects, the correlations have not considered in the application due to amount of the 

correlation coefficients. The correlations in a different data set among the input variables F, D and 

t may lead to the measurement uncertainty in a direct way. This difficulty, to represent correlations 

in fuzzy method should be stressed as a disadvantage of the fuzzy method. 

 

 

4. Conclusions 
 

Rocks fail due to compression, shear, tensile and/or a combination of these stresses. In 

particular, the tensile strength is a key measure that influences rock crushing, deformability and 

blasting results. In this paper, the Brazilian test measures on rock samples taken from sandstones 

have been appraised by different uncertainty evaluation methods. 

In addition to conventional Taylor‟s and MC methods, a fuzzy set-based measurement 

uncertainty evaluation is practiced. The results showed that the conventional Taylor‟s and MC 
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approaches produce relatively narrow coverage intervals comparing to the fuzzy-set based method. 

The explanation of the results can be found in the information theory. Against to precise and varied 

knowledge, inexact and consistent knowledge produced by this study can also be considered by 

the users. 

In an engineering application such as geotechnical work, measurement uncertainties can obtain 

an almost unlimited diversity of engaged dependencies which have critical importance for 

functioning. In addition to an observation recorded in a rock mechanics test, its uncertainty should 

also be expressed by one/all of the methods discussed in this study. 
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