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Abstract.    The binary mixture consists of two types of granular media with different physical attributes and sizes, 
which can be characterized by the percentage of large granules by weight (P) and the particle size ratio (α). 
Researchers determine that two thresholds (PS and PL) exist for the peak shear strength of binary mixtures, i.e., at P  
PS, the peak shear strength is controlled by the small granules; at P  PL, the peak shear strength is controlled by the 
large granules; at PS  P  PL, the peak shear strength is governed by both the large and small granules. However, the 
thresholds of binary mixtures with different α values, and the explanation related to the inner details of binary 
mixtures to account for why these thresholds exist, require further confirmation. This paper considers the mechanical 
behavior of binary mixtures with DEM analysis. The thresholds of binary mixtures are found to be strongly related to 
their coordination numbers ZL for all values of α, where ZL denotes the partial coordination number only between the 
large particles. The arrangement structure of the large particles is examined when P approaches the thresholds, and a 
similar arrangement structure of large particles is formed in both 2D and 3D particle systems. 
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1. Introduction 
 

Mixtures of cohesionless granular materials are ubiquitous in nature due to multiple 
mechanisms, such as sand-sand mixtures with different sizes and shapes due to sedimentation, 
(Shin and Santamarina 2013), crushed sandstone-mudstone mixtures after excavation because of 
the interbedded deposit structure (Wang et al. 2013), and rockfill-sand mixtures in many natural 
slopes and rockfill structures due to weathering and deposition (Vallejo 2001). These mixtures 
typically consist of two or more different types of granular media, and the use of these natural 
mixtures is increasing in various fields, such as embankment, road and earth-dam construction. As 
a result, the investigation of the shear strength characteristics of such granular mixtures is 
important for practical applications (Hamidi et al. 2012). 

For a special granular material mixture, the binary mixture consists of only two types of 
granular media with different physical attributes and sizes. Such binary mixtures can be 
characterized by two parameters, the percentage of large granules by weight (P) and the particle 
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size ratio α (= DL/DS), where DL and DS denote the diameters of the large and small granular media, 
respectively. Ogarko and Luding (2013) suggested that any ploydispersity can be replaced by an 
equivalent binary mixture when the size distribution moments are matched. By summarizing the 
results of triaxial tests conducted by various researchers on granular binary mixtures, Vallejo (2001) 
found that two thresholds exist for large granular material content (i.e., PS and PL) of granular 
binary mixtures for their peak shear strength: at P  PS, the peak shear strength of the binary 
mixtures was controlled by the small granules and was basically equal to that of an assembly with 
zero large granule; at P  PL, the peak shear strength of the binary mixtures was controlled by the 
large granules and was basically equal to that of an assembly with zero small granule; and at PS  
P  PL, the shear strength of the binary mixtures was equal to the partial shear strength provided 
by the large granules plus the partial shear strength provided by the small granules. An example of 
gravel and sand-size particle mixtures, which are often encountered in many natural slopes and 
rockfill structures, is illustrated in Fig. 1. The figure conceptually displays the contribution of the 
different particles to the shear strength of the mixtures with consideration of the relative 
concentrations of the large granules. Fig. 1 illustrates that these two thresholds are important for 
assessing the engineering properties of mixtures. An improved understanding of the thresholds of 
the binary mixtures may lead to improved designs, lower-scale tests and the ability to perform 
knowledge-based design decisions. 

Many in situ and laboratory investigations involving the determination of the shear strength of 
granular binary mixtures have been conducted to date. Vallejo (2001) reported a review of shear 
strength measurements carried out on mixture proportions that varied between 0% and 100% of 
gravel and sand by various researchers. The average of the reported findings and those measured 
by the authors were rather consistent, i.e., when the weight concentration, P, exceeds 70%, the 
behavior of the mixture is governed by the large granules (i.e., PL = 70%), and when it is less than 
40%, the small granule content has the predominant role (i.e., PS = 40%). Similar thresholds of 
binary granular mixtures regarding shear strength were also supported by other researchers. For 
example, Kuenza et al. (2004) investigated the undrained shear behavior of sand with gravel via 
torsional shear tests and found that the effect of gravel content on the strength is insignificant until 
the gravel content is approximately 40% (i.e., PS = 40%). Simoni and Houlsby (2006) and Xu et al. 
(2011) explored the binary granular mixture named soil-rock through large-scale direct shear tests 
and observed that the thresholds are PS = 30% and PL = 70%, respectively. 

To date, only a few studies have attempted to explain why these thresholds (i.e., PS = 40% and 
PL = 70%) exist. Based on the changes in porosity when different proportions of large and small 

 
 

Fig. 1 Gravel-sand mixtures in many natural slopes and rockfill structures 
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glass beads are mixed, Vallejo (2001) presented an explanation as to why PS is 40% and PL is 70%. 
However, this explanation was mainly based on an inferred fabric in the large and small granular 
mixture when P approached the threshold. Therefore, further inner details of binary mixtures must 
be investigated to gain an understanding of the microstructure of binary mixtures when P reaches 
the thresholds. Fragaszy et al. (1992) described a matrix model regarding the thresholds (i.e., PS 
and PL) of sandy gravel, which related the state of large-large granule contact to the thresholds of 
binary mixtures. The large granules are in a floating state (i.e., there is little contact between large 
particles) when P is less than PS, whereas the large granules begin to make contact with each other 
when P is larger than PL. However, there is only a qualitative description regarding the relationship 
between the thresholds and the state of large-large contacts to date, and a quantitative relationship 
between them requires further confirmation. Alternatively, many types of binary mixture systems 
with different  values can be found in geotechnical engineering, such as sand-sand mixtures with 
an  close to one (Shin and Santamarina 2013) and waste rock-fine tailings mixtures with an  
that approaches one thousand (Khalili 2009). Previous research studies found that the behaviors of 
a binary mixture are also affected by  in many aspects, including packing porosity (Lade et al. 
1998) and normal-shear stress behavior (Hassanpour et al. 2004). Ueda et al. (2011) investigated 
the mechanical properties of binary mixtures and presented a model to predict the thresholds of 
binary mixtures with different values of . However, the thresholds obtained from this model are 
different from the thresholds when  = 12.5 (i.e., the  of glass beads that was used in Vallejo 
2001), and the reason for this may be related to the model presented by Ueda et al. (2011), which 
is also based on an inferred fabric when P reaches the thresholds. Therefore, the relationship 
between the thresholds (i.e., PS and PL) and  also needs further confirmation. 

The two-dimensional discrete element method (DEM) (Cundall and Strack 1979) is used to 
perform the numerical experiments in this study. One advantage to using the DEM is that many 
significant micro-structural quantities, including contact forces net, coordination number, and 
porosity, can be directly measured, but these quantities are inaccessible in physical experiments. In 
the past, the two-dimensional DEM has been demonstrated to be capable of generating reliable 
results for granular matter subject to microstructure analysis (Wang et al. 2014). Using the DEM, 
the microstructures of binary mixtures are investigated in this paper, and thresholds of binary 
mixtures (i.e., PS and PL) with different values of  are obtained. The emphasis is placed on 
obtaining a quantitative relationship between the thresholds and the state of large particles in 
contact. 
 
 
2. DEM simulation 
 

Numerical direct shear tests are conducted on binary mixtures with different values of P and . 
The numerical experiments are mainly carried out using the discrete element code PFC2D. In 
addition, the effectiveness of the results is validated using PFC3D. In all tests, the diameter of small 
particles is 1.0 mm, and the diameters of large particles are 1.0, 2.0, 5.0 and 9.5 mm for different 
values of . Fig. 2 shows the typical particle size distribution curves of binary mixtures with  = 
2.0 and  = 9.5. The diameters of both large and small particles have a 12.5% deviation from their 
diameters to prevent particles from order configuration (Oger et al. 2007). The particle size 
distributions of binary mixtures with  = 1.0 and  = 5.0 are not plotted here because they exhibit 
the same trends shown in Fig. 2. The binary mixtures are prepared by mixing various proportions 
of large and small particles, as shown in Table 1, and the number of disks for different values of  
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(a) (b) 

Fig. 2 The particle size distributions of binary mixtures with different  (a)  = 2; (b)  = 9.5 
 
 

corresponding to different values of P are also summarized in Table 1. Fig. 3 shows a schematic 
diagram of the square shear box. To eliminate the specimen size effect, different size shear boxes 
are used for different particle size ratios. Jamiolkowski et al. (2004) suggested that the ratio of the 
specimen diameter to the maximum particle size (B/Dmax) should be greater than 5, with an ideal 
ratio of 8, to minimize stress non-uniformities arising from large particles inside a test specimen. 
The size of the shear box for different values of  and the ratio of the shear box size to the 
maximum diameter of large particles are summarized in Table 1. The shear box is composed of 
eight rigid frictionless boundaries, as shown in Fig. 3, and two additional flanges (i.e., walls 7 and 
8) are added to prevent particle leakage during shear. 

The assemblies of granular mixtures are subjected to DEM analyses in the following steps. (1) 
The large and small disks are generated above the shear box randomly under the conditions of the 
given P and  values. The generated disks then fall down freely under gravity without friction to 
form a dense assemblage. Frictionless conditions can form densest assemblies for a given 
generation procedure, so the assemblies with different P are at the same relatively density. (2) 

 
 

Table 1 Summary of sample size and total number of particles for different DEM materials 

 
Binary mixtures 

 = 1.0  = 2.0  = 5.0  = 9.5 

Box size, BB (mm) 50×50 100×100 125×125 250×250 

B/Dmax 44 44 22 23 

Total number of 
particles 

P = 0% 2773 11180 18080 73515 

P = 10% 2772 10373 16006 64019 

P = 20% 2770 9529 14455 57228 

P = 30% 2776 9159 12661 51117 

P = 40% 2777 8490 11251 44562 

P = 50% 2773 7796 9511 37940 

P = 60% 2771 7126 7817 30679 

P = 70% 2768 6413 6036 23350 

P = 80% 2740 5734 4348 16165 

P = 90% 2776 5001 2452 8387 

P = 100% 2768 4331 678 761 
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Fig. 3 The schematic diagram of the direct shear box 
 
 
Granular assemblies are compressed by moving the top wall (i.e., wall 3 as shown in Fig. 3) 
through an iterative and controllable mechanism until the target pressure (100 kPa) is reached. (3) 
The porosity and coordination number are measured after the equilibrium process is stabilized. (4) 
The inter-particle friction coefficient is reset to the predefined value to obtain the thresholds with 
different values of , and then, numerical direct shear tests are carried out. The assemblies are 
sheared by moving the low shear box horizontally at a speed of 0.005 m/s (also used in Gong and 
Liu 2015) under the application of constant vertical stress acting on the top wall. The shear 
resistance and deformation of the assemblies are monitored during the shear process. The shear 
resistance is obtained by dividing the horizontal reaction force of the lower half of the box by the 
shear area of the shear box (Zhang and Thornton 2007). 
 
 
3. Simulation results 
 

3.1 Approximate extent of the threshold 
 
The shear strength of a granular mixture is provided by the contact of its particles. There are 

three types of contact for binary mixtures, large-large particle (LL) contact, large-small particle 
(LS) contact and small-small particle (SS) contact, which depend on the two entities being in 
contact. The friction effect of the particle contact on the shear strength of the granular mixture can 
be determined by changing the friction coefficient of particles. By changing the friction coefficient 
of different contact types, the contribution of each type of contact on the shear strength of the 
binary mixture can be evaluated. This method allows for the determination of which contact type 
has the dominant effect on the shear strength of the binary mixtures and, in some cases, which type 

 
 

Table 2 The friction coefficient of the simulation cases in DEM analysis 

Case 
Large particles 

(f) 
Small particles

(f) 
LL contacts 

(fLL) 
LS contacts 

(fLs) 
SS contacts 

(fss) 

1 0.5 1.0 0.5 0.5 1.0 

2 1.0 1.0 1.0 1.0 1.0 

3 1.0 0.5 1.0 0.5 0.5 

4 0.5 0.5 0.5 0.5 0.5 
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Table 3 Input parameter of analysis 

Porperty 
Density 
(kg/m3) 

Damping 
contant 

Normal stiffness
kn (kN/m) 

Shear stiffness 
ks (kN/m) 

Friction coefficient
f 

Particles 2650 0.7 1.5e7 1.5e7 as shown in Table 2

Walls - - 1.3e9 1.3e9 0 

 
 

of contact’s contribution is negligible. Based on this idea, four cases are designed and listed in 
Table 2, which means that each assemblage is sheared four times. By comparing cases 1 and 2, one 
can obtain the approximate bound of PS and the approximate bound of PL based on the results from 
cases 3 and 4. 

The linear contact model is used in DEM analysis, and the parameters are presented in Table 3. 
The results for the peak angle of shear resistance of the binary mixtures for different values of 

P and  are listed in Table 4. 
For a specific , changes in P will result in changes in the peak friction angle of the binary 

mixtures even if all particles have the same friction coefficient (i.e., cases 2 and 4 for various 
values of , as listed in Table 4). This effect arises from the geometric factors of the binary 
granular system, such as the roller effect (Saowapark et al. 2009) and solid inclusion effect 
(Simoni and Houlsby 2006). However, the difference between cases 2 and 1 indicates the 
contribution from the LS and LL contact to the peak friction angle of the shear resistance, without 

 
 

Table 4 The peak angle of shear resistance of binary mixtures with different P and  

 Case 

max (deg) 

P = 
0% 

P = 
10% 

P = 
20% 

P = 
30%

P = 
40%

P = 
50%

P = 
60%

P = 
70%

P = 
80% 

P = 
90% 

P = 
100%

1.0 

1 35.4 34.5 36.0 32.7 30.6 30.1 32.2 30.4 28.4 34.1 29.1

2 35.4 34.5 36.0 36.1 34.6 33.9 38.7 37.1 33.8 39.3 35.5

3 28.9 28.8 29.7 31.0 28.6 31.9 35.3 35.0 31.9 36.4 35.4

4 28.9 28.8 29.7 31.0 28.6 30.2 32.2 31.6 27.5 31.9 29.1

2.0 

1 35.2 32.4 31.7 32.9 32.1 32.0 29.7 29.9 31.0 29.7 30.7

2 35.2 32.4 32.4 32.9 35.0 36.1 33.8 35.5 35.4 35.8 36.9

3 28.8 27.2 29.5 26.8 30.1 29.6 29.9 31.4 33.8 34.0 36.1

4 28.8 27.2 29.5 26.8 30.1 29.6 28.2 29.6 31.5 30.0 30.9

5.0 

1 35.4 33.8 34.4 32.9 34.3 34.1 34.1 35.3 33.0 36.0 44.7

2 35.4 33.8 34.4 32.9 35.3 37.0 35.1 37.7 36.8 33.4 40.0

3 28.9 28.8 28.8 27.9 28.8 30.4 29.3 34.1 33.2 36.6 44.7

4 28.9 28.8 28.8 27.9 28.8 30.4 29.3 33.0 31.4 34.6 40.2

9.5 

1 35.1 32.2 31.4 31.4 32.4 33.8 32.7 27.7 34.8 36.7 37.1

2 35.1 32.2 31.4 31.4 32.4 35.6 35.9 37.3 39.3 39.0 42.0

3 28.8 27.9 25.6 27.7 27.0 27.9 29.2 33.0 35.0 38.0 42.0

4 28.8 27.9 25.6 27.7 27.0 27.9 29.2 31.4 32.2 35.0 36.9
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regard to the effects of geometric factors. Fig. 4 plots the differences against the large particle 
content, P. Alternately, the difference between cases 3 and 4 represents only the effects of LL 
contact on the peak angle of the shear resistance, and this is plotted in Fig. 5. The vertical axes in 
Figs. 4-5, PS and PL, are the differences in the peak friction angle of the shear resistance and are 
defined as follows 

PS = 2 
max ‒ 1 

max (1)
 

PL = 3 
max ‒ 4 

max (2)
 

where 1 
max, 2 

max, 3 
max and 4 

max are the peak friction angles of the shear resistance of the binary 
mixtures when the friction coefficients of the particles are set to the values corresponding to cases 
1-4, as listed in Table 2. Based on the aforementioned definitions of PS and PL, when P  PS, SS 
contact plays the primary role in the shear response of binary mixtures, whereas the contribution 
from LL and LS contact is negligible. This indicates that PS will be close to zero when P  PS. 
Alternately, when P  PL, LL contact begins to play a greater role in the shear response of the 
binary mixtures, whereas LS and SS contact begin to disperse and provide a secondary effect, 
which indicates that PL will be close to zero when P < PL. 

Figs. 4-5 illustrate that it is difficult to obtain precise values for PS and PL because only some 
discrete cases with different P values are conducted. However, the approximate ranges of PS and 
PL can be determined for a binary mixture with a specific . For example, the PS curve for  = 2 
in Fig. 4 indicates that the PS of binary mixtures with  = 2 should be within the range of 30% and 
40%. The PL curve for  = 5 in Fig. 5 indicates that the PL of binary mixtures with  = 5 should 
be within the range of 60% and 70%. 

 
 

 
Fig. 4 The relationship between peak angle difference PS and the content of large particles P 

 
 

 
Fig. 5 The relationship between peak angle difference PL and content of large particles P 
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Table 5 the approximate ranges of PS and PL which are obtained from Figs. 4-5 

Thresholds 
 

1.0 2.0 5.0 9.5 

PS 20%  PS < 30% 30%  PS < 40% 30%  PS < 40% 40%  PS < 50% 
PL 40%  PL < 50% 50%  PL < 60% 60%  PL < 70% 60%  PL < 70% 

 
 
Table 5 summarizes the ranges of PS and PL obtained from the analysis of Figs. 4-5. The precise 

thresholds require further confirmation based on the turning points of the structural characteristics 
(i.e., porosity and partial coordination number) when P approaches the thresholds. 

 
3.2 Thresholds determined by the porosity and partial coordination number 
 
3.2.1 Porosity 
A parameter PLm can be defined as the corresponding P when a binary mixture develops its 

minimum porosity. Vallejo (2001) concluded that PLm can be regarded as PL through a series of 
direct shear tests on binary glass beads. The relationships between porosity, n, and P with different 
values of  are examined, as shown in Fig. 6. The porosity in the measure circle shown in Fig. 3 
was measured after the normal pressure was applied. The porosity is defined by n = Vv/V, where Vv 
is the total area of porosity in the measure circle and V is the area of the measure circle. To prevent 
the ‘wall effect’ from influencing the porosity measurement, the measure circle is four times the 
diameter of the large particle away from the wall, as shown in Fig. 3. From Fig. 6, the porosity of 
the sample composed of mono-size particles ( = 1) is observed to be nearly constant, as expected. 
However, the variation of porosity n with P shows a ‘U’ shape for other binary mixtures. The same 
tendency was observed in many experiments conducted by various researchers (e.g., Garga and 
Mdreira 1985, Vallejo 2001 and Lade et al. 1998). 

At the beginning with 0% large particles, the small particles form a structure with an initial 
porosity. Large particles are then put into the primary fabrics of small particles. The large particles 
are considered to float in the matrix of small particles at the time. In fact, it can be considered that 
the volumes of small particles and a portion of porosity are replaced by the volumes of the floating 
large particles when the large particle content increases. The sample porosity thus gradually 
decreases with an increase in the large particle content P. Decreasing in porosity continues until 
the skeleton of large particles form in the sample. At that time, most of the small particles are 

 
 

Fig. 6 The relationship between porosity of binary mixtures and P with different  
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confined in the skeleton voids of large particles. A further increase in the large particles and 
decrease in the small particles will result in the increase in skeleton voids of large particles. Thus, 
the sample porosity increases with a further increase in P. Therefore, the porosity of mixtures 
exhibits a “U” shape with the increase of P value as indicated in Fig. 6. 

The approximate PLm of the binary mixtures with different values of  (except for  = 1) are 
shown in Fig. 6. Because the porosity is the same for mono-size mixtures (i.e.,  = 1) with 
different values of P, the value of PLm of a binary mixture with  = 1 cannot be estimated. As 
noted above, the constant PL approaches 70% for many natural binary mixtures. This implies that 
the porosity of binary mixtures is typically developed to their minimum value when P approaches 
70%, and this phenomenon is observed in many experiments (e.g., Garga and Mdreira 1985,  
Shelley and Daniel 1993 and Vallejo 2001). However, Fig. 6 illustrates that the phenomenon of 
PLm approaching 70% is only observed in cases of binary mixtures with  = 9.5. For other binary 
mixtures, PLm is found to be less than 70%. PLm is observed to increase as  increases, which 
agrees with previous experimental studies (e.g., Mota et al. 2001, Zhang et al. 2011). Furthermore, 
Yu and Standish (1987) reanalyzed a considerable amount of experimental data from other 
published works and proposed the following relation between PLm and α 

 

PLm = (1 ‒ 1/2)/(1 + n0) × 100% (3)
 

where n0 represents the porosity of the pure large or small granular assemblage. Fig. 7 shows the 
porosity of random mono-size particle packings, the data of which are extracted from different 
literatures for round materials, such as glass beads (i.e., Yerazunis et al. 1962, Mota et al. 2001 and  
Zhang et al. 2011) and steel balls (i.e., Mcgeary 1961 and Pinson et al. 1998). 

From Fig. 7, it can be observed that the porosity varies over a small range irrespective of the 
particle size. By substituting the average of the reported values in Fig. 7 (n0 = 0.39) into Eq. (3), 
PLm can be written as 

 

PLm = 0.719(1 ‒ 1/2) × 100% (4)
 

Eq. (4) illustrates that PLm will increase gradually with increasing  and that PLm will increase 
to a plateau value of approximately 72% as  increases to a large value. PLm = 72% also supports 
the conclusion of Vallejo (2001) that PLm can be regarded as PL (i.e., constant PL = 70%) for many 
natural binary mixtures with a sufficiently large . By substituting  = 1 into Eq. (4), we can 

 
 

 

Fig. 7 The relationship between the porosity of the round material against the particle size 
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obtain the result of PLm = 0%. PLm = 0% contradicts the conclusion of Vallejo (2001) because the 
shear behavior of binary mixtures cannot be controlled by the large particles when P = 0 even 
though the two components have the same size. Nearly all of the  values reanalyzed in the report 
of Yu and Standish (1987) are greater than 2, in this case, the PLm value predicted by Eq. (4) for 1  
 < 2 should be reevaluated. As stated by Fragaszy et al. (1992), the thresholds of binary mixtures 
are related to the state of large particles in contact. Therefore, the relationship between the porosity 
and partial coordination number of large particles is examined in the following paragraphs, aiming 
at evaluating the PLm of a binary mixture when 1   < 2 and then obtaining precise thresholds of 
binary mixtures with different values of . 

 
3.2.2 Partial coordination number 
The mean partial coordination number ZL is defined as the total number of contacts between the 

large particles CL divided by the total number of large particles NL (i.e., ZL = 2CL/NL). ZL is 
measured after the normal pressure was applied and before shear. Fig. 8 shows ZL for binary 
mixtures with various values of  with respect to the content of large particles, P. Fig. 8 illustrates 
that ZL increases gradually with increasing P, which also can be observed in the report of Pinson et 
al. (1998). The ZL curve varies linearly with increasing P for binary mixtures with  = 1. However, 
for other binary mixtures, the evolution of ZL is observed to be related in a non-linear manner with 
respect to P, and the curvature appears to increase gradually with increasing  when  < 5. In 
addition, for ZL curves of binary mixtures with  = 5.0 and  = 9.5, locations from the two curves 

 
 

 

Fig. 8 ZL for binary mixtures with various values of  with respect to P 
 
 

 

Fig. 9 The evolution of ZL as a function of porosity for various P and . 
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Table 6 The PLm for binary mixtures with different  

Parameters 
 

1.0 2.0 5.0 9.5 

PLm (ZL = 2 in Fig. 9) 41% 55% 64% 68% 

PLm (using Eq. (4)) 0% 54% 68.5% 70.6% 

PSm (ZL = 1 in Fig. 9) 21% 30% 39% 40% 

 
 

are close to each other, which suggests that the evolution of ZL with respect to P is less sensitive to 
 when   5.0. The small particles can occupy the smallest voids in the densest possible packing 
of large particles when   6.48 (Lade et al. 1998). In other words, small particles occupy the 
voids within a dense packing of large particles without greatly disrupting its skeleton when   
6.48. The particle size ratio  = 5.0 is close to  = 6.48, which may be an explanation why the 
evolution of ZL with respect to P is sensitive to  when   5.0 as indicated in Fig. 8. 

Fig. 9 shows the evolution of ZL with respect to porosity for binary mixtures with different 
values of P and . The porosities of all binary mixtures develop their minimum values when ZL = 
2. 

Table 6 summarizes the PLm for binary mixtures with different values of , which can be 
obtained by linear interpolation of the two adjacent points when ZL = 2 in Fig. 9, and the calculated 
PLm (i.e., using Eq. (4)) of binary mixtures with different  values are also included. 

In Table 6, although the presented work is developed in a 2D particle system, the values of PLm 
obtained by ZL = 2 are close to the calculated PLm determined by a 3D particle system, except for 
the binary mixture with  = 1. This observation implies that there exists a similar geometrical 
structure when P approaches the PLm in both the 2D and 3D particle systems, which will be 
analyzed in a later section. Comparing the PLm (corresponding to ZL = 2) in Table 6 with the range 
of PL shown in Table 5, the value of PLm is located in the range of PL. The result suggests that the 
values of PLm can be regarded as PL for binary mixtures with different values of , which is 
consistent with the conclusion of Vallejo (2001). Additionally, as shown in Fig. 8, the ZL curves are 
less sensitive to  when   5. This observation suggests that PL will also be less sensitive to  
when   5, as PL can be directly obtained from the P of the binary mixture corresponding to ZL = 
2. Considering that the values of  of most binary mixtures in geotechnical engineering are 
conventionally larger than 5, PL is believed to be a constant value (i.e., approaching 70%). 
Assuming that the PL limit of a binary mixture is 70% when  goes to infinity and combining the 
data of PLm obtained from ZL = 2 in Table 6, the relationship between PL and  can be fitted with 
the following equation 

PL = (0.70 ‒ 0.292/1.007) × 100% (5)
 
Compared to Eq. (4), Eq. (5) indicates a modified expression that can also be applied for binary 

mixtures with 1   < 2 to obtain PL. 
According to the matrix model described by Fragaszy et al. (1992), the thresholds of binary 

granular mixtures are related to the state of LL contact. It has previously been confirmed that ZL = 
2 corresponds to the P of binary mixtures that can be regarded as PL. Thus, there likely also exists 
a ZL = k0 corresponding to the P of binary mixtures, and this P can be regarded as PS, where k0 is a 
specific constant and less than 2 for binary mixtures with different values of . As shown in Table 
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6, the threshold PL = 68% for  = 9.5 is observed to be close to the PL = 70% conducted by Vallejo 
(2001) for binary glass beads with  = 12.5. Therefore, the PS for  = 9.5 is also close to the PS = 
40% conducted by Vallejo (2001). Fig. 9 shows that ZL is 1 when P approaches 40% for binary 
mixtures with  = 9.5. Thus, k0 = 1. A parameter PSm is defined as the corresponding P when the 
binary mixtures reach ZL = 1, and Table 6 summarizes the PSm for binary mixtures with different 
values of , which can be obtained by linear interpolation of the two adjacent points when ZL = 1 
in Fig. 9. Comparing PSm in Table 6 to the range of PS shown in Table 5, the values of PSm are 
located in the range of PS. This result suggests that the PSm of binary mixtures can be regarded as 
PS. In other words, as the P of a binary mixture increases until ZL = 1, the role of large particles on 
the peak shear strength of binary mixtures cannot be negligible. The limit PS is believed to be 40% 
for binary mixtures with sufficiently large values of  (Vallejo 2001 and Kuenza et al. 2004), and 
then, combining the data of PS shown in Table 6, the relationship between PS and  can be fitted 
by the following equation 

 

PS = (0.40 ‒ 0.195/1.242) × 100% (6)
 

Fig. 10 plots the thresholds of granular mixtures against the particle size ratio  based on the 
Eqs. (5) and (6). At the beginning with PS = 20.5% and PL = 40.8% for  = 1.0, PS and PL then 
gradually increase with  and approach 40% and 70% respectively when  is sufficiently large. 

 
3.3 Relationship between the thresholds and arrangement structure of large particles 

 

Fig. 11 shows the configuration of granular assemblies with  = 5.0 under different levels of P. 
The figure is used to gain an understanding of the particle packing and microstructure 
characteristics acquired by binary mixtures, which includes six diagrams of packing structures 
corresponding to states a through f. In particular, states c and d are defined by P = 40% and P = 
70%, which can be regarded as the states at which P reaches the thresholds PS and PL, respectively. 

It has previously been concluded that the minimum porosity of binary mixtures corresponding 
to P can be regarded as the PL for various values of . The minimum porosity of binary mixtures is 
often a concern in various fields, and many publications (e.g., Vallejo 2001, Zhang et al. 2011 and 

 
 

Fig. 10 The evolution of PS and PL with  based on Eqs. (5) and (6) 
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Fig. 11 An assembly with  = 5 under different levels of P after normal pressure was applied 
 
 

Ueda et al. 2011) consider this minimum porosity as theoretically occurring when small particles 
completely fill the voids of the load-bearing large particles, and the schematic structure is plotted 
in Fig. 12a. However, Fig. 11 illustrates that the structure shown in Fig. 12(a) does not appear to be 
the case even though P  PL. The theoretical condition can only emerge when  is sufficiently 
large (Lade et al. 1998), otherwise, the small particles tend to wedge into the skeleton of large 
particles, as illustrated in Fig. 12(b). Based on the geometrical structure when the porosities of 
binary mixtures develop their minimum value, as shown in Fig. 12(a), Vallejo (2011) found that 
the predicted porosity is smaller than the actual value. The reason for this is related to the wedging 
effects, which will result in an increased porosity compared to the theoretical structure shown in 
Fig. 12(a). Therefore, understanding the actual structure of binary mixtures when P approaches the 
thresholds is important, as an inferred fabric mixture may lead to error when predicting the state of 
binary mixtures. 

 
 

Fig. 12 Schematic representation of the arrangement of particles: (a) small particles fill the free space 
between large particles; (b) small particles wedge in the skeleton of large particles; (c) the 
hollow and circle structure formed by enclosing the large particles 
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The results of numerical direct shear tests confirm that ZL = 2 corresponds to the P that can be 
regarded as PL. Thus, a specific structure is thought to exist for ZL = 2 for binary mixtures with 
different  values, which is considered helpful for understanding the behavior of binary mixtures 
at their turning points. From a geometrical consideration of the arrangement of large particles 
when ZL = 2, a hollow and circular structure composed of large particles is expected to exist, 
which is illustrated in Fig. 12(c). The theoretical structure shown in Fig. 12(a) actually indicates a 
particular case of this structure. Figs. 11(d)-(f) illustrates that small particles are gradually 
confined in the central voids of this structure with increasing P. This indicates that the structure 
shown in Fig. 12(c) appears to be the case when P  PL. If this specific structure also exists in the 
case of a 3D configuration, then ZL is believed to be 3 when the porosities of binary mixtures with 
sufficiently large values of  develop their minimum value. If the  value of binary mixtures is not 
sufficiently large, the wedging effects will lead to the formation of a hollow and spherical structure 
enclosed by large particles, for which ZL is also believed to be 3. To verify that the specific 
structure is also the case in a 3D particle system, another series of binary mixtures with P ranging 
from 0% to 100% was prepared for  = 1.0,  = 1.4, and  = 2.0 using the discrete element code 
PFC3D. The particle properties include the “contact Young modulus” (i.e., Ec = 1e7 Pa), which 
determines the stiffnesses of particles by kn = 4 Ec R (R denotes the minimum radius of the two 
particles in contact); the ratio of the particle stiffnesses (i.e., kn/ks = 1.0); and the friction 
coefficients of the particles, which are set to zero to form a dense assemblage. The particle size 
distributions of these binary mixtures have the same trend as in Fig. 2, and the assemblies are 
prepared in the same process as previously mentioned. After the equilibrium process is stabilized 
for the generated particles that fall down freely under gravity, the ZL of each assemble are 
measured, and the results are plotted in Fig. 13. The results are consistent with previous 
simulations (Pinson et al. 1998 and Biazzo et al. 2009) for  = 1.4 (Fig. 13(a)) and  = 2 (Fig. 
13(b)). 

After the normal pressure is applied ( = 100 kPa), the ZL of each assembly are measured again, 
and the results are plotted in Fig. 14. We can obtain the P corresponding to ZL = 3 from the figure 
using a linear interpolation of the two adjacent points. The data are summarized in Table 7, and the 
calculated values of PL (i.e., using Eq. (5)) are also included for comparison. In Table 7, it can be 
observed that, though Eq. (5) is developed in a 2D particle system, the calculated values of PL are 
close to the P corresponding to ZL = 3 in the 3D particle system. Moreover, the theoretical 
coordination number of frictionless mono-size spherical assembles are expected to be 4 and 6 in 
2D and 3D particle systems, respectively (Roux 2000). The ratio of the coordination number in 

 
 

(a) (b) 

Fig. 13 Particle coordination number ZL versus P for: (a)  = 1.4; and (b)  = 2 
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Fig. 14 The relationship between the mean partial coordination number ZL and P in 3D particle system 
 
 

Table 7 Comparison of the P between the measured value and predicted value in 3D model 

 
P determined by (i.e., PL) P determined by (i.e., PS) 

ZL = 3 in Fig. 13 using Eq. (5) ZL = 1.5 in Fig. 13 using Eq. (6) 

1.0 41% 41% 20% 21% 

1.4 45% 49% 25% 27% 

2.0 53% 55% 31% 32% 

 
 

a 3D mono-size particle system to that in a 2D mono-size particle system (i.e., 6/4) is the same as 
the ratio of ZL in these two spatial dimensions when the porosities of binary mixtures develop their 
minimum value (i.e., 3/2). The results suggest that a similar arrangement structure of large 
particles is formed in both 2D and 3D particle systems when the porosities of binary mixtures 
develop their minimum value. Thus, the large particles begin to control the shear behavior of 
binary mixtures as ZL reaches 3 in 3D particle systems. Moreover, Fig. 14 illustrates that the ZL 
curve varies linearly when increasing P for mono-size assembles ( = 1). Then, ZL = 1.5, 
corresponding to the P, can be regarded as PS in 3D particle systems because PL is twice the value 
of PS in 2D binary mixtures with  = 1. From Fig. 14, one can obtain the P corresponding to ZL = 
1.5 by linear interpolation, which is also summarized in Table 7, and the calculated values of PS 
(i.e., using Eq. (6)) are also included for comparison. In Table 7, the calculated values of PS are 
also close to the P values obtained corresponding to ZL = 1.5 in the 3D particle system. 

 
 

4. Conclusions 
 

This paper describes a 2D DEM analysis carried out to estimate the thresholds of cohesionless 
granular binary mixtures with different particle size ratios (). A series of dense particle 
assemblies were prepared, and their porosity and mean partial coordination number ZL were 
measured. To obtain the thresholds of binary mixtures, the inter-particle friction coefficients of the 
assemblies were reset to the different predefined values, and then, numerical direct tests were 
conducted. The following concluding remarks can be made: 

 

(1) The evolution of the ZL of binary mixtures is related with : ZL varies linearly with P when 
 = 1, and for other binary mixtures, the ZL curves are observed to be related in a non-
linear manner with increasing P. Moreover, for ZL curves of binary mixtures with  = 5 
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and  = 9.5, locations from the two curves are highly similar to each other, which suggests 
that the evolution of ZL is less sensitive to  when   5. The variation of the porosity, n, 
with P exhibits a ‘U’ shape, and ZL is 2 for all binary mixtures with different values of  
when binary mixtures develop their minimum porosity. 

(2) The thresholds (i.e., PS and PL) of binary mixtures with different  values are obtained 
through numerical direct shear tests. The thresholds of binary mixtures are strongly related 
to their partial coordination number ZL: ZL = 1 and ZL = 2 correspond to the P values that 
can be regarded as PS and PL, respectively. 

(3) From a geometrical consideration of the arrangement of particles when ZL = 2, a hollow 
and circular structure composed of large particles is expected to exist. Figs. 11(d)-(f) 
illustrates that the structure appears to exist when the porosities of binary mixtures develop 
their minimum value. Another series of binary mixtures with different values of  are 
conducted on a 3D particle system to verify that the specific structure is also the case in 
3D models. The calculated P obtained by the 2D empirical equation is consistent with the 
inferred ZL corresponding to P in the 3D model because a similar arrangement structure of 
large particles is formed in both the 2D and 3D particle systems when P approaches the 
thresholds. 
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