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Abstract.    The determination of the mixture parameters of stabilization has become a great concern in geotechnical 
applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including 
radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) 
and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) 
of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles 
(FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables 
and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the 
UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square 
error (RMSE), mean absolute error (MAE) and determination coefficient (R2) were used for the evaluations of the 
prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI 
techniques employed are significantly correlated with the measured UCS (p ≤ 0.05). They also perform better 
predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model 
performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, 
MAE = 45.1 kPa, and R2 = 0.988). The sensitivity analysis demonstrates that the JF inclusion within the input 
predictors is the most effective parameter on the UCS responses, followed by FTC. 
 

Keywords:    freeze-thaw cycle; unconfined compressive strength; silty soil; artificial intelligence; 
sensitivity analysis; bottom ash; jute fiber; steel fiber 
 
 
1. Introduction 
 

Applicability of artificial intelligence on the prediction of unconfined compressive strength of 
silt soil treated with the stabilizers of bottom ash, jute fiber and steel fiber under different freeze 
thaw cycles (0, 1, 2 and 3) has been addressed in this article. Strength response of fine-grained soil 
(low-plasticity silt in this study) as a marginal soil has become a great concern in long time for the 
stabilization uses in pavement base courses, subbase courses, subgrades, road embankment, 
highway constructions and foundation bases as a supporting layer under buildings, etc. This 
concern of the strength has been overcome by the stabilization of the silt with the different 
stabilizers; the traditional ones (i.e., bottom ash, lime, fly ash, cement, etc.) and the non-traditional 
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ones (i.e., fiber reinforcement, liquid stabilizer, etc.). Due to the contribution to the environment in 
the point of recycling, the researches are mostly recommended to employ the stabilizers from the 
industrial waste materials as a traditional stabilizer (Hossain and Mol 2011, Sivrikaya et al. 2014, 
Güllü and Girişken 2013). In recent years, bottom ash as an industrial by product has been very 
popular for the stabilization applications since it provides a promising cementitious property as 
well as pozzolanic reactions. Modification of the silt properties due to the bottom ash addition 
through cation exchange, flocculation, agglomeration and hydration process with the silica and 
alumina sheets could result in favorable engineering characteristics in the stabilization applications 
(Kayabali and Bulus 2000, Kim 2003, Rifai et al. 2009, Kim et al. 2011). In spite of the benefits 
from the traditional stabilizers to the stabilization of silt, the non-traditional stabilizers could be 
incorporated in the stabilizations to improve the engineering characteristics and performances, 
particularly for cold regions of country (Tutumluer et al. 2004, Güllü and Hazirbaba 2010, 
Hazirbaba and Güllü 2010). The incorporation of non-traditional stabilizers would become 
beneficial, since it is reported that large amount of traditional stabilizers is mostly required being 
more effective to considerably decrease frost heave due to the cold region conditions (Lambe and 
Kaplar 1971a, b). Moreover, fine-grained soils, especially in cold regions, could not be desirable 
as a stabilization material due to their frost susceptible nature as well as their tendency to 
significant ice segregation with higher moisture (Güllü and Hazirbaba 2010). Apart from the 
considerations in the cold regions, the stabilization with the alternative materials like the non-
traditional stabilizers could contribute to the cost of construction project in the point of specialized 
equipment, skills of workmanship and locally availability of stabilizer (Tutumler et al. 2004). 
Fiber as a non-traditional stabilizer has been extensively researched to the soil stabilizations in the 
concern of strength response mostly resulted in favorable conclusions (see Hejazi et al. (2012) for 
the review in detail). Despite of the numerous researches, the jute and steel fibers among them 
have still been less observed for the stabilizations particularly composed of silt as a marginal soil. 
Moreover, the strength responses due to the jute and steel fibers have not been sufficiently studied 
by considering the effect of the freezing-thawing cycle. It is concluded from the past works that 
the jute fiber reduces maximum dry density while increases optimum moisture content of the 
compacted soil. Addition of 0.8% jute fiber with 10 mm long results in an increase in the strength 
value (CBR) more than 2.5 times compared to the strength value of native clay (Aggarwal and 
Sharma 2010, Islam and Iwashita 2010). As for the steel fibers, as well as their good reinforcement 
in the soil-cement composites, they are proposed to improve the soil strength, but this 
improvement requires more effort of study for confirmation of their effects (Gray and Al-Refeai 
1986, Murray and Farrar 1988, Ghazavi and Roustaie 2010). 

Since the strength is an important consideration in the stabilizations, development of prediction 
models depending on the stabilizer rates is always desired in practice for design of stabilization 
(Narendra et al. 2006, Kalkan et al. 2009). This prediction effort for the applications particularly in 
the cold regions would also be useful for a cost-benefit design as well as improving the 
engineering characteristics of stabilization. Moreover, the prediction models of strength could offer 
simpler and faster solutions to the construction of stabilization in the cases of routine test 
requirements and limited laboratory facilities (Tutumluer et al. 2004, Baykasoglu et al. 2008, 
Canakci et al. 2009). Due to the reasons arisen above, an effort to predict the unconfined 
compressive strength of silt stabilized with bottom ash, jute fiber and steel fiber under the freeze-
thaw cycles has been attempted in this paper. However, in particular for the stabilizations 
composed of fine-grained soil, due to highly non-linear behavior, the strength prediction has still 
been questionable in the correlations and residuals when derived by a conventional method of 
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regression (Narendra et al. 2006). Moreover, especially for the applications considering the effect 
of freeze-thaw cycles on the fine-grained soil at cold regions (Ghazavi and Roustaie 2010), the 
nonlinearity of the soil behavior causes this prediction issue more complex when estimated via 
regression. Therefore, alternative techniques, artificial neural networks (ANNs) and adaptive 
neuro-fuzzy inference system (ANFIS), presenting new opportunities to the solution of nonlinear 
problems (Güllü and Erçelebi 2007, Kayadelen et al. 2009, Güllü 2012, 2013) have been applied 
in this paper in comparison with the regression. 

The ANN and fuzzy system have become a remarkable subject of modeling for identifying the 
influence of the independent (i.e., input) variables into the dependent (i.e., output) variable in the 
data set of experiments even in the most complex systems of the underlying input-output 
relationship in uncertainty and imprecision (Kayadelen et al. 2009, Güllü 2013, Ellis et al. 1995, 
Akbulut et al. 2004, Stegemann and Buenfeld 2003, Erzin and Cetin 2014, Erzin and Gul 2013, 
Sivapullaiah et al. 2009). This has been carried out through the fitting of composite functions to 
the experimental data by modifying the parameters of component non-linear functions in an 
iterative “training process”, which minimizes the residual between the predicted and measured 
outputs (Stegemann and Buenfeld 2003). For the soil modeling of different purposes, the 
applications of the ANN and fuzzy systems have been available in the literature increasingly 
(Narendra et al. 2006, Kayadelen et al. 2009, Ellis et al. 1995, Akbulut et al. 2004, Cal 1995, 
Levine et al. 1996, Najjar et al. 1996, Tutumluer and Seyhan 1998, Dayakar and Rongda 1999, 
Akbulut et al. 2003, Lee et al. 2003, Habibagahi and Bamdad 2003, Shahin et al. 2001, 2003, 
Sinha and Wang 2008, Yilmaz and Kaynar 2011). All the previous studies are relatively successful 
to model the soil behavior directly from experimental data due to the ability of artificial 
intelligence to learn and generalize the interactions among the variables. Tutumluer and Seyhan 
(1998) studied the ANN model for stress–strain relationships of granular materials through CD 
triaxial compression test data, and developed a successful simulation of nonlinear stress–strain 
behavior for lower strain levels that can be achieved using the ANN methodology. Habibagahi and 
Bamdad (2003) obtained a successful soil modeling due to the ANN technique for the 
characterization of mechanical behavior of unsaturated clays, in which they employed triaxial 
deformation measurements, deviatoric stress, volumetric deformation and suction pressure as the 
soil parameters. Akbulut et al. (2003) used the ANN for estimation of the shear strength from 
different grain size, moisture content and dry unit weight of soil samples, and found that the ANN 
technique are able to produce a reliable and simple prediction model for the shear strength of 
compacted soil samples. Goktepe et al. (2008) estimated the shear strength parameters of plastic 
clay on the basis of index properties using the neural network, and found that the ANN based 
model is superior as compared with regression. A different study performed by Kayadelen et al. 
(2009) presented the usage of artificial intelligence on the estimation of the internal friction angle 
of soil depending on the parameters of fine-grained percentage, coarse-grained percentage, liquid 
limit and bulk density. Yılmaz and Kaynar (2011) investigated the applicability of the ANN and 
ANFIS models for prediction of swell-potential of clayey soils. They found that radial basis 
function of the ANN exhibited a high performance than the regression for predicting the swell 
pressure, proposing the artificial intelligence techniques in the soil related problems for 
minimizing the uncertainties and the potential inconsistency of correlations. 

In spite of the extensive applications for modeling of soil characteristics in the literature in 
various problems due to the artificial intelligence, the overview of these efforts indicates a lack of 
attempt on the prediction of unconfined compressive strength of silty soil treated with jute fiber, 
steel fiber and bottom ash under different freeze-thaw cycles. The study presented herein employs 
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the ANNs and ANFIS to forecast the unconfined compressive strength of silty soil as the output 
variable, in terms of the independent (i.e., input) variables including the number of freeze-thaw 
cycle and the dosage rates of bottom ash, jute fiber, and steel fiber. The prediction ability of 
artificial intelligence has also been compared with nonlinear regression. Moreover, sensitivity 
analysis has been applied in order to see the relative importance of input variables used for 
developing models. The database of predictions has been collected from the previous studies 
(Güllü and Khudir 2014, Khudir 2014). The understanding of the interactions between the soil 
strength and the inclusion rates (i.e., bottom ash, steel fiber and jute fiber) under the various 
freeze-thaw cycles could fairly contribute to design of stabilizations in practice in viewpoint of 
effective parameter of inclusion. 
 
 
2. Data collection 

 
For the construction of database in the model developments of artificial intelligence, the 

experimental data has been collected from the previous efforts (Güllü and Khudir 2014, Khudir 
2014) that conducted extensive unconfined compressive strength (UCS) tests for treatment of silty 
soil under the freeze-thaw cycles of 0, 1, 2, and 3 (zero cycle means non-freezing-thawing tests). 
For the experimental study in detail the reader are referred to the corresponding studies (Güllü and 
Khudir 2014, Khudir 2014). 

In summary of the experimental work (Güllü and Khudir 2014, Khudir 2014) including 
materials and testings briefly, the soil used is a fine-grained soil that is low-plasticity silt (ML) 
according to the Unified Soil Classification System (USCS). It has maximum dry-unit weight of 
19 kN/m3 and optimum moisture content of 18% which were determined from the compaction tests 
conducted in accordance with ASTM D-1557. The bottom ash as a soil stabilizer is supplied from 
a domestic coal-based plant. Its particle gradation is varying from 0.075 mm to 4.74 mm, which 
corresponds to the particle sizes of fine to coarse sand. The uniformity properties (i.e., Cu, Cc) 
show that the bottom ash is a poorly graded material (or uniformly-graded material). Table 1 
presents some index and physical properties of soil and bottom ash used in the study. As for the 
fibers used (Fig. 1), the jute fiber was supplied from the carpet industry as a waste material. It has 
the length of 20-40 mm and the diameter of 1 mm with the specific gravity of 1.7. The steel fiber 
has the specific gravity of 7.85 and the length of 35 mm with the diameter of 5.5 mm. The dosage 
rates of both the jute and steel fibers used are 0.25%, 0.50%, 0.75% and 1.00% by dry weight of 
the soil. The mix proportions of bottom ash (by dry weight of the soil) are 10%, 20%, 30%, 40% 
and 50%. 

As for the summary of testings, they all for the experimental data collected have been carried 
out for unsoaked conditions (i.e., where the adequate drainage and unsaturated conditions are 
provided) on the basis of the findings from previous studies (Güllü and Hazirbaba 2010, Hazirbaba 
and Güllü 2010). No curing conditions of samples were tested due to conservative side and time 
saving. Cylindrical specimens were prepared in the diameter of 55 mm and the height of 110 mm 
conforming to a minimum of 2:1 height to diameter ratio. Samples were mixed at the optimum 
water content of native soil (18%) and then compacted following the modified proctor energy 
(ASTM D-1557 2012) to the dry unit weight which is being minimum 95% of the maximum dry 
unit weight of native soil. UCS tests have been conducted in accordance with the procedure in 
ASTM D-2166 (2006). The compression loading machine is a universal testing machine with a 
maximum load capacity of 100 kN. The loading was continued to an axial strain of 35% for the 
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Table 1 Some index properties of soil and bottom ash (Khudir 2014) 

Property Silt Bottom ash
Specific gravity 2.72 2.1 

Cu - 2 

Cc - 0.9 

Liquid limit (%) 37 - 

Plastic limit (%) 25 - 

Plasticity index (%) 12 NP 

Classification (USCS) ML SP 

Maximum dry unit weight (kN/m3)* 19 8.7 

Optimum moisture content (%)* 18 18 

NP: non-plastic, *Modified proctor 
 
 

 
(a) Jute fiber (b) Steel fiber 

Fig. 1 Jute and steel fibers used by Güllü and Khudir (2014) and Khudir (2014) 
 
 
jute fiber. For the remaining inclusions, the loading was continued until the failure or the load 
value indicates a decrease with an increasing strain. Thus, the UCS performance corresponds to the 
maximum (peak) stress attained. 

As for the freezing-thawing tests, the closed-system freezing conditions (i.e., where no source 
of water is available during the freezing process beyond that originally in the voids of the soil) was 
applied (Jones 1987). For the freezing, the specimens in the freezing apparatus were subjected to 
the temperature of -18oC for 24 hr to obtain a complete frost penetration. Then, they were allowed 
to thaw at a temperature of 18oC for 24 hr in a room with the relative humidity of 100%. After the 
freezing and thawing process of the corresponding cycles (i.e., 0, 1, 2, 3), the specimens were 
performed for UCS testing. 
 
 

3. Methodology 
 

3.1 Artificial neural network (ANN) 
 
The ANN approach is a computer methodology that attempts to simulate some important 

features of the human nervous system, in other words, the ability to solve problems by applying 
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information gained from past experience to new problems or case scenarios. Analogous to a 
human brain, the ANN uses many simple computational elements, named artificial neurons, 
connected by variable weights. The ANN modeling consists of two steps: to train and to test the 
network. During the training period, the network makes use of the inductive-learning principle to 
learn from a set of examples called the training set. Test data could not be used in training (Haykin 
1998). Radial basis neural network (RBNN), multi-layer perceptrons (MLP) and generalized 
regression neural network (GRNN) approaches have been employed in the presented study. 

 
3.1.1 Radial basis neural network (RBNN) 
RBNN was introduced into the neural network literature by Broomhead and Lowe (1988). A 

RBNN model is motivated by the locally tuned response observed in biological neurons. Neurons 
with a locally tuned response characteristic can be found in several parts of the nervous system, for 
example, cells in the visual cortex sensitive to bars oriented in a certain direction or other visual 
features within a small region of the visual field (Poggio and Girosi 1990). 

RBNN utilizes a clustering process on the input data before presentation to the network and 
different non-linear activation functions that are locally tuned to cover a region of the input space. 
The schematic diagram of RBNN structure shown in Fig. 2 consists of an input layer, a single 
hidden layer containing the same number of nodes as the cluster centers, and an output layer 
(Leonard et al. 1992). 

The basis functions in the hidden layer produce a significant non-zero response to input 
stimulus only when the input falls within a small localized region of the input space. Hence, this 
paradigm is also known as a localized receptive field network (Lee and Chang 2003). 
Transformation of the inputs is essential for fighting the curse of dimensionality in empirical 
modeling. The type of input transformation of RBNN is the local nonlinear projection using a 
radial fixed shape basis function. After nonlinearly squashing the multi-dimensional inputs without 
considering the output space, the radial basis functions play a role as regressors. Since the output 
layer implements a linear regressor, the only adjustable parameters are the weights of this regressor. 
These parameters can therefore be determined using the linear least square method, which gives an 
important advantage for convergence (Gencel et al. 2013). More theoretical information on RBNN 
can be found in Kocabas and Unal (2010). 

 
 

 

Fig. 2 Schematic diagram of RBNN structure 
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RBNN method does not perform parameter learning as in the back propagation networks, but 
just performs linear adjustment of the weights for the radial bases. This characteristic of RBNN 
gives the advantage of a very fast converging time without local minima, since its error function is 
always a convex (Kisi 2008, Kocabas and Unal 2010). In this study, different numbers of hidden 
neurons and spread coefficients are examined for the RBNN models (Kisi 2009). 

 

3.1.2 Multi-layer perceptrons (MLP) 
A MLP model has one or more hidden layers, whose computation nodes are correspondingly 

called hidden neurons of hidden units. The function of hidden neurons is to intervene between the 
external input and the network output in some useful manner. By adding one or more hidden layers, 
the network is enabled to extract higher order statistics. In a rather loose sense, the network 
acquires a global perspective despite its local connectivity due to the extra set of synaptic 
connections and the extra dimension of neural network interconnections. Detailed theoretical 
information about MLP can be found in Haykin (1998). 

The network structure of a MLP model constitutes an input layer, a single hidden layer 
containing the same number of nodes as cluster centers, and an output layer. MLP can have more 
than one hidden layer; however theoretical work has shown that a single hidden layer is sufficient 
for an ANN to approximate any complex nonlinear function (Cybenco 1989, Homik et al. 1989). 
Therefore, a one-hidden-layer MLP was used in this paper. Throughout all MLP simulations 
adaptive learning rates were used to speed up training. The developed MLP models were trained 
using a Levenberg–Marquardt technique here because this technique is more powerful than the 
conventional gradient descent techniques (Hagan and Menhaj 1994, El-Bakyr 2003, Cigizoglu and 
Kisi 2005). While back propagation with gradient descent technique is a steepest descent 
algorithm, the Levenberg–Marquardt algorithm is an approximation to Newton’s method 
(Marquardt 1963). More detailed information on Levenberg–Marquardt algorithm is available in 
Hagan and Menhaj (1994). 

 

3.1.3 Generalized regression neural network (GRNN) 
The basics of GRNN are given in Specht (1991) and Tsoukalas and Uhrig (1997). A GRNN 

model is composed of four layers: an input layer, a pattern layer, a summation layer, and an output 
layer. The number of input units in the first layer is equal to the total number of parameters. The 
first layer is fully connected to the second, pattern layer, where each unit represents a training 
pattern and its output is a measure of the distance of the input from the stored patterns. Each 
pattern layer unit is connected to two neurons in the summation layer: the S-summation neuron 
and the D-summation neuron. The S-summation neuron computes the sum of the weighted outputs 
of the pattern layer while the D-summation neuron calculates the unweighted outputs of the pattern 
neurons. For the D-summation neuron, the connection weight is unity. The output layer merely 
divides the output of each S-summation neuron by that of each D-summation neuron, yielding the 
predicted value to an unknown input vector x as 
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where n indicates the number of training patterns and the Gaussian D function in Eq. (1) is defined 
as 
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where p indicates the number of elements of an input vector. xi and xij represent the jth element of 
x and xi, respectively. The ζ is generally referred to as the spread factor, whose optimal value is 
often determined experimentally (Kim et al. 2003). GRNN method does not require an iterative 
training procedure as in MLP. GRNN is employed for estimation of continuous variables, as in 
standard regression techniques. It is related to the radial basis function network and is based on a 
standard statistical technique called kernel regression (Specht 1991). The joint probability density 
function (pdf) of x and y is estimated during a training process in GRNN. Because the pdf is 
derived from training data with no preconceptions about its form, the system is perfectly general. 
The success of a GRNN model depends heavily on the spread factors (Specht 1991, Wasserman 
1993): the larger the spread, the smoother the function approximation. Too large a spread means a 
lot of neurons will be required to fit a fast changing function. Too small a spread means many 
neurons will be required to fit a smooth function, and the network may not generalize well. 

 

3.2 Adaptive neuro-fuzzy inference system (ANFIS) 
 

ANFIS approach, first introduced by Jang (1993), is a universal approximator and, as such, is 
capable of approximating any real continuous function on a compact set to any degree of accuracy 
(Unal et al. 2010). Therefore, in parameter prediction, where the given data are such that the 
system associates measurable system variables with an internal system parameter, a functional 
mapping may be constructed by ANFIS that approximates the process of estimation of the internal 
system parameter (Kiszka et al. 1985). 

As a simple example, a fuzzy inference system with two inputs x and y and one output f is 
assumed. The first-order Sugeno fuzzy model, a typical rule set with two fuzzy If–Then rules can 
be expressed as (Kisi and Fedakar 2014) 

 

Rule 1:  IF x is A1 AND y is B1 THEN 1111 ryqxpf   (3)
 

Rule 2:  IF x is A2 AND y is B2 THEN 2222 ryqxpf   (4)
 

Here, the output f is the weighted average of the individual rules outputs and is itself a crisp 
value. More information on ANFIS can be found in Jang (1993). 

 

3.3 Sensitivity analysis 
 

Sensitivity analysis on how input parameters are dominant on UCS has been performed using 
Weights method, which was suggested by Garson (1991) and repeated by Goh (1995). Weights 
method is a procedure for partitioning the connection weights to determine the relative importance 
of the different independent variables on dependent variable. This method basically contains 
partitioning the input-output connection weights of each hidden neuron into components related to 
each input neuron. Gevrey et al. (2003) proposed the following equations 
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where ni and nh stand for the number of input and hidden neurons, respectively. Wih is the 
multiplication of input weight value by output weight value and RI is the relative importance of 
each independent variable. 

 
 

4. Model development 
 

Artificial neural networks (ANNs), namely radial basis neural network (RBNN), multi-layer 
perceptrons (MLP) and generalized regression neural network (GRNN), adaptive neuro-fuzzy 
inference system (ANFIS) and nonlinear regression (NLR) models have been used to forecast the 
UCS of silty soil treated with bottom ash (BA), jute fiber (JF), and steel fiber (SF) under freeze-
thaw cycle (FTC). Therefore, UCS has been taken as a dependent variable and the percentages of 
bottom ash (BA), jute fiber (JF) and steel fiber (SF) and number of freeze-thaw cycles (FTC) as 
independent variables. Looney (1996) recommended 25% of data for testing. The data presented 
herein were employed in developing models. 49 experimental datasets were used. 37 data 
(approximately 75%) were selected to train the models and the remaining 12 data (approximately 
25%) were selected to test the models. Since the testing dataset was not utilized for the training 
period, it could be strongly become a good indicator to test the accuracy of the models produced. 

In order to assess and compare the results of the developed models, root mean square error 
(RMSE), mean absolute error (MAE) and determination coefficient (R2) statistics were used. R2 
measures the degree to which two variables are linearly related. RMSE and MAE provide different 
types of information about the predictive capabilities of the model (Karunanithi et al. 1994). 
RMSE measures the goodness-of-fit relevant to high UCS values whereas MAE yields a more 
balanced perspective of the goodness-of-fit at moderate UCS. In the paper, RMSE was also taken 
into consideration as main evaluation criterion (Kisi 2009). RMSE, MAE and R2 statistics are 
shown as 
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in which n is the number of data, UCS is the unconfined compressive strength and UCS  is mean 
of the UCS. 
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In the present paper, different RBNN, MLP, GRNN, and ANFIS models were established using 
MATLAB language to predict UCS. The common trial and error method was used in order to find 
the best model that gave the lowest RMSE and MAE and the highest R2 and its parameters (Kisi 
2009). 

Before applying RBNN, MLP and GRNN to the data, the training input and output values were 
normalized using the following equation 

 

min

max min

ix x
a b

x x





 (10)

 

where xmin and xmax denote the minimum and maximum values of the data set. Different values can 
be assigned for the scaling factors a and b. There are no fixed rules as to which standardization 
approach should be used in particular circumstances (Kisi 2009). Range of 0.2-0.8 increases the 
extrapolation ability of the ANN models (Kisi and Cobaner 2009, Cigizoglu 2003, Modi et al. 
2003). Also, Cigizoglu (2003) showed that scaling input data between 0.2 and 0.8 gives the ANNs 
the flexibility to estimate beyond the training range. For this reason, the a and b were taken as 0.6 
and 0.2 herein, respectively. 

For RBNN analysis, different spread coefficients and number of hidden neurons which range 
from 0.1 to 2.0 and from 1 to 30 respectively was tried to obtain the best model that had minimum 

 
 

Table 2 Statistical performance of RBNN models 

Models 
Training Testing 

RMSE (kPa) MAE (kPa) R2 RMSE (kPa) MAE (kPa) R2 

RBNN (0.1, 7) 163.1 125.8 0.775 339.5 283.3 0.655

RBNN (0.2, 19) 90.3 59.5 0.931 105.3 81.8 0.938

RBNN (0.3, 17) 74.7 56.8 0.953 105.4 73.0 0.951

RBNN (0.4, 11) 87.4 65.1 0.935 65.8 55.5 0.979

RBNN (0.5, 15) 79.0 56.5 0.947 63.7 50.8 0.981

RBNN (0.6, 14) 76.0 54.5 0.951 60.6 48.6 0.984

RBNN (0.7, 18) 75.3 51.8 0.952 72.2 63.9 0.980

RBNN (0.8, 14) 83.3 57.8 0.941 65.4 53.8 0.981

RBNN (0.9, 14) 90.0 63.6 0.932 104.0 78.8 0.942

RBNN (1.0, 16) 81.1 57.3 0.944 89.7 73.4 0.962

RBNN (1.1, 15) 79.9 58.4 0.946 55.4 45.1 0.988

RBNN (1.2, 16) 74.2 49.9 0.953 58.8 52.2 0.987

RBNN (1.3, 10) 92.2 70.8 0.928 76.1 68.2 0.973

RBNN (1.4, 10) 92.4 71.0 0.928 76.4 68.3 0.973

RBNN (1.5, 13) 84.0 59.9 0.940 77.0 60.8 0.975

RBNN (1.6, 12) 94.6 69.7 0.924 89.6 65.0 0.959

RBNN (1.7, 14) 88.8 63.5 0.933 82.0 70.9 0.966

RBNN (1.8, 10) 106.1 78.1 0.905 86.4 53.3 0.958

RBNN (1.9, 10) 106.2 78.1 0.905 86.5 53.4 0.958

RBNN (2.0, 10) 106.4 78.2 0.904 86.6 53.5 0.958
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Table 3 Statistical performance of MLP models 

Models 
Training Testing 

RMSE (kPa) MAE (kPa) R2 RMSE (kPa) MAE (kPa) R2 

MLP (logsig, logsig,6) 20.7 14.7 0.996 63.1 48.5 0.987

MLP (tansig, tansig, 5) 72.9 49.2 0.955 83.8 63.8 0.963

MLP (purelin, purelin) 126.3 95.3 0.865 117.1 97.4 0.926

MLP (tansig, logsig, 6) 48.1 39.4 0.981 81.2 65.9 0.964

MLP (logsig, tansig, 7) 104.4 78.2 0.911 85.5 75.7 0.967

MLP (logsig, purelin, 5) 56.3 42.7 0.973 89.1 69.5 0.954

MLP (tansig, purelin, 8) 8.5 5.9 0.999 57.9 47.3 0.981

MLP (purelin, logsig) 123.5 93.2 0.871 119.6 97.6 0.920

MLP (purelin, tansig) 122.5 90.8 0.873 114.0 91.7 0.928
 
 

Table 4 Statistical performance of GRNN models 

Models 
Training Testing 

RMSE (kPa) MAE (kPa) R2 RMSE (kPa) MAE (kPa) R2 

GRNN (0.10) 56.0 38.8 0.977 142.5 101.3 0.882 

GRNN (0.11) 69.3 48.4 0.965 138.0 100.8 0.891 

GRNN (0.12) 80.8 57.0 0.952 136.4 101.4 0.896 

GRNN (0.13) 90.7 64.5 0.939 136.8 102.7 0.897 

GRNN (0.14) 99.2 70.9 0.927 138.5 104.2 0.897 

GRNN (0.15) 106.8 76.4 0.916 141.1 105.9 0.895 

GRNN (0.16) 113.5 81.0 0.906 144.2 107.4 0.893 

GRNN (0.17) 119.6 85.1 0.896 147.5 108.8 0.891 

GRNN (0.18) 125.2 88.9 0.888 151.1 109.8 0.889 

GRNN (0.19) 130.5 92.4 0.880 154.9 111.4 0.888 

GRNN (0.20) 135.6 96.3 0.873 158.9 114.3 0.888 

GRNN (0.30) 187.5 142.4 0.828 216.6 171.2 0.901 

GRNN (0.40) 236.9 184.3 0.797 279.6 237.8 0.903 

GRNN (0.50) 270.6 212.4 0.775 322.6 280.3 0.897 

GRNN (0.60) 291.6 231.5 0.761 349.0 306.2 0.890 

GRNN (0.70) 305.1 244.5 0.751 365.7 322.5 0.885 

GRNN (0.80) 314.0 253.1 0.745 376.6 333.2 0.881 

GRNN (0.90) 320.2 259.1 0.741 384.2 340.6 0.878 

GRNN (1.00) 324.7 263.4 0.738 389.6 345.9 0.876 
 
 

RMSE and MAE and maximum R2. The developed RBNN models are given together with the 
statistical performances in training and testing periods in Table 2. In this table, RBNN (0.1, 7) 
denote a RBNN model with a spread coefficient of 0.1 and a number of neuron in hidden layer of 
7. In order to develop the best MLP model, Levenberg-Marquardt backpropagation training 
function and different transfer functions for input and output were used to obtain the best model. 
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Table 5 Statistical performance of ANFIS models 

Models 
Training Testing 

RMSE (kPa) MAE (kPa) R2 RMSE (kPa) MAE (kPa) R2 

ANFIS (3, Gaussmf, Constant) 53.6 32.1 0.976 61.6 50.9 0.980

ANFIS (3, Gauss2mf, Constant) 47.6 27.4 0.981 91.6 72.6 0.965

ANFIS (3, Gbellmf, Constant) 48.9 27.9 0.980 71.2 57.4 0.978

ANFIS (3, Pimf, Constant) 48.9 30.0 0.980 96.3 75.6 0.961

ANFIS (3, Trimf, Constant) 53.6 31.5 0.976 58.3 46.6 0.983

ANFIS (3, Trapmf, Constant) 50.0 30.4 0.979 94.9 78.2 0.957

 
 
The utilized transfer functions are log-sigmoid (logsig), hyperbolic tangent sigmoid (tansig) and 
linear (purelin). Additionally, various numbers of hidden nodes varying from 1 to 30 were tried. 
The best generated MLP models and their statistical performances in training and testing are 
presented in Table 3. In this table, for MLP (logsig, tansig, 7) model, the first term (logsig), second 
term (tansig) and last term (7) represent input and output transfer functions and number of hidden 
nodes, respectively. In GRNN analysis, different spread coefficients between 0.1 and 1 were 
employed to find the one that showed minimum RMSE and MAE and maximum R2 for the given 
problem. The produced GRNN models with the evaluation statistics are given in Table 4. In this 
table, GRNN (0.10) indicates a GRNN model has a spread coefficient of 0.10. For the ANFIS 
applications, different membership functions and a different number of membership functions (2 
and 3) were utilized. The employed membership functions are gaussian curve built-in (gaussmf), 
gaussian combination (gauss2mf), generalized bell-shaped built-in (gbell), π-shaped built-in (pimf), 
triangular-shaped built-in (trimf), and trapezoidal-shaped built-in (trapmf) for input and constant 
and linear for output. The best developed ANFIS models for each input membership function are 
presented along with their statistical performances in training and testing in Table 5. In this table, 
ANFIS (3, Gaussmf, Constant) shows an ANFIS model having three gaussian curve built-in 
membership functions and constant output membership function. The results of statistical 
performances of the developed AI models will be discussed in the next section. 

The nonlinear regression (NLR) finds a nonlinear model between independent and dependent 
variables. Therefore, in this study, nonlinear regression has been carried out on the 37 
experimental data and tested using the remaining 12 data in order to determine the relationship 
between four independent variables and UCS testing results. Also, since nonlinear regression 
(NLR) is a method that is commonly used for prediction, the statistical performances of the 
developed AI models will be compared with those of NLR in the next section. 
 
 
5. Results and discussion 
 

The statistical parameters of BA, JF, SF, FTC and UCS for training, testing and whole datasets 
are given in Table 6. In this table, the xmean, Sx, Cv, Csx, xmax and xmin demonstrate the mean, standard 
deviation, variation and skewness coefficients, maximum and minimum, respectively. It is clear 
from the table that the distributions of BA, JF, SF and FTC are highly skewed, moderately skewed, 
highly skewed and approximately symmetric respectively for all datasets. While showing a 
moderately skewed distribution for the training and testing data, UCS shows an approximately 
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symmetric distribution for whole data. Dependent and independent variables show high variations 
for all data sets. It can be said from Table 6 that JF parameter has the highest magnitude of 
correlation coefficient, while BA parameter has the lowest magnitude. In addition, following JF, 
the parameters having the highest magnitude are SF and FTC, respectively. As regard to the 
correlation coefficient of the datasets, Rumsey (2011) suggested the following guide for the values 
of correlation coefficient (R): (i) If a model has |R| = 1, a perfect correlation exists between input 
variable (BA, JF, SF, and FTC) and output variable (UCS). (ii) If a model has |R| = 0.70, a strong 
correlation exists between input variable and output variable. (iii) If a model has |R| = 0.50, a 
moderate correlation exists between input variable and output variable. (iv) If a model has |R| = 
0.30, a weak correlation exists between input variable and output variable. (v) If a model has |R| = 
0, no correlation exists between input variable and output variable. For the negative values of 
correlation coefficient, it is said that there is a negative or downhill correlation that means as input 
(independent) variable increases, output (dependent) variable decreases. According to the 
suggestions by Rumsey (2011), the results in Table 6 imply that the inclusion of jute fiber to the 
natural soil in this paper produced the highest correlation with UCS, on which the magnitude 
qualitatively defined as “strong to perfect”. This is followed by variable SF with the magnitude 
association of “weak to moderate”. Bottom ash and freeze-thaw cycle have weak correlation with 
UCS. 

The results of the RBNN, MLP, GRNN and ANFIS models together with statistical 
performance criteria for both training and testing periods are given in Tables 2-5, respectively. 
While the learning capability of the developed models is determined during the training period, the 
performance of the model developed in the training period is always evaluated during the testing 
period that indicates the generalization capability of the model to be applicable in practice (Güllü 

 
 

Table 6 Statistical parameters of each data set 

Dataset Data type xmean Sx 
Cv 

(Sx / xmean)
Csx xmax xmin 

Correlation 
with UCS 

Training 

BA (%) 5.946 10.661 1.793 1.629 40 0 -0.130 

JF (%) 0.264 0.363 1.377 0.937 1 0 0.868 

SF (%) 0.223 0.332 1.490 1.335 1 0 -0.337 

FTC 1.297 1.222 0.942 0.259 3 0 -0.104 

UCS (kPa) 612.730 348.559 0.569 0.772 1450 114 1.000 

Testing 

BA (%) 7.500 15.448 2.060 2.275 50 0 -0.168 

JF (%) 0.271 0.376 1.389 0.984 1 0 0.958 

SF (%) 0.229 0.345 1.504 1.424 1 0 -0.462 

FTC 1.500 1.000 0.667 0.000 3 0 -0.386 

UCS (kPa) 587.500 430.120 0.732 0.819 1485 126 1.000 

Whole 

BA (%) 7.432 11.355 1.528 1.392 50 0 0.034 

JF (%) 0.297 0.369 1.242 0.607 1 0 0.819 

SF (%) 0.189 0.283 1.496 1.661 1 0 -0.358 

FTC 1.297 1.167 0.900 0.242 3 0 -0.219 

UCS (kPa) 693.189 363.868 0.525 0.345 1485 114 1.000 
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2014). Hence, the error performances of the models in the testing period have been considered for 
the discussion. RMSE, MAE and R2 statistics should be taken into consideration with together in 
order to make a decision the best model. As the training data set is not utilized for the testing 
period, it can be seen from the determination coefficients presented in Tables 2-5 that there is no 
overfitting in the developed AI models. This situation enhances the quality of the generated models 
and provides with robust estimations of unconfined compressive strength. As for RBNN model 
parameters, the best number of hidden neurons for each spread coefficient is given in Table 2. It 
can be generally seen from Table 2 that the numbers of hidden neurons are not in a regular trend 
(decreased or increased) with the evaluation criteria of the generated RBNN models and vary 
between 7 and 19. For MLP analysis, the best parameters obtained per trial are presented in Table 
3. This table shows that when purelin transfer function is employed in hidden layer, MLP models 
give the worst predictions with regard to statistical performance. But the use of this transfer 
function in output layer makes better estimations that have less RMSE and MAE and higher R2. 
The best neuron number in hidden layer is found to be between 5 and 8. It can be clear from the 
results of GRNN models given in Table 4 that spread coefficient is between 0.11 and 0.14 for the 
optimal solution of this type of problem. Table 4 also shows that increase in the spread value gives 
rise to an increment in RMSE and MAE statistics. As for ANFIS parameters, three membership 
functions and constant as output membership function are suggested to be utilized based on the 
results presented in Table 5. These findings may be explained via highly nonlinear problem taken 
into consideration in the presented study. 

As respects the performance assessment of the developed AI models, Ferguson (2009) proposed 
the following guide for the values of determination coefficient (R2): (i) If a model yields R2 = 0.04, 
there is a minimum relationship between the estimated and measured values. (ii) If a model yields 
R2 = 0.25, there is a moderate relationship between the estimated and measured values. (iii) If a 
model yields R2 = 0.64, there is a strong relationship between the estimated and measured values. 
As the testing periods considered, the R2 values of the built AI models presented in Tables 2-5 
range from 0.655 to 0.988, which means that the AI models for UCS results in the relationships 
with reasonable performance demonstrating strong level. It is well known that only R2 value is not 
a good indicator of estimation accuracy of a developed model. The reason of this is that R2 value 
may not change by variation of dependent variable values of a model equally. Consequently, the 
statistical performances of error in the developed models should be considered as well as R2. It can 
be deduced from this that lower error values with higher R2 often show a more precise forecasting. 
It is seen from the developed RBNN models presented in Table 2 that the RBNN (1.1, 15) model 
has the lowest RMSE and MAE and the highest R2 values of 55.4 kPa, 45.1 kPa, and 0.988, 
respectively. For the MLP models, while MLP (logsig, logsig, 6) has maximum R2 value of 0.987, 
MLP (tansig, purelin, 8) has minimum RMSE and MAE values of 57.9 kPa and 47.3 kPa, 
respectively. As for the GRNN models, GRNN (0.40) has the highest R2 value of 0.903. As the 
developed GRNN models are investigated in terms of RMSE and MAE statistics, it is found that 
GRNN (0.12) and GRNN (0.11) models have the smallest RMSE value of 136.4 kPa and MAE 
value of 100.8 kPa, respectively. From the statistically evaluation of the built ANFIS models, it can 
be said that ANFIS (3, Trimf, Constant) model has the lowest RMSE and MAE values of 58.3 kPa 
and 46.6 kPa, respectively and the highest R2 value of 0.983. It is evident from Tables 2-5 that 
errors in most of RBNN, MLP and ANFIS models relatively make good estimations with an 
acceptable degree of accuracy. Based on the performance strategy discussed above (i.e., the 
models with lower RMSE and MAE and higher R2) and the main evaluation criterion (RMSE) 
described in the previous section, it is made decision that RBNN (1.1, 15), MLP (tansig, purelin, 8 
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Table 7 Statistical performance and p-value of the best AI models and NLR model 

Model inputs Model output Model RMSE (kPa) MAE (kPa) R2 p-value 

BA 
JF 
SF 

FTC 

UCS (kPa) 

RBNN (1.1, 15) 55.4 45.1 0.988 0.000 

MLP (tansig, purelin, 8) 57.9 47.3 0.981 0.000 

GRNN (0.12) 136.4 101.4 0.896 0.000 

ANFIS (3, Trimf, Constant) 58.3 46.6 0.983 0.000 

NLR 13714.8 97.4 0.926 0.000 
 
 

GRNN (0.12) and ANFIS (3, Trimf, Constant) models are found the best performed ones among 
the developed RBNN, MLP, GRNN, and ANFIS models. Herein, it should be noted that all input 
variables (BA, JF, SF, and FTC) used in the evolutions are included via the generated models. 

The predictive ability of the best AI models and nonlinear regression model is given in Table 7. 
For the models presented in this table, the p-values have also been estimated at the significance 
level of 5%, which is commonly employed in practice. A small numerical p-value (< 0.05) shows a 
statistically significant relationship, whereas a large p-value (> 0.05) demonstrates that there is not 
a statistically relationship. The estimated p-values are given together with the statistical 

 
 

 

 

Fig. 3 Comparison between predicted (by RBNN) and measured values of UCS 
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Fig. 4 Comparison between predicted (by MLP) and measured values of UCS 
 
 

performances of models in Table 7. As seen from Table 7, the AI and NLR models provide a 
statistically significant fitting of relationship (p < 0.05) between the predicted and measured values 
of UCS. Also, it is clear from this table that even though NLR has lower MAE and higher R2 than 
GRNN model, as having the highest RMSE, NLR makes the worst prediction among the 
developed models. Among the produced AI models, GRNN gives the worst estimation. Hence, 
between the AI methods used in the study, RBNN, MLP and ANFIS models can be proposed for 
prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute fiber 
and steel fiber under freeze-thaw cycles. Moreover, these models provide a good ability deliver 
accurate predictions for the training dataset. Additionally, when examined the results of the models 
in the viewpoint of the evaluation criteria used, RBNN makes slightly closer prediction to the 
measured UCS than MLP and ANFIS. Estimated UCS values obtained with the AI and NLR 
methods are graphically compared with the measured UCS values in Figs. 3-7. As seen from the 
figures, for the peak values of UCS (≥ 800 kPa) the predictions of RBNN, MLP and ANFIS 
models are closer to the measured value of UCS. In addition to this, these models are well-graded 
with actual UCS. Also, it is seen from the figures that NLR model gives closer estimate to exact fit 
line with higher R2 than GRNN model. 

In order to examine the sensitivity of the UCS to the inputs and to gain an insight into which 
independent variable is the most effective parameter in the determination of UCS via the best 

0

800

1600

0 800 1600

P
re

di
ct

ed
 U

C
S

 (
kP

a)

Measured UCS (kPa)

R² = 0.981

0

800

1600

0 3 6 9 12

U
C

S
 (

kP
a)

Number of data

Measured MLP

456



 
 
 
 
 
 

On the prediction of unconfined compressive strength of silty soil stabilized with... 

 

 

Fig. 5 Comparison between predicted (by GRNN) and measured values of UCS 
 
 

model, sensitivity analysis has been carried out on RBNN (1.1, 15) output using Weights method. 
The connection weights of RBNN (1.1, 15) model are given in Table 8. The relative contribution 
(or % contribution) of each input parameter has been calculated using the weight values presented 
in Table 8. The results of sensitivity analysis are shown in Fig. 8. As can be seen from Fig. 8, jute 
fiber is found to be the most effective parameter in the prediction of UCS. It is followed by freeze-
thaw cycle variable that has a close relative contribution to jute fiber. Bottom ash and steel fiber 
has the lowest contribution to strength, which are equal to each other in magnitude. The reason to 
be the most effective variable of jute fiber on the UCS may be attributed to the frictional 
interactions of jute fiber and soil. Since jute fiber is generally stronger and stiffer than the natural 
soil, the deformation is resisted by the jute fiber in the direction of the tensile strength by frictional 
interaction between jute fiber and soil (Güllü and Khudir 2014). Güllü and Khudir (2014) found 
that the contributions of steel fiber are lower than the ones of jute fiber. As for freeze-thaw cycle, 
most of the engineering properties (e.g., strength) of soils are severely affected by freezing-
thawing period (Zaimoglu 2010). Here, an emphasis should be given that the results of sensitivity 
analyses represent the composition due to 4 parameters (BA, JF, SF and FTC). However, for a 
strong deduction of the parameter in most prominent to the strength, they should be tried in 
different combinations (i.e., (BA, SF, FTC), (BA, JF, FTC), (JF, SF, FTC), etc.), which is a 
separate topic of investigation for future work. 
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Fig. 6 Comparison between predicted (by ANFIS) and measured values of UCS 
 
 
It should be noted that the proposed models are usually able to estimate within the data set 

employed for developing models. If more data become available, the models can be advanced in 
order to make the estimations for a wider data range. Here, it is important to note that the 

 
 

Fig. 7 Comparison between predicted (by NLR) and measured values of UCS 
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Fig. 7 Continued 
 
 

importance of engineering judgment in the interpretation of the estimated UCS values should be 
taken into consideration in practice. The estimations obtained from the developed models can be 
usually valid for use in preliminary design states and cautiously be employed for the final 
decision-making. 

Considering UCS tests to be time consuming and expensive, it can emphasized the using 
artificial intelligence techniques for predicting UCS, in terms of the percentages of the stabilizers 
utilized and the number of freeze-thaw cycle, could be a beneficial tool to be employed for 
preliminary identification of material or/and a base of judgment for applicability of the UCS values. 

 
 

Table 8 Connection weights of RBNN (1.1, 15) model 

Number of 
hidden neuron 

Weights input layers 
Weights output layer

BA JF SF FTC 

1 0.2 0.8 0.2 0.2 1364.64625665502

2 0.2 0.5 0.2 0.2 -6280.40269528205

3 0.2 0.2 0.8 0.2 3.98433611024 

4 0.2 0.2 0.8 0.4 -3.80891139955 

5 0.2 0.8 0.2 0.8 -1477.52223089464

6 0.2 0.2 0.2 0.4 2092.22842915382

7 0.2 0.2 0.2 0.2 -5068.29529355041

8 0.2 0.35 0.2 0.2 9919.71825318400

9 0.5 0.2 0.35 0.8 2.26282075317 

10 0.2 0.5 0.2 0.6 -7746.45387028618

11 0.5 0.65 0.2 0.8 -1.82097901553 

12 0.2 0.8 0.2 0.4 -1487.00575750704

13 0.2 0.5 0.2 0.8 1410.38197360746

14 0.2 0.65 0.2 0.6 7829.12853651845

15 0.2 0.65 0.2 0.4 -565.77424365523
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Fig. 8 Sensitivity analysis of RBNN output 
 
 

6. Conclusions 
 
In this paper, artificial intelligence techniques, namely RBNN, MLP, GRNN and ANFIS, and 

NLR method have been used in the estimation of the UCS of silty soil treated with bottom ash, jute 
fiber steel fiber under freeze-thaw cycles, with the investigation of their accuracy and applicability. 
In the construction of AI models (RBNN, MLP, GRNN, ANFIS and NLR), input parameters were 
established by BA, JF, SF and FTC, during the prediction of UCS as output variable. Performances 
of the models were examined using RMSE, MAE and R2 statistics. Moreover, sensitivity analysis 
has been performed for the best model of AI, in order to understand the most prominent parameter 
of the input variables on the UCS. On the basis of the evaluations due to the performances of the 
model developments and sensitivity analysis, the following conclusions could be drawn from the 
present study. 

 

 As compared with regression performances, RBNN, MLP, GRNN and ANFIS approaches 
are found to be more able to learn the relationship between input and output variables, and 
thus could be employed for forecasting of the UCS of silty soil treated with bottom ash, jute 
fiber and steel fiber under freeze thaw cycles. 

 Comparing with measured data, the predicted UCS responses by the all AI methods yield 
statistically significant results (p < 0.05), which imply that all AI model employed for the 
present case of the study are applicable. 

 Among the AI methods, RBNN is found to perform better results (RMSE = 55.4 kPa, MAE 
= 45.1 kPa, and R2 = 0.988). 

 Sensitivity analysis demonstrates that JF is the most prominent parameter (37.5%) on the 
contribution to UCS. This is followed by FTC (31%), BA (15.7%), and SF (15.7%), 
respectively. 
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