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Abstract.   In this work, an efficient and simple quasi-3D hyperbolic shear deformation theory is developed for 
bending and vibration analyses of functionally graded (FG) plates resting on two-parameter elastic foundation. The 
significant feature of this theory is that, in addition to including the thickness stretching effect, it deals with only 5 
unknowns as the first order shear deformation theory (FSDT). The foundation is described by the Pasternak (two-
parameter) model. The material properties of the plate are assumed to vary continuously in the thickness direction by 
a simple power law distribution in terms of the volume fractions of the constituents. Equations of motion for thick FG 
plates are obtained within the Hamilton’s principle. Analytical solutions for the bending and free vibration analysis 
are obtained for simply supported plates. The numerical results are given in detail and compared with the existing 
works such as 3-dimensional solutions and those predicted by other plate theories. It can be concluded that the 
present theory is not only accurate but also simple in predicting the bending and free vibration responses of 
functionally graded plates resting on elastic foundation. 
 

Keywords:    bending; free vibration; functionally graded plate; elastic foundation; quasi-3D hyperbolic 
shear deformation theory 
 
 
1. Introduction 
 

Functionally graded materials (FGMs) are a class of composites that have continuous variation 
of material properties from one surface to another and thus eliminate the stress concentration 
found in laminated composites. A typical FGM is made from a mixture of two material phases, for 
example, a ceramic and a metal. The reason for the increasing use of FGMs in a variety of 
aerospace, automotive, civil, and mechanical engineering structures is that their material properties 
can be tailored to different applications and working environments (Reddy 2000, Qian and Batra 
2005, Bachir Bouiadjra et al. 2013, Attia et al. 2015, Hamidi et al. 2015, Darılmaz 2015, Ebrahimi 
and Dashti 2015, Bouguenina et al. 2015, Akbaş 2015, Arefi 2015, Pradhan and Chakraverty 2015, 
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Kar and Panda 2015, Bouderba et al. 2016, Beldjelili et al. 2016, Ebrahimi and Habibi 2016, Hadji 
et al. 2016, Moradi-Dastjerdi 2016, Laoufi et al. 2016, Bousahla et al. 2016, Ebrahimi and Salari 
2016, Trinh et al. 2016). 

Plates resting on elastic foundation can be found in various structural engineering fields. A two-
parameter model of Pasternak (1954) which considers the shear deformation between the springs 
had been proposed to describe the interaction between the plate and foundation. The Winkler 
model (1867) is a special case of Pasternak model by setting the shear modulus to zero. 

Mechanical response of functionally graded plates (FGs) resting on a Winkler–Pasternak elastic 
foundation has been investigated in some research papers. Huang et al. (2008) used a 3D theory of 
elasticity to study FG thick plates on elastic foundation. Based on 3D elasticity theory, 
Malekzadeh (2009) studied the free vibration of FG plates resting on elastic foundation. Amini et 
al. (2009) studied 3D free vibration response of FG plates supported by elastic foundation. Using 
the state space approach, Lü et al. (2009) proposed exact solutions for free vibrations of FG thick 
plates resting on two-parameter elastic foundation. Ait Atmane et al. (2010) analysed the free 
vibration of FG plates supported by elastic foundation by using a new shear hyperbolic 
deformation theory and Navier procedure. Using the parabolic shear deformation theory, Baferani 
et al. (2011) established an accurate method for vibration of FG thick plates supported by elastic 
foundation. Fallah et al. (2013) studied the vibration of FG plates resting on elastic foundation 
using the extended Kantorovich method together with infinite power series solution. 
Sheikholeslami and Saidi (2013) employed the higher-order shear and normal deformation plate 
theory together with an analytical formulation to investigate the free vibration behaviour of simply 
supported FG plates resting on elastic foundation. Sobhy (2013) investigated the free vibration and 
buckling responses of exponentially graded material sandwich plate supported by Winkler–
Pasternak elastic foundation. An analytical approach based on the first-order shear deformation 
plate theory is presented by Yaghoobi and Yaghoobi (2013) to study the thermo-mechanical 
buckling of symmetric sandwich plates with FG face sheets resting on two-parameter elastic 
foundation. Hadji et al. (2011) investigated the free vibration analysis of functionally graded 
material (FGM) sandwich rectangular plates. The theory presented is variationally consistent and 
strongly similar to the classical plate theory in many aspects. It does not require the shear 
correction factor, and gives rise to the transverse shear stress variation so that the transverse shear 
stresses vary parabolically across the thickness to satisfy free surface conditions for the shear 
stress. Benachour et al. (2011) developed a model for free vibration analysis of plates made of 
functionally graded materials with an arbitrary gradient. Closed form solutions are obtained by 
using Navier technique, and then fundamental frequencies are found by solving the results of 
eigenvalue problems. El Meiche et al. (2011) developed a refined hyperbolic shear deformable 
plate theory for buckling and vibration of FGM sandwich plates. Tounsi et al. (2013) studied the 
thermoelastic bending response of FG sandwich plates using a refined trigonometric shear 
deformation theory. Zidi et al. (2014) studied the bending response of functionally graded material 
(FGM) plate resting on elastic foundation and subjected to hygro-thermo-mechanical loading. Ait 
Amar Meziane et al. (2014) developed an efficient and simple refined shear deformation theory for 
the bucking and vibration analyses of EGM sandwich plates supported by elastic foundations with 
considering various types of boundary conditions. Khalfi et al. (2014) examined the thermal 
buckling behavior of solar FG plates resting on elastic foundation. Hebali et al. (2014) developed a 
new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of FG 
plates. Mahi et al. (2015) proposed a new hyperbolic shear deformation theory for bending and 
free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. 
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Saidi et al. (2016) developed a simple hyperbolic shear deformation theory for vibration analysis 
of thick FG rectangular plates resting on elastic foundations. Wave propagation of porous FG 
plates using various higher-order shear deformation theories (HSDTs) is studied by Ait Yahia et al. 
(2015). They concluded that higher order theories can accurately predict the wave characteristics 
of FG structures and only a little difference exists between their results. Also, many papers are 
published concerning with analysis of FGM structures based on HSDTs (Bourada et al. 2012, 
Belabed et al. 2014, Bousahla et al. 2014, Bennoun et al. 2016, Bellifa et al. 2016, Al-Basyouni et 
al. 2015, Ait Atmane et al. 2015, Bourada et al. 2015, Merazi et al. 2015). Additional shear and 
normal deformation theories are presented in the literature (Ould Larbi et al. 2013, Hadji et al. 
2014, Nedri et al. 2014, Draiche et al. 2014, Bennai et al. 2015, Akavci 2015, Meradjah et al. 
2015, Bakora and Tounsi 2015, Belkorissat et al. 2015, Bouchafa et al. 2015, Sallai et al. 2015, 
Tagrara et al. 2015, Larbi Chaht et al. 2015, Zemri et al. 2015, Tebboune et al. 2015, Hadji and 
Adda Bedia 2015a, b, Nguyen et al. 2015, Mouaici et al. 2016, Boukhari et al. 2016, Chikh et al. 
2016, Barati et al. 2016). Bounouara et al. (2016) presented a nonlocal zeroth-order shear 
deformation theory for free vibration of functionally graded nanoscale plates resting on elastic 
foundation. Bourada et al. (2016) analyzed the buckling behavior of isotropic and orthotropic 
plates using a novel four variable refined plate theory. Recently, Tounsi et al. (2016) presented a 
new 3-unknowns non-polynomial plate theory for buckling and vibration of FG sandwich plate. 

According to the works of literature survey, the only work on the natural frequency of FG 
plates supported on elastic foundation based on the higher-order shear and normal deformation 
plate theory seems to be presented by Sheikholeslami and Saidi (2013). This latter theory has six 
unknowns and it is still more complicated than the first shear deformation theory (FSDT). Thus, 
developing a simple quasi-3D theory is necessary. 

The purpose of this work is to develop a simple quasi-3D theory with only five unknowns for 
free vibration of FG plates resting on a Winkler–Pasternak elastic foundation. The displacement 
field is chosen based on a hyperbolic variation of in-plane and transverse displacements through 
the thickness. The partition of the transverse displacement into the bending, shear and stretching 
parts leads to a reduction of the number of unknowns, and subsequently, makes the new theory 
simple to use. Using Hamilton’s principle, the equations of motion are obtained. Numerical results 
are illustrated to check the accuracy of the present formulation. 
 
 

2. Theoretical formulations 
 

2.1 Kinematics 
 
The displacement field of the present formulation is obtained based on the following 

assumptions: (1) The transverse displacement is composed of three components namely: bending, 
shear and stretching parts; (2) the in-plane displacement is partitioned into extension, bending and 
shear components; (3) the bending parts of the in-plane displacements are similar to those given by 
classical plates theory (CPT); and (4) the shear parts of the in-plane displacements give rise to the 
hyperbolic variations of shear strains and hence to shear stresses through the thickness of the plate 
in such a way that the shear stresses vanish on the top and bottom surfaces of the plate. Based on 
these assumptions, the following displacement field relations can be obtained 
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where u0 and v0 denote the displacements along the x and y coordinate directions of a point on the 
mid-plane of the plate; wb and ws are the bending and shear components of the transverse 
displacement, respectively; and the additional displacement φ accounts for the effect of normal 
stress (stretching effect). The shape functions f(z) and g(z) are given as follows 
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and 
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The non-zero strains associated with the displacement field in Eq. (1) are 
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2.2 Basic equations 
 
Functionally graded ceramic–metal plates resting on a Winkler–Pasternak elastic foundation 

are considered in this study as shown in Fig. 1. The Young’s modulus E and mass density ρ of 
such plates are assumed to vary according to a power law distribution in terms of the volume 
fractions of the constituents as 
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Fig. 1 Geometry and coordinates of the considered FG plate which is resting on elastic foundation 
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where the subscripts m and c indicate the metallic and ceramic constituents, respectively; and k is 
the power law index. The value of k equal to zero represents a fully ceramic plate, whereas infinite 
k indicates a fully metallic plate. Since the effects of the variation of Poisson’s ratio v on the 
response of FG plates are very small (Yang et al. 2005, Kitipornchai et al. 2006), it is assumed to 
be constant for convenience. The linear constitutive relations of a FG plate can be written as 
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where (σx, σy, σz, τyz, τxz, τxy) and (εx, εy, εz, γyz, γxz, γxy) are the stress and strain components, 
respectively. 

The computation of the elastic constants Cij depends on which assumption of εz we consider. If 
εz = 0, then Cij are the plane stress reduced elastic constants, defined as 
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If εz ≠ 0 (thickness stretching), then Cij are the three-dimensional elastic constants, given by 
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Considering the displacement components of the present simple quasi-3D theory in Eq. (1) and 
using the Hamilton’s principle, the equations of motion of FG plates resting on elastic foundation 
can be obtained as 
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In the above equations dot above each parameter denotes partial differentiating with respect to 

time. The parameters Kw and Ks are the Winkler and Pasternak parameters for elastic foundation. 
Also the stress resultants (N, Mb, Ms, Ss and Nz) and the mass inertias (I0, I1, J1, I2, J2, K2) are as 
follows 
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Substituting Eqs. (12) and (13) into (11) and using stress–strain relations, the governing 

equations of motion are obtained as 
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where dij, dijl and dijlm are the following differential operators 
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The stiffness coefficients used in Eq. (14) are defined as 
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3. Closed-form solution for simply supported plates 
 
Based on Navier procedure, the following expansions of generalized displacements are chosen 

to automatically satisfy the simply supported boundary conditions 
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where Umn, Vmn, Wbmn, Wsmn and Φmn unknown parameters must be determined, ω is the 
eigenfrequency associated with (m, n)th eigenmode, and λ = m π / a and μ = m π / b. 

Substituting Eq. (17) into Eq. (14), the analytical solutions can be obtained by 
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4. Numerical results 
 

In this section, various numerical examples are presented and discussed to verify the accuracy 
of the present theory in predicting the bending and free vibration responses of simply supported 
isotropic and FG plates resting on Winkler-Pasternak elastic foundations. For bending analysis, a 
plate subjected to a uniformly distributed load (UDL) and sinusoidal load is considered. 

Numerical results are presented in terms of non-dimensional stresses and deflection. The 
various nondimensional parameters used are 
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4.1 Bending analysis 
 

As a first example, the deflections and dimensionless stresses of a square isotropic plate (a / h = 
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Table 1 Material Properties for the FG Plate 

 Metal Ceramic 

Properties AL Al2O3 ZrO2 

E (GPa) 66.2 380 117.0 

v 1/3 1/3 1/3 

ρ (kg/m3)    
 
 

Table 2 Effect of normal strain εz on the dimensionless stresses and transversal displacement 
for isotropic square plate (a / h = 10) subjected to a UDL 

Theory  0,2/,2/ˆ baw  2/ˆ hx  2/ˆ hy  2/ˆ hxy  0,2/,0 bxz   0,0,2/ayz

Present εz ≠ 0 4.633 0.302 0.302 0.197 0.481 0.502 

Shimpi et al. (2003) εz ≠ 0 4.625 0.307 0.307 0.195 0.505 0.505 

Exact 3D (Srinivas et al. 1970a) 4.639 0.290 0.290 / 0.488 / 
 
 

Table 3 Comparison of nondimensional deflection D103 w(0.5a, 0.5b, z = 0)/qa4 of 
simply supported isotropic thin square plate under uniformly distributed load (a/h = 100) 

kw ks 
D103 w(0.5a, 0.5b, z = 0)/qa4 

Present εz ≠ 0 Benyoucef et al. (2010) 3D (Huang et al. 2008) Lam et al. (2000) 

1 
1 3.8490 3.8550 3.8546 3.853 

34 0.7628 0.7630 0.7630 0.763 

54 0.1153 0.1153 0.1153 0.115 

34 
1 3.2067 3.2108 3.2105 3.210 

34 0.7316 0.7317 0.7317 0.732 

54 0.1145 0.1145 0.1145 0.115 

54 
1 1.4759 1.4765 1.4765 1.476 

34 0.5703 0.5704 0.5704 0.570 

54 0.1095 0.1095 0.1095 0.109 

 
 

10) subjected to a UDL are compared in Table 2 with those given by the quasi-3D solutions of 
Shimpi et al. (2003), and the exact solution carried out by Srinivas et al. (1970a). It can be seen 
from this table that the results are in close agreement. 

The second example to validate the present method for plates resting on an elastic foundation, 
the results for dimensionless deflections of a thick isotropic plate are compared with results 
published previously. Table 3 presents the center deflections of a uniformly loaded homogeneous 
square plate simply supported on a Winkler-Pasternak foundation. The results are compared with 
those of Benyoucef et al. (2010), 3D solution (Huang et al. 2008) and Lam et al. (2000). It can be 
seen that the results agree closely. 

In the third example, we present in Table 4 the deflections of a uniformly loaded homogeneous 
square plate simply supported on a Winkler foundation. The results are compared with those 
obtained by Benyoucef et al. (2010), Lam et al. (2000) employing Green’s functions and 
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Table 4 Comparison of the deflection D103 w(0.5a, 0.5b, z = 0)/qa4 of a uniformly loaded 
simply supported homogeneous square plate on a Winkler foundation (a/h = 100) 

kw 
D103 w(0.5a, 0.5b, z = 0)/qa4 

Present εz ≠ 0 Benyoucef et al. (2010) Lam et al. (2000) Kobayashi and Sonoda (1989)

1 4.0472 4.053 4.053 4.052 

34 3.344 3.348 3.349 3.347 

54 1.505 1.506 1.507 1.506 

 
 

Table 5 Comparison of the deflection w of a homogeneous square plate under 
uniformly distributed load resting on Winkler’s elastic foundation (a/h = 20) 

kw Present εz ≠ 0 Zenkour and Sobhy (2012) Buczkowsi and Torbacki (2001) 

0 4.1026 4.1149 4.1197 

1 4.0917 4.1039 4.1088 

34 3.3747 3.3813 3.3855 

54 1.5107 1.5094 1.5114 

104 0.1110 0.1108 0.1096 

154 0.0196 0.0196 0.0191 

 
 

Table 6 Comparison of the displacements and stresses of simply supported Al/Al2O3 rectangular plate 
under uniformly distributed load (a = 10h, b = 3a) 

k kw kS Theory xu  zu  x  xy  xz  

0.5 

0 0 

Thai and Choi (2011) 0.3491 1.9345 0.2337 0.0941 — 

Zenkour and Sobhy (2013) 0.34919 1.93441 0.23372 0.09415 7.68354

Present εz ≠ 0 0.33498 1.90215 0.23941 0.09007 7.56253

100 0 

Thai and Choi (2011) 0.3358 1.8590 0.2242 0.0916 — 

Zenkour and Sobhy (2013) 0.33586 1.85907 0.22424 0.09167 7.42978

Present εz ≠ 0 0.32246 1.82955 0.22989 0.08774 7.31675

100 100 

Thai and Choi (2011) 0.3012 1.6640 0.1999 0.0850 — 

Zenkour and Sobhy (2013) 0.30131 1.66399 0.19989 0.08503 6.76069

Present εz ≠ 0 0.28991 1.64138 0.20536 0.08151 6.66745

2 

0 0 

Thai and Choi (2011) 0.6564 3.2266 0.4395 0.1766 — 

Zenkour and Sobhy (2013) 0.65655 3.22672 0.43961 0.17666 6.91072

Present εz ≠ 0 0.60340 3.07560 0.44695 0.16202 6.79513

100 0 

Thai and Choi (2011) 0.6156 3.0218 0.4105 0.1690 — 

Zenkour and Sobhy (2013) 0.61576 3.02190 0.41060 0.16906 6.53895

Present εz ≠ 0 0.56771 2.88981 0.41881 0.15538 6.44548

100 100 

Thai and Choi (2011) 0.5186 2.5364 0.3423 0.1501 — 

Zenkour and Sobhy (2013) 0.51872 2.53642 0.34233 0.15020 5.63882

Present εz ≠ 0 0.48189 2.44460 0.35187 0.13875 5.59033
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Table 6 Continued 

k kw kS Theory xu  zu  x  xy  xz  

5 

0 0 

Thai and Choi (2011) 0.7802 3.8506 0.5223 0.2103 — 

Zenkour and Sobhy (2013) 0.78046 3.85174 0.52237 0.21044 6.14557

Present εz ≠ 0 0.72061 3.69376 0.53104 0.19389 6.03129

100 0 

Thai and Choi (2011) 0.7230 3.5620 0.4816 0.1996 — 

Zenkour and Sobhy (2013) 0.72323 3.56296 0.48167 0.19975 5.75485

Present εz ≠ 0 0.66999 3.42857 0.49132 0.18445 5.66241

100 100 

Thai and Choi (2011) 0.5922 2.9046 0.3897 0.1740 — 

Zenkour and Sobhy (2013) 0.59231 2.90518 0.38971 0.17410 4.84302

Present εz ≠ 0 0.55294 2.81786 0.40060 0.16159 4.79288

0.5 

0 0 

Thai and Choi (2011) 0.3491 1.9345 0.2337 0.0941 — 

Zenkour and Sobhy (2013) 0.34919 1.93441 0.23372 0.09415 7.68354

Present εz ≠ 0 0.33498 1.90215 0.23941 0.09007 7.56253

100 0 

Thai and Choi (2011) 0.3358 1.8590 0.2242 0.0916 — 

Zenkour and Sobhy (2013) 0.33586 1.85907 0.22424 0.09167 7.42978

Present εz ≠ 0 0.32246 1.82955 0.22989 0.08774 7.31675

100 100 

Thai and Choi (2011) 0.3012 1.6640 0.1999 0.0850 — 

Zenkour and Sobhy (2013) 0.30131 1.66399 0.19989 0.08503 6.76069

Present εz ≠ 0 0.28991 1.64138 0.20536 0.08151 6.66745

2 

0 0 

Thai and Choi (2011) 0.6564 3.2266 0.4395 0.1766 — 

Zenkour and Sobhy (2013) 0.65655 3.22672 0.43961 0.17666 6.91072

Present εz ≠ 0 0.60340 3.07560 0.44695 0.16202 6.79513

100 0 

Thai and Choi (2011) 0.6156 3.0218 0.4105 0.1690 — 

Zenkour and Sobhy (2013) 0.61576 3.02190 0.41060 0.16906 6.53895

Present εz ≠ 0 0.56771 2.88981 0.41881 0.15538 6.44548

100 100 

Thai and Choi (2011) 0.5186 2.5364 0.3423 0.1501 — 

Zenkour and Sobhy (2013) 0.51872 2.53642 0.34233 0.15020 5.63882

Present εz ≠ 0 0.48189 2.44460 0.35187 0.13875 5.59033

5 

0 0 

Thai and Choi (2011) 0.7802 3.8506 0.5223 0.2103 — 

Zenkour and Sobhy (2013) 0.78046 3.85174 0.52237 0.21044 6.14557

Present εz ≠ 0 0.72061 3.69376 0.53104 0.19389 6.03129

100 0 

Thai and Choi (2011) 0.7230 3.5620 0.4816 0.1996 — 

Zenkour and Sobhy (2013) 0.72323 3.56296 0.48167 0.19975 5.75485

Present εz ≠ 0 0.66999 3.42857 0.49132 0.18445 5.66241

100 100 

Thai and Choi (2011) 0.5922 2.9046 0.3897 0.1740 — 

Zenkour and Sobhy (2013) 0.59231 2.90518 0.38971 0.17410 4.84302

Present εz ≠ 0 0.55294 2.81786 0.40060 0.16159 4.79288
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Kobayashi and Sonoda (1989) using the Levy series method. It can be concluded that a good 
agreement between the results is seen. 

Table 5 present similar results as those given in Table 4 but for a/h = 20. The obtained results 
are compared with those predicted by Zenkour and Sobhy (2012) and Buczkowski and Torbacki 
(2001) based on finite element method. An excellent agreement is obtained between the different 
results for all values of the Winkler parameter. 

Numerical results are tabulated in Tables 6-7 and plotted in Figs. 2 to 5 for FG plates using the 
present theory. The material properties of FG plates are listed in Table 1. 

Table 6 gives a comparison of displacement and stress of the present method with those of Thai 
and Choi (2011) and Zenkour and Sobhy (2013) in which the thickness stretching effect is 
neglected (εz = 0). The results are given for FG Al/Al2O3 rectangular plate subjected to a uniformly 
distributed load in terms of the power index k and elastic foundation parameters. The results 
presented in Table 6, show that the results given by Thai and Choi (2011) and Zenkour and Sobhy 
(2013) overestimates the deflections and stresses, and this is attributable to the thickness stretching 
effect, which is omitted in the theories developed by these references. 

Another example is presented in Table 7 for FGM plate under sinusoidal loading. The results of 
the method are compared with the refined trigonometric shear deformation theory developped by 
Bouderba et al. (2013), the first order shear deformation theory (FSDT) and classical plate theory 
(CPT) and this for different values of the power index k and elastic foundation parameters. It can 
be seen that an excellent agreement is obtained for all values of the power-law index k and 
foundation parameters Kw and Ks. In addition, it can be shown that the deflection and stresses are 
decreasing with the existence of the elastic foundations. 

 
 

Table 7 Effect of the volume fraction exponent and elastic foundation parameters on the dimensionless 
and stresses of an FGM rectangular plate under sinusoidal load. (a = 10h, b = 2a, q0 = 100) 

k kw kS Theory w  x  *
xy  *

xz  

0 

0 0 

Present εz ≠ 0 0.67669 0.44410 0.85538 -0.38933 

Bouderba et al. (2013) 0.68131 0.42424 0.86240 -0.39400 

FSDPT(a) 0.68135 0.42148 0.86459 -0.30558 

CPT(a) 0.65704 0.42148 0.86459 - 

100 0 

Present εz ≠ 0 0.40481 0.26567 0.51170 -0.23290 

Bouderba et al. (2013) 0.40523 0.25233 0.51296 -0.23435 

FSDPT(a) 0.40525 0.25070 0.51426 -0.18175 

CPT(a) 0.39652 0.25437 0.52183 - 

0 100 

Present εz ≠ 0 0.084133 0.055215 0.10635 -0.048406

Bouderba et al. (2013) 0.083654 0.052093 0.10589 -0.048377

FSDPT(a) 0.083655 0.051750 0.10615 -0.037518

CPT(a) 0.083277 0.053420 0.10959 - 

100 100 

Present εz ≠ 0 0.077649 0.050960 0.098154 -0.044675

Bouderba et al. (2013) 0.077197 0.048071 0.097724 -0.044643

FSDPT(a) 0.077198 0.047754 0.097959 -0.034622

CPT(a) 0.076875 0.049316 0.101160 - 
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Table 7 Continued 

k kw kS Theory w  x  *
xy  *

xz  

0.5 100 100 

Present εz ≠ 0 0.079180 0.048733 0.080257 -0.038219

Bouderba et al. (2013) 0.078729 0.045788 0.081728 -0.038066

FSDPT(a) 0.078732 0.045460 0.081870 -0.029835

CPT(a) 0.078463 0.046927 0.084506 - 

1 100 100 

Present εz ≠ 0 0.079761 0.047891 0.071203 -0.035252

Bouderba et al. (2013) 0.079321 0.044892 0.073054 -0.035023

FSDPT(a) 0.079322 0.044575 0.073208 -0.027163

CPT(a) 0.079069 0.046036 0.075608 - 

2 100 100 

Present εz ≠ 0 0.080200 0.047581 0.065302 -0.032442

Bouderba et al. (2013) 0.079758 0.044595 0.067185 -0.032215

FSDPT(a) 0.079753 0.044297 0.067395 -0.024345

CPT(a) 0.079503 0.045808 0.069690 - 

5 100 100 

Present εz ≠ 0 0.080628 0.048596 0.062746 -0.030046

Bouderba et al. (2013) 0.080150 0.045736 0.064125 -0.029922

FSDPT(a) 0.080141 0.045462 0.064399 -0.022053

CPT(a) 0.079892 0.047100 0.066720 - 

  100 100 

Present εz ≠ 0 0.081721 0.030345 0.058449 -0.026603

Bouderba et al. (2013) 0.081190 0.050559 0.058148 -0.026565

FSDPT(a) 0.081191 0.050227 0.058294 -0.020603

CPT(a) 0.080989 0.051956 0.060300 - 

*Data taken from Bouderba et al. (2013) 
 
 

 

Fig. 2 Effect of Winkler modulus parameter on the dimensionless center deflection of a square FG plate 
(k = 2, ks = 10) for different side-to-thickness ratio 
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Fig. 3 Effect of Pasternak Shear modulus parameter on the dimensionless center deflection of a square 
FG plate (k = 2, kw = 100) for different side-to-thickness ratio 

 
 
Figs. 2 and 3 exhibit the deflection w  of the plate centroid versus the side-to-thickness ratio 

a/h for different values of the foundation stiffness of FG square plate (k = 2). It can be seen that the 
increase of side-to thickness ratio a / h leads to a decrease of the center deflection of the FG plate. 
Furthermore, it is seen from Figs. 2 and 3 that as the foundation modulus parameter increase the 
center deflection of the FG plate decreases. However, for thin plates, the effect of foundation 
stiffness tends to become less. 

 
 

 
Fig. 4 Variation of dimensionless axial stress )( x  through-the-thickness of a square FG plate (k = 2, 

ks = 10, a/h = 10) for different values of Winkler modulus parameter 
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Fig. 5 Variation of dimensionless axial stress )( x  through-the-thickness of a square FG plate (k = 2, 

kw = 100, a/h = 10) for different values of Pasternak modulus parameter 
 
 

Variations of the axial stress x  through the thickness of FG plate are shown graphically in 
Figs. 4 and 5 for different values of the elastic foundation parameter. It can be seen that the 
maximum compressive stresses occur at a point near the top surface and the maximum tensile 
stresses occur, of course, at a point near the bottom surface of the FG plate. It is observed that 
normal stress increases gradually with the values of the foundation stiffness. However, the effect 
of Pasternak shears modulus parameter is more significant than Winkler modulus parameter. 

 
 

 
Fig. 6 Variation of dimensionless shear stress )( xy  through-the-thickness of a square FG plate (k = 2, 

ks = 10, a/h = 10) for different values of Winkler modulus parameter 
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Fig. 7 Variation of dimensionless shear stress )( xy  through-the-thickness of a square FG plate (k = 2, 

kw = 100, a/h = 10) for different values of Pasternak modulus parameter 
 
 
In Figs. 6 and 7, we present the evolution of the dimensionless shear stress )( xy  through-the-

thickness of a square FG plate (k = 2) for different values of the elastic foundation parameter. 
The results reveal that the maximum compressive stresses occur at a point near the bottom 

surface and the maximum tensile stresses occur at a point near the top surface of the FG plate. 
Again, in the case of an elastic foundation type Winkler, the evolution of the dimensionless 

shear stress xy  is little affected by the variation of the parameter of this foundation compared to 
that of Pasternak. 

 
4.2 Vibration analysis 

 
In order to verify the accuracy of the present theory in predicting the free vibration responses of 

plates, several numerical examples are presented and discussed in this section. 
In Table 8, the results computed by the present higher order shear and normal deformation 

theory are compared with those obtained using the 3D solution of Srinivas et al. (1970b), the 
higher-order shear deformation theory of Reddy and Phan (1985) and the first shear deformation 
theory of Whitney and Pagano (1970). Comparisons are given for an isotropic square plate with 
a/h = 10. It can be seen that the present theory which takes into account both the transverse shear 
and transverse normal deformation, predicts the natural frequencies with the same degree of 
accuracy as that of 3D elasticity solutions (Srinivas et al. 1970b) and Refs (Reddy and Phan 1985, 
Whitney and Pagano 1970). 

Table 9 displays the comparison between the first three nondimensional frequencies of simply 
supported square plate resting on elastic foundation computed using the present theory and those 
presented in Refs (Zhou et al. 2004, Matsunaga 2000, Lü et al. 2009). It is seen that, the results of 
the present theory that takes into account the stretching effect are in excellent agreement with 
those of Refs (Zhou et al. 2004, Matsunaga 2000, Lü et al. 2009) for the first frequencies. 
However, for the two other frequencies, solution presented in Refs (Zhou et al. 2004, Matsunaga 
2000, Lü et al. 2009) slightly underestimate frequency compared to the present theory. 
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Table 8 Natural frequencies Gh   ˆ  of an isotropic plate with v = 0.3, a/h = 10 and a/h = 1 

M n 
Present 
εz ≠ 0 

3D 
(Srinivas et al. 1970b)

Reddy and Phan 
(1985) 

Whitney and Pagano
(1970) 

1 1 0.0932 0.0932 0.0931 0.0930 

1 2 0.2229 0.2226 0.2222 0.2220 

2 2 0.3425 0.3421 0.3411 0.3406 

1 3 0.4178 0.4171 0.4158 0.4149 

2 3 0.5248 0.5239 0.5221 0.5206 

3 3 0.6904 0.6889 0.6862 0.6834 

2 4 0.7528 0.7511 0.7481 0.7447 

1 5 0.9294 0.9268 0.9230 0.9174 

4 4 1.0924 1.0889 1.0847 1.0764 

 
 

Table 9 Comparison of the first three nondimensional frequencies 
2~  )~( 2

mm Dha    of 
simply supported isotropic square plate (ks = 10) 
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5 

0 2.2334 2.2334 2.2334 2.2383 4.4056 4.4056 4.4056 4.4220 7.2436 7.2436 7.2436 7.2864

10 2.2539 2.2539 2.2539 2.2590 4.4150 4.4150 4.4150 4.4317 7.2487 7.2488 7.2488 7.2919

102 2.4300 2.4300 2.4300 2.4377 4.4986 4.4986 4.4986 4.5182 7.2948 7.2948 7.2948 7.3412

103 3.7111 3.7112 3.7111 3.7726 5.2285 5.2285 5.2285 5.2959 7.7191 7.7191 7.7191 7.8096

Ref(a) : (Zhou et al. 2004) 
Ref(b) : (Matsunaga 2000) 

 
 
Another example to verify the accuracy of the proposed theory compared to three-dimensional 

theory of elasticity (Lü et al. 2009) and the refined plate theory of Thai and Choi (2011) is 
presented in Table 10. This table present the nondimensional fundamental frequencies of simply 
supported square plate (a = b = 10h, k = 2.3). It can be seen that the results of the proposed theory 
agree well with three-dimensional solutions. 

The non-dimensional natural frequency ̂  of FG square plate versus the shear and Winkler 
parameters, power law index and thickness–length ratio are listed in Table 11. These results are 
predicted by the shear and normal deformation theory which takes in account the stretching effect 
as well as theories of Refs (Lü et al. 2009, Whitney and Pagano 1970). There is a slight difference 
between the results. This is due to the stretching effect which is taken into account by the 
present theory and neglected by the two others.  

The non-dimensional fundamental natural frequency of simply supported square FG plates and 
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Table 10 Comparison of nondimensional fundamental frequency mm E
a 

h

² 
 of 

simply supported square plate (a = b = 10 h) 

kw ks 
a/h = 10 

3D (Lü et al. 2009) Thai and Choi (2011) Present εz ≠ 0 

0 

0 5.1295 5.2385 5.1638 

10 5.5560 5.6576 5.6059 

25 6.1404 6.2336 6.2103 

10 

0 5.1520 5.2605 5.1871 

10 5.5767 5.678 5.6274 

25 6.1591 6.2521 6.2297 

100 

0 5.3498 5.4548 5.3923 

10 5.7600 5.8584 5.8171 

25 6.3255 6.4164 6.4015 

1000 

0 7.0281 7.1116 7.1262 

10 7.3450 7.4257 7.4527 

25 7.7962 7.8734 7.9172 

 
 

Table 11 The non-dimensional natural frequency mm Eh  ˆ of FG square plate 
versus the shear and Winkler parameters, power law index and thickness–length ratio 

kw ks h/a 

Power law index 

k = 0 k = 1 k = 2 

Ref(a) Ref(b) 
Present
εz ≠ 0 

Ref 
Ref(a) 

Ref 
Ref(b) 

Present
εz ≠ 0 

Ref 
Ref(a) 

Ref 
Ref(b) 

Present
εz ≠ 0 

0 0 

0.05 0.0291 0.0291 0.0291 0.0222 0.0227 0.0226 0.0202 0.0209 0.0207

0.1 0.1135 0.1134 0.1136 0.0870 0.0891 0.0883 0.0789 0.0819 0.0807

0.15 0.2459 0.2454 0.2461 0.1891 0.1939 0.1918 0.1711 0.1778 0.1748

0.20 0.4169 0.4154 0.4174 0.3222 0.3299 0.3264 0.2906 0.3016 0.2965

0 100 

0.05 0.0405 0.0406 0.0406 0.0377 0.0382 0.0380 0.0373 0.0380 0.0376

0.1 0.1593 0.1599 0.1594 0.1482 0.1517 0.1497 0.1463 0.1508 0.14829

0.15 0.3487 0.3515 0.3492 0.3236 0.3365 0.3295 0.3180 0.3351 0.3265

0.20 0.5988 0.6080 0.6011 0.5509 0.5876 0.5699 0.5370 0.5861 0.5650

100 0 

0.05 0.0298 0.0298 0.0298 0.0233 0.0238 0.0236 0.0214 0.0221 0.0218

0.1 0.1163 0.1162 0.1164 0.0911 0.0933 0.0924 0.0836 0.0867 0.0854

0.15 0.2521 0.2519 0.2524 0.1983 0.2036 0.2011 0.1817 0.1889 0.1855

0.20 0.4281 0.4273 0.4286 0.3383 0.3476 0.3431 0.3092 0.3219 0.3158

100 100 

0.05 0.0410 0.0411 0.0411 0.0384 0.0388 0.0386 0.0380 0.0386 0.0383

0.1 0.1613 0.1619 0.1614 0.1506 0.1542 0.1521 0.1489 0.1535 0.1509

0.15 0.3531 0.3560 0.3537 0.3288 0.3422 0.3349 0.3236 0.3412 0.3323

0.20 0.6070 0.6162 0.6089 0.5598 0.5978 0.5794 0.5460 0.5970 0.5752

Ref(a) : (Sheikholeslami and Saidi 2013); Ref(b) : (Baferani et al. 2011) 
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Fig. 8 The variation of non-dimensional fundamental natural frequency   versus the power law 

index k for different values of Winkler parameter (a/b = 1, ks = 10, a/h = 10) 
 
 

 
Fig. 9 The variation of non-dimensional fundamental natural frequency   versus the power law 

index k for different values of Pasternak parameter (a/b = 1, ks = 100, a/h = 10) 
 
 

power law index k for various values of the Winkler foundation parameter are plotted in Fig. 8 
based on the present new quasi-3D hyperbolic shear deformation theory. The same non-
dimensional parameter is shown in Fig. 9 for different values of Pasternak parameter. 

There is a rapid change of the non-dimensional fundamental natural frequency for the values of 
the power law index k less than 2. Then the curves maintain a more or less constant pace but 
remain close to each other which show that this parameter does not affect too much the non-
dimensional fundamental natural frequency for values of k greater than 2. 
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In the case of Fig. 9, there is no sudden change but the curves remain remote separate. This 
indicates that this parameter influence the non-dimensional fundamental natural frequency 
compared to the Winkler parameter. In addition, when the power law index k takes values greater 
than 4, the non-dimensional fundamental natural frequency keep constant values except where ks = 
0. 
 
 
5. Conclusions 
 

A new quasi-3D hyperbolic shear deformation theory for bending and free vibration of FG 
plates resting on Winkler-Pasternak elastic foundations is presented. The theory contains only five 
unknown displacements and satisfies the zero traction boundary conditions at the plate’s surfaces 
without requiring a shear correction factor. Thus, a considerably lower computational time is 
reached. The accuracy of the present work is ascertained by comparing it with existing solutions, 
and excellent agreement was observed in all cases. The inclusion of thickness stretching effect 
makes a plate stiffer, and hence leads to a reduction of deflection and an increase of frequency. 
Hence, it can be said that the proposed theory is accurate and simple in solving the bending and 
free vibration behavior of FG plates resting on elastic foundations. 
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