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Abstract.  Underground tunnelling is one of the sustainable construction methods which can facilitate the 

increasing passenger transportation in the urban areas and benefit the community in the long term. Tunnelling in 

various ground conditions requires careful consideration of the stability factor. This paper investigates three 

dimensional stability of a shallow circular tunnel in a layered soil. Upper bound theorem of limit analysis was utilised 

to solve the tunnel face stability problem. A three dimensional kinematic admissible failure mechanism was 

improved to model a layered soil and limiting assumptions of the previous studies were resolved. The study includes 

calculation of the minimum support pressure acting on the face of the excavation in closed-face excavations. The 

effects of the characteristics of the layers on the minimum support pressure were examined. It was found that the ratio 

of the thickness of cover layers particularly when a weak layer is overlying a stronger layer, has the most significant 

influence on the minimum tunnel support pressure. Comparisons have been made with the results of the numerical 

modelling using FLAC3D software. Results of the current study were in a remarkable agreement with those of 

numerical modelling. 
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1. Introduction 
 

Tunnels and underground excavations are one of the important infrastructures in any country. 

Due to ever increasing growth of the population in the urban areas, tunnelling is seen to be one of 

the methods to facilitate transportation. Ground settlement and tunnel face collapse are the major 

concerns in the tunnel design and construction. The settlement of the ground should be within the 

tolerable limits of the structures above the ground as well as the substructures lying underneath 

(Mazek 2014). This study investigates the stability of the tunnel face in a layered soil using the 

upper bound theorem of the limit analysis. The study includes calculation of the minimum support 

pressure acting on the face of the tunnel in closed-face excavations. The study is limited to the 

excavation under the compressed air support yet gives some useful information about tunnelling 

under Earth Pressure Balance (EPB) condition. In excavation under compressed air pressure, the 
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support pressure is uniformly applied to the face of the tunnel to maintain the stability of the face 

(e.g., Ding et al. 2013, Hassanpour et al. 2009). The paper only considers the collapse of the 

tunnel face which is triggered by the movement of the soil towards the inside of the tunnel. It is 

assumed that the tunnel is driven in a cohesive-frictional material. 

Laboratory tests, limit equilibrium and limit analysis are some of the major approaches which 

have been used by researchers to investigate the face stability of shallow tunnels in cohesive-

frictional soils (with significant or insignificant cohesion). Chambon and Corté (1994) conducted 

some centrifuge tests on cohesionless soils. The aim of centrifuge tests of Chambon and Corté 

(1994) was to study the pattern of soil failure in tunnels and also to estimate the critical support 

pressure. Failure mechanism and stability of tunnel face were investigated by Takano et al. (2006). 

They conducted some model tests using an X-Ray computed tomography scanner to obtain a 3D 

visualization of the failure zone. Their results show that the failure mechanism is like a logarithm 

spiral curve in longitudinal section and can be simulated as an ellipse in horizontal cross section. 

Studies of tunnel face stability concerning limit equilibrium method mostly rely on the silo 

theory of Jannsen (1895). The first adoption of this theoretical approach was made by Horn (1961), 

proposing the wedge stability model. Horn‟s (1961) model divided the ground into two rigid 

blocks where tunnel‟s circular area was approximated by a rectangle. Engineering application of 

Horn‟s (1961) wedge stability model was presented by Jancsecz and Steiner (1994). Jancsecz and 

Steiner (1994) calculated the support pressure to balance water and earth pressure at the face of the 

tunnel. Their model also considers the heterogeneity of the soil above the tunnel face. Anagnostou 

and Kovari (1994) implemented the Horn‟s (1961) model and studied the infiltration of the slurry 

on the face of the excavation. In coarse material and over the time, the slurry will infiltrate into the 

face. Later on, Anagnostou and Kovari (1996) used wedge model to analyse the face stability 

problem in drained condition. Their study is limited to the machine operation in the EPB and their 

results show the relationship between the limit pressure and hydraulic head in the muck. Broere 

(1998) used wedge stability model to study the effect of the soil heterogeneity in front of the 

tunnel face on the face stability. The missing physics in limit equilibrium method is that they do 

not consider the stress strain relationship and consequently do not ensure displacement 

compatibility. This may result in a conservative and overestimated support pressure which will be 

described later. 

One of the interesting methods available to estimate the support pressure of shallow tunnels 

belongs to Leca and Dormieux (1990). Their three-dimensional mechanisms consist of conical 

blocks. The two conical mechanism of Leca and Dormieux (1990) for collapse is shown in Fig. 1. 

In this mechanism, the second block (Block OFB) is the mirror image of the Block OBD with 

respect to plane CG in a way that Block OFB is always vertical. CG is the bisector perpendicular 

of OB. Because of the verticality assumption, the mechanism suffers from lack of degree of 

freedom as only one block (Block OBA in Fig. 1) is allowed to move in optimization process. 

Mollon et al. (2009) increased the number of rigid blocks involved in the collapse mechanism and 

resolved the limiting assumption for two conical block mechanism (verticality of the second 

block). The whole circular face of the tunnel was encountered in the support pressure calculations 

of Mollon et al. (2010). Spatial discretization technique made it possible to generate the three 

dimensional failure surface point-by-point instead of using standard geometrical shapes such as 

cones. Their results for frictional and cohesive soil were presented in the form of design charts. 

Tang et al. (2014) improved the two conical mechanism (Fig. 1) of Leca and Dormieux (1990) to 

be applicable in a layered soil. However, the aforementioned deficiency of the verticality of the 

second block in their solution remains unresolved. More recently, Senent and Jimenez (2015) 
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Fig. 1 Two conical mechanism of Leca and Dormieux (1990) 

 

 

modified Mollon et al. (2011) rotational failure mechanism to investigate the critical collapse 

pressure in addition to the partial failure of tunnel face when a weak layer overlying a stiff layer. 

Ibrahim et al. (2015) also extended rotational failure mechanism developed by Mollon et al. (2011) 

to investigate the minimum support pressure in stratified ground, but their work is limited to 

purely frictional materials. 

In addition, Leca and Dormieux (1990) compared their results with the centrifuge tests of 

Chambon and Corté (1989). The results of upper bound were in a good agreement with the actual 

measurements of the centrifuge tests. Kirsch (2010) conducted some 1-g physical tests and 

compared the outcomes of the tests with available analytical solutions. It turned out that Leca and 

Dormieux (1990) solution predicts the support pressure with high levels of accuracy. The 

simplicity and accuracy (to some extent) of Leca and Dormieux (1990) method keeps it popular 

and it is the base of failure mechanisms used in the current research (e.g., Khezri et al. 2015). This 

article provides an improved solution to estimate the minimum support pressure of the shallow 

circular tunnels in a layered soil. Two conical mechanism of Leca and Dormieux (1990) has been 

modified to model a potential failure in a layered soil. Thus the aforementioned limiting 

assumption of Leca and Dormieux (1990) (verticality of second block) has been resolved. 

Employing these improved mechanisms, a parametric study has been conducted to study the 

influence of various soil and geometry parameters on the stability of the tunnel face. 
 

 

2. Problem definition and upper bound analysis 
 

Fig. 2 shows two shallow circular tunnels in two types of layered soil. The tunnel diameter is D 

and the total cover of the tunnel is C = C1 + C2. The depth ratio is defined as C/D. The annotation 

in these figures is defined herein: index “1” refers to the upper layer and index “2” refers to the 

layer which contains the tunnel. The layer containing the tunnel is called the crossed layer and the 

distance between the tunnel crown and the ground surface is called the cover. The boundary of the 

layers is located in between (C1 and C2 > 0) or on the tunnel crown (C2 = 0) and the ground surface 

(C1 = 0). Soil unit weights for layers 1 and 2 are γ1 and γ2, respectively. A uniform vertical 

surcharge of σs can be considered on the ground surface. Tunnel face is allowed to move while a 

uniform pressure of σT is applied on the face of the tunnel. Soil layers are modelled using Mohr-

Coulomb material with cohesions of c1, c2 and internal friction angles of 𝜙1, 𝜙2. The collapse 
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(a) 𝜙1 > 𝜙2 
 

 

(a) 𝜙1 < 𝜙2 

Fig. 2 Failure mechanism for a soil stratum with two layers while 

 

 

mechanisms consist of three rigid blocks B1, B2, B3. Each block is a part of its generatrix cone with 

apex angle of 2𝜙i (i = 1, 2) in order to satisfy the normality condition which is truncated by several 

planes like the tunnel face, plane Δ, boundary of layers and the ground surface. The derivations 

related to the mechanisms in Fig. 2 and also the optimisation procedure are given in Appendix A. 
 

 

3. Face stability analysis 
 

3.1 Comparison with previous solutions 
 

Tang et al. (2014) modelled a fixed diameter of shallow tunnel to conduct a parametric study in 

the layered soil. The same example was employed here as a comparison tool. The tunnel diameter 

D is 6 m. It is assumed that the tunnel cover C consists of only one layer and the layer‟s boundary 

passes through the tunnel crown. The soil in layers is homogeneous and incompressible. 

Considering a single cover layer makes the C2 in Fig. 2 equal to zero. This assumption does not 

affect the validity of the solution as in the previous section, it was mentioned that the layer‟s 

boundary could locate at any position from tunnel crown to the ground surface. It should be 

mentioned that the results of the current study and Tang et al. (2014) have been compared with 
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Broere (2001). Broere (2001) has shown that a wedge stability model based on limit equilibrium 

can also be used to determine the minimum support pressure in EPB shield tunnelling to prevent a 

face collapse. 

 

3.1.1 The effect of strength parameters of the crossed layer 
on the minimum support pressure 

The soil unit weight for both layers are assumed to be γi = 18 kN/m3, i = 1, 2. The shear 

strength of the cover layer (upper layer) was kept constant while the shear strength of the crossed 

layer (lower layer containing tunnel) was varied gradually and its effect on the minimum support 

pressure was studied. The cohesion of the cover layer c1 = 2.5 kPa and the internal friction angle of 

the cover layer 𝜙1 = 20° were adopted. Δc2 is introduced as the difference of the cohesion values of 

the crossed and cover layers. The cohesion of the crossed layer is defined by c2 = c1 + Δc2. 

Considering 𝜙1 and 𝜙2 as the friction angles of the cover and crossed layers, respectively, Δ𝜙2 can 

be defined as the difference of the friction angles of the crossed and cover layers 𝜙2 = 𝜙1 + Δ𝜙2. 

No surcharge is assumed to act on the ground surface (σs = 0 kPa). 

Fig. 3 shows the influence of Δ𝜙2 on the minimum support pressure, T. As Tang et al. (2014) 

predicted, increasing the friction angle of the crossed layer results in the decrease of the minimum 

support pressure. This descending trend is steeper in the range of -15 to 0 for Δ𝜙2. The use of 

present failure mechanism results in higher upper bound tunnel support pressures than available 

 

 

 

Fig. 3 Effect of variation of crossed layer‟s friction angle on the minimum support pressure 

 

 

 

Fig. 4 Influence of increase in crossed layer‟s cohesion on the minimum support pressure (Δ𝜙2=0) 
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solution of Tang et al. (2014) with an average improvement of 38.16 % for the aforementioned 

example. 

Fig. 4 shows the influence of Δc2 on T. Cohesion of the crossed layer was increased in contrast 

to the cover layer‟s cohesion while the cohesion of the cover layer was kept constant. Other soil 

parameters for both layers were assumed to be the same. A steady descending trend of tunnel 

support pressure, against the increase of the Δc2 is observed in Fig. 4. However the current study 

yields higher upper bound of the T than the available solution of Tang et al. (2014). The average 

improvement of the minimum support pressure is 18.1 %. 

Comparative study on both strength parameters of Δc2 and Δ𝜙2 (Figs. 3 and 4) shows that the 

current solution results greater upper bound minimum support pressure predictions than previous 

available solution of Tang et al. (2014). As mentioned earlier, the collapse mechanisms of Leca 

and Dormieux (1990) and subsequently Tang et al. (2014) does not offer that much of degree of 

freedom. Because of the slight change in the shape of the failure mechanism in the current study, 

the support pressure resulted from current solution seems to be improved in comparison to the 

previous study. On the other hand, Limit Equilibrium wedge model of Broere (2001) as expected 

results in greater values of the minimum support pressure than the upper bound solutions. 
 

3.1.2 The effect of strength parameters of the cover layer 
on the minimum support pressure 

The effect of shear parameters of the cover soil on the minimum support pressure is 

investigated in this sub-section. The boundary of the crossed soil and the cover soil is assumed to 

be adjacent to the tunnel crown. The soil properties of the crossed soil are γ2 = 18 kN/m3, 𝜙2 = 20° 

and c2 = 2.5 kPa. The difference between the cohesion of the cover layer and the cohesion of the 

crossed layer is Δc1 = c1 – c2. Similarly the difference between the friction angles of the cover layer 

and the crossed layer is Δ𝜙1 = 𝜙1 – 𝜙2. To simplify the procedure, the effect of surcharge is not 

taken into account here. Fig. 5 shows the variation of T against the subtraction of friction angles 

of the cover layer and the crossed layer (Δ𝜙1) while the friction angle of the crossed layer is kept 

constant. The curves obtained from current solution (solid lines) show nonlinear decrease of 

minimum support pressure. Moreover, the current solution yields higher upper bounds than the 

previous solution (dotted lines) with an average improvement of tunnel support pressure of 12.24% 

for the domain of -15 < Δ𝜙1 < 15 and C/D = 0.5. 

Fig. 6 shows the estimated minimum support pressure plotted against the variation of Δc1, that 

is, the cohesion of the cover layer varies while the cohesion of the crossed layer is kept constant. 
 

 

 

Fig. 5 Effect of varying the friction angle of the cover layer on the minimum support pressure 
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Fig. 6 Effect of varying cohesion of the cover layer on the minimum support pressure 

 
 

Improvements to the previous solution are substantial. For Δ𝜙1 = 15, the results of the current 

upper bound solution are 14.8% greater than Tang et al. (2014) predictions (see red lines in Fig. 6). 
 

3.2 Comparison with FLAC3D results 
 

Finite difference software FLAC3D (Fast Lagrangian Analysis of Continua) has been used to 

perform the numerical simulation (Itasca Consulting Group 1993). The internal programming 

capability of the software (FISH) allows addition of user defined subroutines. The stability of a 

system in FLAC3D simulations is defined by unbalanced force ratio, that is, the average 

unbalanced mechanical force divided by the average applied mechanical force at all the grid points 

of the system. A system is considered at the state of the static equilibrium when the unbalanced 

force ratio is less than the tolerance value 10-5 recommended by Itasca Consulting Group (1993). 

In order to conduct all the calculations, the following procedure is performed. Firstly, according 

to the input data, the geometry of the soil body is constructed and then the geostatic body forces 

are applied to the domain (Fig. 7). Secondly, the displacement of all points of the body is set to 

zero as only the displacements due to support pressure are applied here. 
 

 

 

Fig. 7 Body of soil domain and zone configuration used in FLAC3D 
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Considering Fig. 7 and the direction of the axis, the numerical model has the size of 5D in x-

direction, 4D in y-direction and 1.3D + 1.3C in z direction. These dimensions are chosen in a way 

that the boundary conditions do not affect the support pressure or the safety factor calculations. 

The length of the tunnel in y-direction is 1.8D. These boundaries are suggested in Mollon et al. 

(2009) to be enough not to alter the distribution of the stresses. A non-uniform three-dimensional 

mesh was chosen for this problem. The model consists of 48600 zones and 51837 grids. The 

density of mesh has been increased in locations where high stress gradients were expected. All the 

movements at the bottom face of the model are fixed while the ground surface is free to move. 

Vertical boundaries at the sides of the soil box are only fixed in the direction normal to their 

surface (only horizontal displacement is fixed by use of roller boundaries). 

Mohr-Coulomb failure criterion is chosen to model the soil. The elastic properties of the soil 

are Young‟s modulus E = 240 MPa and Poisons ratio υ = 0.3. It should be mentioned that the soil 

elastic parameters do not have significant effects on this type of stability analysis. Considering the 

altitude of the layers, material groups are assigned to the respective layers. A concrete tunnel lining 

with thickness of 0.4 m is created by use of shell elements. Elastic properties of the lining are E = 

15 GPa and υ = 0.2. Interface elements which follow Coulomb‟s law are employed to connect the 

lining to soil elements. The friction angle of the interface is assumed to be two-third of the soil‟s 

friction angle. Normal stiffness and shear stiffness of Kn = 1011 Pa/m and Ks = 1011 Pa/m are 

assigned to the interface, respectively. These parameters are a function of neighbouring elements 

rigidity (Itasca Consulting Group 1993) and the accuracy of this type of stability analysis will not 

be affected by these parameters. 

The support pressure is determined by use of a bisection method. The bisection method consists 

of bracketing and bisecting for several trial support pressures. The support pressure is the required 

minimum support pressure which should be exerted on tunnel face to maintain the stability. In this 

procedure, it is necessary to establish the upper and lower brackets of the support pressure which 

correspond to the stable and unstable condition of the tunnel, respectively. To establish the upper 

bracket of the support pressure, a high value for support pressure (not so high to cause blow-out) 

should be chosen which will result in stable condition of the model at the end of the model 

calculation run. Unbalanced force should be monitored during this procedure and as soon as the 

maximum unbalanced force falls below the prescribed value, it indicates that the model is in state 

of equilibrium. Any trial value of support pressure which results in steady state of equilibrium can 

be chosen as the upper bracket of the support pressure. On the other hand, any small magnitude of 

the support pressure which results in the steady state of plastic flow (unbalanced force reaches to a 

non-zero constant value) determines the lower bracket of the support pressure. Once the upper and 

lower brackets are established then a new value for support pressure, midway between the upper 

and lower bracket, is chosen. The model is tested for the new value of the support pressure and in 

case it responded a stable condition, the upper bracket would be replaced by the new value. It is 

obvious that if the new value of the support pressure corresponds to an unstable condition, the 

lower bracket should be replaced with it. The aforementioned procedure should be repeated 

several times until the difference between the upper and lower bracket falls in a prescribed 

tolerance. 

A comparison between the results obtained by the current solution and FLAC3D has been made 

to evaluate the accuracy of the proposed upper bound solution. The example in Section 3.1.1 has 

been employed here to conduct a numerical simulation. It is assumed that a uniform retaining 

pressure is applied to the face of the tunnel to simulate the tunnel boring under compressed air 

condition and lining is installed immediately after the boring and the unlined length of the tunnel 
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prior to face is equal to zero. Because of the symmetry, only one half of the model is considered in 

the analysis as shown in Fig. 7. The soil dilation angle ψ is in accordance with the commonly used 

formula of ψ = 𝜙 ‒ 30°. In the second stage of the simulation, which is, after generating the mesh 

and soil body and applying the gravitational forces, a NULL model was assigned to the range of 

the tunnel. NULL model is one of the internal models of FLAC3D which is used to represent 

material that is removed or excavated. The shell elements (tunnel lining) were then assigned and 

the face pressure was applied to the face of the excavation. It is assumed that the tunnel advances 

1.8D instantaneously. 

Fig. 8 shows the comparison made between the results of the proposed upper bound solution 

and the numerical simulations. Similar to the results shown in Fig. 3, tunnel support pressure 

obtained from the numerical simulation decreases non−linearly with the increase of the crossed 

layer‟s internal friction angle. Comparing the results of the current study and FLAC3D simulations 

shows a remarkable agreement between the two methods. 

Fig. 9 shows an example of failure mechanism computed by FLAC3D and the upper-bound 

analyses, both of which indicating the collapse reaches ground surface when Δ𝜙2 = ‒5 and for the 

 

 

 

Fig. 8 Comparison of results obtained by current upperbound solution and FLAC3D simulations 

 

 

 

Fig. 9 Comparison of failure mechanisms computed with the limit analysis mechanism and with 

the numerical model (Δ𝜙2 = ‒5) 
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same soil parameters in Section 3.1.1. In case of the upper-bound method, the final truncated cone 

is not vertical but situated at an angle of 25° from vertical for optimum support pressure. This 

indicates why the proposed upper bound solution is very consistent with the full numerical 

analysis, and hence is suitable to estimate the minimum support pressure in various two-layered 

soil system. 
 

3.3 Influence of tunnel cover on minimum support pressure 
 

The tunnel and soil characteristics reported in Section 3.1.2 were adopted here to show the 

variation of the T against the depth ratio (C/D). Fig. 10 shows that for Δ𝜙1 = ‒15° the minimum 

support pressure increases slightly and afterwards remains constant. For cases of the soil deposits 

where the cover layer‟s friction angle is equal or greater than the crossed layer‟s friction angle, the 

C/D ratio has no effect on the T. However, the minimum support pressure calculated using 

Broere‟s Limit Equilibrium method is greatly influenced by the depth of tunnel (Fig. 10) with T 

increased almost linearly with the tunnel depth. It should be mentioned that similar trends have 

been obtained by Tang et al. (2014) to the current solution (not shown in Fig. 9 and the following 

figures) but with less satisfactory of lower T values. 
 

3.4 Influence of thickness of layers (C1 > 0 and C2 > 0) 
 

The effect of strength parameters of soil as well as the thickness of each layer is discussed in 

this section. The tunnel diameter is assumed to be 6 m and soil unit weight is 18 kN/m3. Fig. 11 

shows the minimum support pressure against the thickness ratio C1/C2 for three values of Δ𝜙2 (the 

cover layers friction angle is 20° and constant) for several depth ratios. When Δ𝜙2 < 0, T 

decreases as the thickness of the upper layer increases particularly for depth ratios C/D > 0.5. 

However changing the thickness of the layers generally does not have any effect on the minimum 

support pressure for Δ𝜙2 ≥ 0. One can conclude that when a soil layer with higher value of friction 

angel is located above a low friction angle soil layer, increasing the thickness of the upper layer 

with higher friction angel affects the minimum support pressure notably. 

Fig. 12 shows how the minimum support pressure varies with layer‟s thickness ratio for three 

values of Δc2. The cohesion of the upper layer is held constant at 2.5 kPa. In general, the variation 

of the thickness of the upper layer in low cohesive soils does not have any significant effect on T. 
 

 

 

Fig. 10 Influence of tunnel cover on minimum support pressure for different values of cover 

layer‟s friction angle 
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Fig. 11 Minumum support pressure against thickness of layers (Δc1) 
 

 

 

Fig. 12 Minimum support pressure against thickness of layers (Δ𝜙1) 
 

 

 

Fig. 13 Minimum support pressure against thickness of layers (Δc2=0) 

 

 

The influence of soil thickness ratio C1/C2 on minimum support pressure for three values of 

Δ𝜙1 and depth ratios are presented in Fig. 13. The friction angle of the upper layer is 𝜙1 = 20° and 

constant. For soils where Δ𝜙1 < 0 (upper layer with lower friction angle), a slight increase in 

minimum support pressure is observed while for soils with Δ𝜙1 > 0, minimum support pressure 

decreases as the thickness of the upper layer increases. As evident in Fig. 13, variation of the 

thickness of the layers in this context have insignificant impact on minimum support pressure 
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Fig. 14 Minimum support pressure against thickness of layers (Δ𝜙2 = 0) 

 

 

 

Fig. 15 Effect of layer thickness ratio on the minimum support pressure when cohesive ratio is varied 

 

 

while Δ𝜙1 is considered as the controlling parameter (when the crossed layer‟s parameters are kept 

constant). 

For cases where the cohesion of the lower layer is kept constant and changes have only been 

made to the upper layer‟s cohesion (Δc1 = Var.), small changes in minimum support pressure can 

be observed, as shown in Fig. 14. These fluctuations however are not significant. Thus it can be 

inferred that varying the thickness of the layers while the parameters of the lower layer are kept 

constant (Δc1 = Var., Δ𝜙1 = 0) does not have a significant effect on T. 

Fig. 15 shows the variation of the minimum support pressure T against the thickness ratio of 

the layers C1/C2 (where C = C1 + C2) for four ratios of cohesion of the layers c1/c2. Tunnel 

diameter D is taken as 10 m, soil friction angle in layers 𝜙 is 10°, soil unit weight γ equals to 19 

kN/m3, c2 = 7 kPa and σs = 20 kPa. As observed, for cases with cohesion ratio c1/c2 less than 1, the 

T increases with increasing C1/C2 ratios. (Fig. 15 is another representation of Fig. 14 except that 

the soil friction angle is smaller and the cohesion is greater than those in Fig. 14). In general, 

reduction of the friction angle of the soil results in taller failure mechanism (the theoretical height 

of the failure mechanism from bottom of the tunnel to the apex is greater in soils with small 

friction angel assuming the same tunnel). Increasing the thickness of the upper layer takes the 

larger portion of the mechanism and consequently the soil parameters in this layer affect the 

minimum support pressure. Thus, it can be concluded that the ratio of the thickness of cover layers 
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has a significant influence on the minimum support pressure depending on the value of friction 

angles of the soil layers. It should be noted that when a weak layer is overlying a stronger layer, 

the thickness of the weak layer has significantly influence the magnitude of the minimum support 

pressure (depending on the internal friction angle and height of the failure mechanism). 
 

 

4. Conclusions 
 

Upper bound theorem of limit analysis has been used to study the stability of tunnel face in a 

layered soil. The model originally developed by Leca and Dormieux (1990) and modified by Tang 

et al. (2014) was employed to simulate the stability of tunnel face. The limitations of these 

approaches were resolved in the current study by searching the optimum angle of second block. A 

comparative study was conducted to compare the results of the current study and previous 

solutions. In all the comparisons, the trend of variation of the minimum support pressure was 

similar to previous study except that the new solution yielded higher upper bounds which may be 

considered as improvements of the previous solution. On the other hand, results obtained by 

numerical simulation, using FLAC3D software, show a remarkable agreement with the results of 

the current study. In addition, the effect of shear strength of the soil layers on the minimum support 

pressure has been investigated. It was shown that increasing the thickness of the upper soil layer, 

regardless of being stronger or weaker than the lower layer, affects the minimum support pressure. 

However, the magnitude and severity of this influence depends on the value of the friction angle. It 

was shown that variation of minimum support pressure against thickness ratio in low frictional 

soils is more significant than the high frictional material. 
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Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis 

Appendix A 
 

The upper bound formula derivation and calculation procedures are explained in this section. Fig. 

2 shows that any failure mechanism consists of three rigid blocks. To calculate the external and 

internal dissipated powers, it is necessary to calculate the geometrical properties of these blocks, 

their cross sections with ground surface and tunnel face and the contact area between each block. 

Fig. A1 shows the geometry of the first cone which contains the block B1 (see Fig. 2). This cone 

has the axis angle of α1 and the diameter of D1 which is equal to tunnel‟s diameter D. Therefore, 

the failure area on tunnel face AT, volume of the cone V1 and lateral area of this cone LA1 can be 

defined as follows 
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Then the plane Δ with angle of m with horizontal cuts the first cone leaving an elliptical cross 

section with diameter D2. α2 and D2 are defined using the following equations 
 

m    2 12  (a4) 

 

 

 

Fig. A1 Position of the first cone in front of the tunnel 
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Fig. A2 1 Plane Δ and sliding block B1 
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Adopting α2 and D2, the cross section of the plane Δ and the first cone A2, the volume V2 and lateral 

area LA2 of the cone above the plane Δ can be defined as follows 
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Inferring to Fig. A2 the lateral area of block B1, LAB1 and volume of block B1, VB1 are 

 

BLA LA LA 1 1 2  (a9) 
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Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis 

 

Fig. A3 The position of the apex of the mirrored cone and the sliding block B2 

 

 

BV V V 1 1 2  (a10) 

 

The second cone which contains the block B2 is the mirror image of the eliminated part of the first 

cone (above the plane Δ) with respect to bisector of A2. The contact area of blocks B1 and B2 

should be kept constant. The volume V3 and the lateral area of the second cone LA3 are 

 

V V3 2  (a11) 

 

LA LA3 2  (a12) 

 

The image cone with apex of (E2, L2) cuts the boundary of layers in an ellipse shape with major 

diameter of D3 (Fig. A3). Its axis makes an angle of α3 with normal to the axis. D3 and α3 

parameters can be defined by the following equations where hout1 = L2 ‒ C2. 
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Thus, the cross section of the mechanism with layer‟s boundary A3, the volume V4 and lateral area 
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LA4 of that part of the cone above the layer‟s boundary can be calculated by Eqs. (A15), (A16) 

and (A17), respectively. By deducting these parameters from the volume and lateral area of the 

mirror image cone, the properties of the sliding block B2 can be obtained. 
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The volume VB2 and lateral area LAB2 of block B2 are 
 

BV V V 2 3 4  (a18) 

 

BLA LA LA 2 3 4  (a19) 

 

 

 

Fig. A4 Formation of the new cone in the upper layer and sliding block B3 
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Stability assessment of tunnel face in a layered soil using upper bound theorem of limit analysis 

The friction angle of the upper layer 𝜙1 differs from the friction angle of the lower layer 𝜙2. When 

the mechanism reaches the upper layer, in order to satisfy the normality condition, a new cone 

with apex angle of the upper layer‟s friction angle (2𝜙1) should be formed. The contact area of 

this new cone (ellipse with diameter of D3) should be kept the same as the contact area of the 

cone with lower layers friction angle. Now that we have the diameter D3 and apex angle of the 

new cone 2𝜙1, the angle of the axis of the new cone α4 can then be determined (see Fig. A4). 
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Thus, the volume V5 and lateral area LA5 of the new cone (which contains B3) formed in the upper 

layer can be defined by the following equations 
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If the mechanism reaches the ground surface, the area of cross section of it with ground surface A6, 

its volume V6 and lateral area υ6 above the ground should be calculated. 
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Where D4, hout2 and E3 are as follow 
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The volume VB3 and lateral area LAB3 of the block B3 are 

 

BV V V 3 5 6  (a29) 

 

BLA LA LA 3 5 6  (a30) 

 

The sliding blocks of B1, B2, B3 do not move with same velocity and velocity discontinuity occurs 

in the contact area of the blocks. Therefore a relative velocity of V12 between B1 and B2 and over 

Σ12 and another relative velocity V23 between B2 and B3 and over Σ23 should be considered. Fig. 

A5 illustrates the hodographs of velocities for the contact areas. Normality rule imposes that 

velocities should make angle of 𝜙 with the failure surface. Thus the relationship between the 

velocities can be written as follows 
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As it is understood from Eqs. (A31) to (A34), all the velocities are translated in term of one 

velocity V2. In the upper bound theorem, the magnitude of velocities is not important as long as 

the direction and velocities‟ direction are known. By translating the external and internal powers 

in terms of one velocity V2 and subsequently equating them, the velocity‟s magnitude can be 

omitted from the sides of the equation. In Eqs. (A33) and (A34), the index i indicates the layer 

on which the sliding occurs. Considering the strength parameters of both layers, the shear 

strength of each soil layer is calculated on the layer‟s boundary using Eq. (A35). Comparing τ1 

and τ2, the smaller τi will show on which layer the sliding will occur. It means that the sliding on 

layer‟s boundary occurs on the layer with the lower shear strength. 
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Plastic energy can be dissipated along the lateral area of each block and sliding surfaces. In general 

form, the plastic energy per unit area is defined by Eq. (A36). 
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LAB1, LAB2 and LAB3 are defined as the lateral areas of the blocks B1, B2 and B3, respectively. A2 is 

defined as the contact area between the blocks B1 and B2 and A3 is defined as the contact area 

between the blocks B2 and B3. Thus the dissipated energy can be written as Eq. (A37). 
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Power of external loads consists of three parameters PT as the power of the minimum support 

pressure on tunnel face (σT), Ps power of surcharge (σs) and power of soil unit weight Pγ. 

 

 

 

(a) B1 and B2 
 

 

(b) B2 and B3 

Fig. A5 Hodographs of velocity between sliding blocks 
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Where A1 is the elliptical collapse area of tunnel face, A6 is the elliptical (or circular) cross section 

of mechanism with ground surface, VB1, VB2 and VB3 are the volumes of the sliding blocks B1, B2 

and B3, respectively. Equating Pe = PV for every possible combination of α and m, results in the 

minimum support pressure σT. Maximum of these σT values corresponds to the estimated 

minimum support pressure. 

To find the optimum results for the mechanism, one should begin by finding the optimum values 

of α and m in Fig 2. To find the optimum values of minimum support pressure, for every 

possible value of α, 0° to (π/2 ‒ 𝜙1), the angle of m would vary from (π/2 + α) to (3π + 2α) / 4. 

For all possible combinations of α and m, the minimum support pressures are calculated and the 

maximum value of σT is reported as the answer of the problem. 
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