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Abstract.    The soil-concrete interface shear strength, although has been extensively studied, is still difficult to 
predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, 
moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, 
namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly 
used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-
SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a 
sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found 
extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, 
initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-
concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with 
experimental data from direct shear tests. 
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1. Introduction 
 

The shear strength of soil-structure interface which determines the interface skin resistance is 
an important parameter in design of deep and shallow foundations, and retaining walls. In practice, 
most practitioners simply consider the interface shear strength as an empirical ratio to the 
contacted soil strength. The empirical ratios are generally determined from a series of shear tests 
using direct shear apparatus (Potyondy 1961, Acar et al. 1982, Jewell and Wroth 1987, O’Rourke 
et al. 1990, Chu and Yin 2006, Cabalar 2016, Aksoy et al. 2016), simple shear apparatus (Shakir 
and Zhu 2009), torsional shear devices (Evans and Fennick 1995), and/or ring shear devices 
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(Yoshimi and Kishida 1981). A general finding from these experimental studies shows that the 
mechanism of the interface shear strength is very complicated, associating with normal stresses, 
surface roughness, contacted soil densities, particle sizes, moisture contents, and dilation angle of 
the soils (Mitchell and Soga 1976, Kanji and Wolle 1977, Lupini et al. 1981, Acar et al. 1982, 
Jewell and Wroth 1987, Uesugi et al. 1990, Hu and Pu 2004, Chu and Yin 2006, Joseph 2012, 
Wang et al. 2013). 

As a result of relevant tests, various forms of empirical relationship between interface shear 
strength and soil properties have been proposed, considering various infuential factors (Potyondy 
1961, Kulhawy and Peterson 1979, Williams and Houlihan 1987, O’Rourke et al. 1990, Hossain 
and Yin 2013). For example, Potyondy (1961) proposed the ratio of designed frictional resistance 
of construction materials is from 0.4 for saturated loose sand to 1.0 for saturated dense sand. More 
recently, Hossain and Yin (2013) considered the grout pressure as an additional factor that 
enhances the soil-cement interface strength and proposed a new equation to predict the interface 
shear stress at failure. However, a broadly accepted and applicable method to determine the 
interface shear strength is yet to achieve, perhaps due to shear transfer mechanism is too 
complicated. As a result, a simple closed-form solution to properly define such a complex behavior 
may not be practical. 

Given the above considerations, this paper attempts to revisit the issue from a different 
perspective in statistical point of view. As a preliminary analysis, a series of direct shear tests of 
soil-concrete interface were carried out by varying three fundamental parameters, e.g., applied 
normal stress σN, initial moisture content w, and initial dry density γd. Two types of interface shear 
strength, namely, the peak shear strength and the shear strength at steady state of the test, are 
respectively investigated. Note that with regard to the post-peak shear strength of the soil-concrete 
interface subjected to large displacement, the residual shear strength is used in this paper in lieu of 
the well-known steady-state shear strength, which is deemed appropriate as seen in the literature 
(Joseph and Graham-Eagle 2015). From the shear test, high nonlinear relationships between the 
interface shear strengths and these fundamental parameters are observed. To better understand 
their physical interrelationships, the statistical machine learning approaches such as Gaussian 
process (Kang et al. 2015), multivariate adaptive regression splines (Zhang and Goh 2013), 
support vector machines (Ji et al. 2015), etc., are deemed to be useful. In this study, least squares 
support vector machine (LS-SVM) models are developed to estimate the interface shear strengths 
in unknown conditions. A reasonably good prediction of the interface shear strengths is attained 
for new tested soil samples. This statistical learning approach may bypass the complicated analysis 
of soil-structure interaction mechanism, and only relies on a certain number of results from shear 
tests that are relatively simple and straightforward to conduct. 
 
 
2. Test method for soil-concrete interface shear strength 
 

2.1 Soil samples 
 
The global extent of unsaturated expansive soils is very large, particularly in tropical areas. In 

this paper, a typical unsaturated soil in China’s Nanning Province, Nanning expansive soil, was 
used in the direct shear tests. Expansive soils are generally grey-white alluvial or diluvial soils 
mainly made of highly active clay minerals such as montmorillonite, kaolinite, and illite. 
Expansive soils are known to produce substantial volume change due to variation in moisture 
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Table 1 Basic physical properties of Nanning expansive soil 

Type of soil 
Liquid 

limit /% 
Plastic 

limit /% 
Plasticity 
index /%

Optimum moisture 
content /% 

Dry density limit 
/g·cm-3 

Free expansive 
ratio /% 

Nanning 
expansive soil 

61.4 22.8 38.6 15.8 1.89 62.5 

 
 

contents. Nevertheless, the expansivity of the soil has not been included in the current 
investigation. 

The fundamental properties of the expansive soil studied in this paper are listed in Table 1. 
According to Standard-IS-1498 (1970), the soil can be defined as high to very high degree of 
expansion considering its high liquid limit and plasticity. However, many other soil classification 
schemes such as the MIT particle size classification and Casagrande Unified Soil Classification 
System (USCS) (Howard 1977), and the American Association of State Highway and 
Transportation Officials Method (AASHTO 1998), have not provided assessment of the soil 
expansivity. 

A total of 67 soil samples have been prepared. These test samples vary in moisture content, dry 
density and normal stress. There are four different initial moisture contents, i.e., 14.1%, 15.8%, 
17.8%, and 20.8%, four different initial dry densities, i.e., 1.61g/cm3, 1.67g/cm3, 1.71g/cm3, 1.76 
g/cm3 and 1.80 g/cm3, and four different normal stresses, i.e., 25 kPa, 50 kPa, 75 kPa and 100 kPa. 
All soil samples were prudently prepared in compliance with the Standard Test Methods of Soils 
(The Ministry of Water Resources 1999). The detailed steps are briefly described as follows: 

 

(1) Sieve the grinded air-dried soil with 2 mm meshes and measure the initial moisture content 
of the sieved soil; 

(2) Add sufficient water to reach the required moisture content and well mix the soil, store the 
mixed soil in a plastic bag and seal off the bag, and then put the soil bag in a jar with a 
good seal for 24 hours to let the water distribute evenly; 

(3) After 24 hours, get a small amount of the soil oven dried at temperature of 105°C to 110°C 
for over 8 hours to measure the actual moisture content; based on that, add the enough 
mass of the soil to fit into a cutting ring to achieve the required dry density; 

(4) Place two cutting rings back-to-back on an even table surface, pour the soil sample into the 
cutting rings, and gently strike a ring-sized cylindrical metallic block in the upper ring by 
using a light hammer till the block just fits the whole volume of the upper ring. 

 
2.2 Test apparatus 
 
As illustrated in Fig. 1, the direct shear device was modified by putting an appropriately sized 

concrete block in the lower shear box. The top surfaces of the concrete block and the lower shear 
box were at the same level. The standard soil samples with 61.8 mm in diameter and 20.0 mm in 
height were then placed on the concrete block. A porous stone was placed over the top of the soil 
sample to simulate the drainage condition. In the relatively simple direct testing procedure of this 
study, the soil samples were pre-compacted before contacting with the concrete base and a 
thickness of interface zone was not considered, therefore the studied interface may be considered 
as a precast interface as explained in Hossain and Yin (2013). 

The device was controlled by a constant speed of shearing at 0.02 mm/min under four normal 
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Fig. 1 Schematic of modified direct shear device 
 
 
stresses of 25 kPa, 50 kPa, 75 kPa and 100 kPa, respectively. The data of shear stresses and 
relative shear displacements were automatically collected by a data collection system (TSW-3 
model, produced by Nanjing Electric Power Automation Equipment Factory Ministry of Energy, 
P.R. China). Ceased the testing when shear stress remains approximately unchanged or the shear 
displacement was up to 4 mm. 
 
 
3. Experimental results 
 

By varying the initial soil moisture content w, initial dry density γd, and the applied normal 
stress, experimental results of peak and residual shear strengths at the soil-concrete interface are 
plotted, respectively, as seen in Figs. 2 and 3. Overall, both peak and residual shear strengths are 
proportionally increased with the normal stresses, i.e., the applied vertical loads on samples. 
However, significantly irregular relationships between the interface shear strengths and the two 
soil properties w and γd were clearly observed. It can be further expected if more factors are 
considered such as surface roughness, granular diameter, dilation angle of soils and the ways the 
structure is formed in, the shear strengths may tend to be more randomly distributed. Therefore it 

 
 

 

Fig. 2 Scattered peak shear strength of soil-concrete interface 
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Fig. 3 Scattered residual shear strength of soil-concrete interface 
 
 

is extremely difficult or even impossible to find a generic closed-form solution to accurately 
predict their inter-relationships using a common non-linear regression analysis. This problem, 
however, can be easily handled by data driven statistical learning models. In the following sections, 
a novel study on the experimental data by using the recently developed statistical learning 
approach, the LS-SVM, is introduced subsequently. 

 
 

4. Strength estimation by LS-SVM 
 

4.1 Basic concepts of LS-SVM 
 
Least squares support vector machine, LS-SVM (Suykens and Vandewalle 1999, Suykens et al. 

2002) is an alternative form of SVM which was pioneered by Vapnik and his colleagues (Vapnik 
2000). Because LS-SVM provides a computational convenience over SVM by converting 
quadratic optimization problem into a system of linear equations, it has been attracting more and 
more research interests in various fields during the past decade (Zhao et al. 2014, Ji et al. 2015). 
To successfully implement this approach, sufficient experimental data are usually required. The 
data are then grouped into training and testing sets. Each instance in the training set contains one 
“target value” (i.e., output variable) and “several attributes” (i.e., the features or input variables). 
The goal of LS-SVM is to produce a surrogate model (based on the training data set) which 
predicts the target values of the testing data given only the testing data attributes. Formulation of 
LS-SVM for complex function estimation is briefly given below. 

For a given training set of N data points [xi, yi] (i = 1, 2, . . ., N) with input data xi ϶ R
n and 

output yi ϶ R, where Rn is an n-dimensional vector space and R is a one-dimensional vector space. 
In describing the LS-SVM for function estimation, the following optimization problem is 
formulated in the so-called primal weight space (Suykens et al. 2002) 
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Subject to: Nieby ii
T

i ,,1,)(  xw   (2)
 

where J is cost function consisting of fitting errors ei, and  is a positive real constant reflecting the 
relative importance of the regularization term; w is an adjustable weight vector in primal weight 
space, and w ϶ Rn; b is the bias, and b ϶ r. 

In particular, the nonlinear function () maps the basic input data xi into a higher dimensional 
feature space. For regression analysis, it will convert the highly nonlinear target function to a 
linear one which helps establish a simpler cost function as shown in Eq. (1). 

In primal weight space, LS-SVM model reads 
 

by T  )()( xwx   (3)
 
Since the weight vector w can be of infinitely high dimensions, it is impossible to directly 

calculate w from Eq. (1). Instead, the LS-SVM model is constructed in a so-called dual space. To 
do so, the Lagrangian is first defined such as 
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with Lagrange multipliers αi ϶ R. These αi’s compose the so-called support vector α. 

The optimality for this Lagrangian is determined by the following equation set 
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The support vector α and bias term b are the solutions of linear equations given by Eq. (6) 
(Suykens et al. 2002). For larger size data problem, fast solution of α and b is attainable by using 
iterative methods such as conjugate gradient algorithm. 
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where column vectors 1v = [1,…,1], α = [α1,…, αN], y = [y1,…, yN], and  is a matrix consisting of 
entries )()( j

T
iij xx   for i, j = 1 to N. The mapping function (), according to Mercer’s 

condition, can be characterized by a kernel function K(,) 
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Two commonly used kernel functions are the radius basis function (RBF) ),( jiK xx  
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ijiK xxxx where  is a predefined constant. 

366



 
 
 
 
 
 

Evaluation of Soil – concrete Interface Shear Strength Based on LS-SVM 

As a result, the LS-SVM model for functional prediction is obtained in the form of 
 





N

i

ii bKy
1

),()( xxx   (8)

 
The solution of LS-SVM substantially depends on two unknown constants, i.e., kernel constant 

 and the positive regularization constant . To find the optimal solution of LS-SVM, these 
constants are determined by trial and error, and a grid search method has proven to be useful (Hsu 
et al. 2010). In addition, to avoid over-training, a cross-validation technique based on a training 
(learning) data set and a validation data set is commonly adopted. This is somewhat similar to the 
cross-validation procedure required in the well-known neural network approach. However, very 
few model parameters are involved in the LS-SVM and there is no issue of being trapped in local 
minimums, hence the computational effort is much less than the neural network. 

The attributes of a data set can be of different orders of magnitude, bring some numerical 
difficulties in the construction of LS-SVM. As a result, scaling of the data attributes is usually 
conducted for the computational efficiency (although not a necessity). Three methods are usually 
well known for rescaling data: min-max normalization, standardization (Gaussian normalization) 
and sigmoid normalization. In this study, the standardization technique is used for data scaling. 

 
4.2 Soil-concrete interface shear strength predictions based on LS-SVM 
 
Based on the experimental data as depicted in Section 3, this paper uses LS-SVM to learn the 

complicated interrelationships between soil-concrete interface shear resistances and the basic 
expansive soil properties. The input variables used for developing LS-SVM model in this study are 
normal stress σN, initial moisture content w, and initial dry density γd, and the target is to predict 
soil-concrete interface shear resistances in terms of both peak and residual shear strengths. The 
experimental data sets were randomly divided into training set and testing set. For the optimality 

 
 

Fig. 4 Peak shear strength analyzed by LS-SVM model with cross-validation 
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Fig. 5 Residual shear strength analyzed by LS-SVM model with cross-validation 
 
 

Fig. 6 Residual shear strength analyzed by LS-SVM model without cross-validation 
 
 

of LS-SVM development, the grid search method with 10-fold cross-validation has been properly 
adopted. The numerical procedure was realized in a ubiquitous Microsoft Excel with Visual Basic 

With the assistance of the present LS-SVM models, the scattered isolated experimental data of 
peak and residual interface shear strengths as shown in Figs. 2 and 3 can be manipulated to 
produce continuous and smooth envelope surfaces of shear strengths, as seen in Figs. 7 and 8. It is 
worth pointing out that the envelope surfaces are capable to capture most of the measured scattered 
shear strengths, which is the natural consequence of the good fittings as shown in Figs. 4 and 5. 

From the envelop surfaces, it is anticipated that the higher the normal stress, the higher the peak 
and residual interface shear strengths would be. Abu-Farsakh et al. (2007) reported that the peak 
interface shear strength tends to be linearly increased with the normal stress applied, in particularly 
when the test samples are performed at their maximum dry density and/or optimum moisture 
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Fig. 7 Peak shear strength envelops from LS-SVM result 
 
 

Fig. 8 Residual shear strength envelops from LS-SVM result 
 
 

content. Nevertheless, they did not reflect the complexity of the impact of varied moisture contents 
on the interface shear strength under different normal stresses. In this study, it is found both from 
experiments and statistical learning models that the peak strength envelopes appear to be highly 
nonlinearly related to w, γd and σN, as shown in Fig. 7. The nonlinearity appears to be more 
significant at low σN of 25 kPa and 50 kPa than the relatively high σN of 75 kPa and 100 kPa. This 
may be contributed by soil dilation that changes with the variation in γd and σN. In addition, the 
nonlinearity of peak interface shear strength also tends to reduce with the decrease of initial water 
content. 

In contrast, Fig. 8 shows that the residual interface shear strength appears to be an 
approximately linear relationship with w, γd and σN. As such, it suggests that unlike the highly 
nonlinear peak interface shear strength, the residual interface shear strength may be well predicted 
by a linear function formulated by the w, γd and σN, in the form of, e.g. a curved Mohr-Coulomb 
envelope and a critical state line, plus saturation ratio, see for example the interface strength 
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models discussed by Randolph et al. (2012). In this case, although the LS-SVM renders itself a 
useful tool for systematic analysis of the shear behavior, a direct algebraic link between the 
residual interface shear strength and the influential parameters is achievable. 

Interestingly, both plots of the peak and residual interface shear strength envelopes show that 
under a constant normal stress σN, large interface shear strengths of expansive soils may be 
obtained when water content is low and dry density is large. On the other hand, it seems that the 
peak interface shear strength is more susceptible to the change of dry density while the residual 
interface shear strength is more to the change of water content. While these findings are solely 
based on the limit test results on hand, further investigation is needed to draw a more general 
conclusion on the influence of soil properties on soil-concrete interface shear strengths. 
 
 

5. Conclusions 
 

Through a series of direct shear tests of soil-concrete interface conducted at different w, γd and 
σN, this paper investigated the variations of interface shear strengths (both peak and residual) using 
a statistical learning approach, LS-SVM. The following conclusions can be drawn based on the 
discussions in this study: 

 

(1) A well-trained LS-SVM model is capable to capture the complex relationship between the 
shear strength of the soil-concrete interface and some of the important soil properties. In 
this way, a straightforward and accurate prediction of the interface shear strength is 
attainable when a certain number of test results are available. This new perspective of 
assessing the interface shear strength can simplify the systematic considerations of the 
interrelationships among many physical parameters. 

(2) Due to the high nonlinearity of interface shear strength, overfitting of the LS-SVM model 
may exist if cross-validation is not considered. For a better prediction of unknown 
scenarios, a simple grid search based cross-validation procedure is suggested. 

(3) The modelled interface shear envelops clearly indicate that the higher the normal stress, the 
higher the peak and residual interface shear strengths. The peak interface shear strength 
shows higher non-linearity than the residual interface shear strength, with respect to the 
three parameters investigated. Moreover, it is observed that the non-linearity of peak 
interface shear strength tends to reduce with the decrease of both normal stress and initial 
water content. 

(4) This study provides a preliminary investigation of the soil-concrete interface shear 
strengths utilizing LS-SVM by considering only three fundamental influential factors, e.g., 
the initial water content, initial dry density and applied normal stress. Further study can be 
carried out to develop a more generalized LS-SVM model to account for more influential 
factors (e.g., surface roughness, particle sizes, dilation angle of the soils, etc) that may 
change the interface shear strengths. 
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