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Abstract.    A total stress-based bounding surface model is developed to predict the undrained behaviour of 
saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface 
theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has 
simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in 
the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping 
centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In 
addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the 
interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of 
initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial 
compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By 
comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain 
responses of elements with different stress states for the tested clays. 
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1. Introduction 
 

Many marine engineering structures such as deep-water suction anchors and large- diameter 
bucket foundations must be built on the seabed soft-clay foundation (Chen and Randolph 2007, 
Andersen 2009). They are put into operation immediately after a short-time on-site installation 
(API RP2A-WSD 2002). Because of low permeability, the soft clays around foundation are 
basically in undrained states when they are subjected to the working loads and cyclic loads from 
wind and waves. For this case, the yielding of soft clays is independent of normal total stress and 
only depends on deviatoric stress (Prevost 1977, Borja and Amies 1994, Anastasopoulos et al. 
2011, Huang and Liu 2014). During the soil-structural interaction analysis, the undrained soft-clay 
can be regarded as single-phase medium materials, and then the deviatoric deformation under 
cyclic loading can be calculated by using a total stress-based model to simplify the calculation 
process. 

The constitutive models describing stress-strain behaviour of soft clays under cyclic loads have 
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been broadly divided into two categories, ones are effective stress-based constitutive models, the 
others are total stress-based constitutive models. For the former, more researches have been carried 
out (Mroz et al. 1981, Dafalias and Herrmann 1982, 1986, Pande and Pietruszczak 1982, Tabbaa 
and Wood 1989, Liang and Ma 1992, Crouch and Wolf 1994, Li and Meissne 2002, Yu et al. 2007, 
Huang et al. 2009, 2011, Hu et al. 2012, Kimoto et al. 2013, Yin et al. 2013, Seidalinov and 
Taiebat 2014, Hong et al. 2014, Ni et al. 2015). Such models describe the deformation and failure 
of soft clays from the perspective of effective stress based on the critical state theory. The models 
often involve complex interpolation functions of plastic modulus and hardening rules. Too many 
model parameters are required and the volume change constraints or the consolidation equation 
need to be introduced to carry out the finite element analysis in undrained condition, which make 
the models difficult for numerical implementation. Comparing to the former, researches about the 
latter are relatively less (Prevost 1977, Borja and Amies 1994, Wang and Yao 1996, Xiong and 
Chen 2008, Anastasopoulos et al. 2011, Huang and Liu 2014). For total stress-based models for 
saturated soft clays, hardening modulus field is generally constructed in the deviatoric stress space, 
and then the relationship between the deviatoric stress increment and the deviatoric strain 
increment is built. Since the total stress-based models involve only the hardening mechanism of 
plastic deviatoric strain, the expression of hardening modulus is relatively simple and model 
parameters are relatively less, which make them easier to be implemented into 3D finite-element 
codes. However, phenomena such as pore-pressure buildup and dissipation cannot possibly be 
captured. 

Although the models proposed in the form of effective stress or total stress can describe the 
basic mechanical properties of soil subjected to cyclic loading such as non-linear, hysteresis and 
strain accumulation to some extent, there are some inadequateness, that is the models are validated 
only in a particular stress state, such as the models proposed by Dafalias (Dafalias and Herrmann) 
1982, Li and Meissne 2002, Yu et al. 2007, Huang et al. 2009, 2011, Hu et al. 2012, Ni et al. 2015 
have only been verified under triaxial stress states, the applicability of other stress states is 
unknown. Besides, model parameters match with only a particular stress conditions, and then can 
only predict the stress-strain response of the soil element in a particular stress condition, once the 
stress conditions of soil element change, the model parameters must be redetermined. Such as the 
two-surface model proposed by Li and Meissne need two different sets of model parameters to 
predict test results of one-way and two-way cyclic triaxial loading. For Yu’s model, during 
determining hardening modulus for reloading stress path, the parameter controlling the shakedown 
behaviour of the soil is not constant, and it is dependent upon many factors including the cyclic 
stress history and the current stress level of the soil, which leads to the value of parameter must be 
redetermined to predict the test results in different stress conditions; Another example is Huang's 
model, the model parameters in the interpolation function of plastic modulus are determined using 
trial-and-error simulations of the stress-strain curve test results, thus whether the model parameters 
determined in this way can be suitable for other stress condition remains to be further studied. 
Obviously, the model parameters determined by a particular stress condition tend to have certain 
limitations. They can't comprehensively reflect the effect of the initial stress levels, cyclic stress 
levels and number of stress cycles on the stress-strain responses of the soil, so they can't describe 
the stress-strain responses of soil elements in general stress states. However, only the model 
parameters have universal applicability for soil elements in general stress states, can the model be 
applied to solve the boundary value problem, which is the purpose of this study. 

Based on the above analysis, the main objective of this paper is to develop a total stress-based 
constitutive model that is suitable for analysing the deformation of soft clays subjected to cyclic 
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loads. A new hardening rule is developed based on the anisotropic hardening modulus field and 
bounding-surface theories, the evolutions of hardening modulus is described in the deviatoric 
stress space by the movement of mapping centre to describe the cyclic hysteretic stress-strain 
responses. The variation of hysteresis curves is controlled by introducing a model parameter 
reflecting the accumulation rate and level of shear strain to the interpolation function of 
elastoplastic modulus. The methods to determine the model parameters using cyclic triaxial 
compression tests are discussed in details in the present work. Furthermore, the stress-strain 
responses of the tested clays under cyclic triaxial tensile and torsional shear stress states are 
predicted to verify the applicability of the model for soil elements with different stress states. 
 
 
2. Elastoplastic bounding surface model 
 

The development of incremental elastoplastic models based on the anisotropic hardening 
modulus field and bounding surface theories mainly include three aspects: the bounding surface 
equation, which describes the failure of the soil element; the evolution rules of the hardening 
modulus; and the incremental elastoplastic stress-strain relationship. 

 
2.1 Bounding surface equation 
 
The ultimate strength of the soil element is characterised by the bounding surface, and failure 

occurs when the stress point reaches the bounding surface. Since during unconsolidated undrained 
loading, the yielding and failure of soft clay is independent of the imposed normal total stress 
component, only depends on the deviatoric stress (Prevost 1977, Li 2004, Wang and Qu 2011). 
thus, the bounding surface equation is represented by simple Von Mises yield criterion 

 

2
0

3
0

2 ij ijF s s A    (1)

 
where ijs  denotes the deviatoric stress tensor, and A0 denotes the radius of the bounding surface. 

When cylindrical coordinate is used to represents the bounding surface equation, if the stress 
state of soil element satisfies ,  rz  ,0  rrz  Eq. (1) can be simplified to 

 
2 2 2

0( ) 3 0z zF A         (2)
 
In Eq. (2), ,z  ,  and  z  denote the axial normal stress, circumferential normal stress 

and circumferential shear stress, respectively. 
If the stress state of the soil element satisfies ,  rz ,0  rrz  Eq. (1) can be 

simplified to 
2 2

03 0zF A    (3)
 
If the soil element is in the triaxial stress state, ,r   and ,0 rzrz    the bounding 

surface Eq. (1) can be further simplified to 
 

 2 2
0 0zF A      (4)
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If we assume ,  zR  Eq. (4) is simplified to 
 

 2 2
0 0RF A    (5)

 
2.2 Evolution rule of the hardening modulus field 
 
Here, the evolution rules of the hardening modulus field are elaborated using bounding surface 

Eq. (2). In this case, the bounding surface is a circle of radius A0 in a  z  versus  z3  
stress plane as shown in Figs. 1(a) and (b). During the triaxial tests, the shear stress components is 

 z = 0, and the stress point continues moving consistently along the σR-axis. A typical stress-strain 
curve obtained in the triaxial compression tests is shown in Fig. 1(c). The maximum modulus of 
the stress-strain curve is obtained at the initial loading and can be represented as the maximum 
elastoplastic modulus Hmax. Failure occurs for the soil element when the stress point reaches the 
bounding surface. At this exact moment, the modulus should approach zero, which is denoted as H 
= 0. 

The mapping rule for initial loading is schematically shown in Fig. 1(a), where ,0
Rs Rs  and sR 

denote the initial loading point, stress reversal point, and current stress point, respectively; Rs  
denotes the image stress point, which is the intersection point of the bounding surface and a line 
passing through the initial loading stress and current stress point. The position of each point in the 

 
 

(a) Mapping rule for initial loading (b) Mapping rule for unloading 
 

(c) Typical stress strain curve for cyclic triaxial tests 

Fig. 1 Illustration of the mapping rule for loading and unloading 
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stress-strain curve is shown in Fig. 1(c). Here, the loading path abruptly changes direction at the 
stress reversal point. For the general three-dimensional stress states, it is assumed that the stress 
path reverses when the dot product between the deviatoric stress increment vector of the current 
stress point and the exterior normal vector of the bounding surface at the image stress point is 
negative, which implies that if Eq. (6) is satisfied, the stress path reverses. 

 

0ij
ij

F
ds

s





 (6)

 

The elastoplastic modulus gradually decreases to a certain value from the maximum value 
when the stress point moves from the initial loading point to the stress reversal point. Referring to 
the mapping rules (Dafalias and Herrmann 1986) related to the bounding surface theory, it is 
assumed that the initial loading point is the mapping centre on the loading path from the initial 
loading point to the stress reversal point. The elastoplastic modulus H of the current stress point is 
determined according to the elastoplastic modulus interpolation function represented as Eq. (7) 

 

max
0

H H




 

  
 

 (7)

 

In Eq. (7), δ denotes the distance between the current stress point and the image stress point; δ0 
denotes the distance between the mapping centre and the image stress point; Hmax represents the 
maximal elastoplastic modulus; the parameter μ reflects the accumulation rate and the level of 
shear strain. 

The mapping rule of the first unloading is schematically shown in Fig. 1(b), where Rs  is the 
stress reversal point and starting point of the unloading path, ks  denotes the image stress point for 
unloading, and sk denotes any point on the unloading stress path. The position of each point in the 
stress-strain curve is also shown in Fig. 1(c). We assume that the elastoplastic modulus at the 
beginning of the unloading is equal to the maximum Hmax at the beginning of the initial loading. 
The stress reversal point is considered the mapping centre after stress reversing, and the 
elastoplastic modulus H of any stress point on the unloading path is determined according to Eq. 
(7). 

Furthermore, for the reloading and subsequent re-unloading stress paths, the stress reversal 
points where the stress paths abruptly change direction are defined as the mapping centre. The 
elastoplastic modulus H of any stress point on the stress paths after reversing is determined 
according to Eq. (7). 

Based on this description, the method to determine the hardening modulus for any stress point 
on cyclic loading paths is established, and the evolution rules of the hardening modulus field under 
cyclic loading are formed. When the elastoplastic modulus is determined using Eq. (7), the 
movement of the mapping centre creates a difference in elastoplastic modulus at the symmetrical 
position on the loading and unloading stress paths. Consequently, the cyclic hysteresis loop and 
strain accumulation of the soil element with initial static deviatoric stress is described. 

 
2.3 Incremental elastoplastic relations 
 
The strain increment includes two parts of the elastic and plastic strain increment. The elastic 

strain increment is obtained according to the generalised Hooke’s law, and the plastic strain 
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increment is obtained according to the associative flow rule and bounding surface equation. 
According to the radial mapping rules, the direction of plastic strain increment at the current 

stress points is assumed to be consistent with the normal direction of the bounding surface at the 
image stress points. Then, the plastic deviatoric strain increment is written as 

 

p 1
d dij ij kl kle n n s

H



 (8)

 

where pd ije  is the plastic deviatoric strain increment; H′ is the plastic shear modulus; ijn  and kln  
are the exterior normal unit vectors of the bounding surface at the image stress point; klsd  is the 
deviatoric stress increment at the current stress point. 

 

0

3

2
ij

ij
ij kl kl

sF F F
n

s s s A

  
 
  

 (9)

 

After substituting Eq. (9) into Eq. (8), we obtain Eq. (10) 
 

p
2

0

3
d d

2
ij

ij kl kl

s
e s s

H A



 (10)

 

According to the generalised Hooke’s law, the elastic strain increment is obtained 
 

e
d

d
2

ij
ij

s
e

G
  (11)

 

where ed ije  is the elastic deviatoric strain increment, and G is the elastic shear modulus. 
The deviatoric strain increment is obtained from Eqs. (10) and (11) 
 

2
0

1 3
d d d

2 2
ij

ij ij kl kl

s
e s s s

G H A
 


 (12)

 

where deij is the deviatoric strain increment. 
For the torsional shear stress state without axial deviatoric stress (refer to Fig. 8), the 

circumferential shear strain and axial strain increments are obtained as follows by simplifying Eq. 
(12) 

1 2 2
( )

'z z zd d d
G H H

        (13)

 
0zd   (14)

 
where dεz is the axial strain increment, and dγzθ is the circumferential shear strain increment. 

For the undrained triaxial stress state, the axial strain increment is obtained as Eq. (15) by 
simplifying Eq. (12) 

2 1 1 2
d d d

3 2 3z R RG H H
     

    (15)
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where H is the elastoplastic modulus and obeys the following relation 
 

1 1 1

2H G H
 


 (16)

 
At the beginning of initial loading, we believe that only the elastic strain is produced, whereas 

the plastic modulus is infinite, so the maximum of elastoplastic modulus is 
 

max 2H G  (17)
 
 
3. Model parameters 
 

The developed model requires three undetermined parameters: radius of the bounding surfaceA0, 
elastic shear modulus G and parameter μ, which reflects the accumulation rate and the level of 
shear strain. 

All model parameters are determined using undrained cyclic triaxial compression tests. 
Because parameter μ is associated with the static and cyclic stress levels of soil elements, and the 
stress level of soil elements in the general stress states can be represented using the octahedral 
shear stress τ8, parameter μ is expressed as the function of the octahedral static shear stress ratio τ8,a 

/ τ8,f and cyclic shear stress ratio τ8,cy / τ8,f. Here, the octahedral static shear stress τ8,a is defined as 
the octahedral shear stress of the soil element under static loading. The octahedral cyclic shear 
stress τ8,cy is defined as one half of the octahedral shear stress variation amount of the soil element 
under static and cyclic loading. In addition, the octahedral peak shear stress τ8,f is defined as the 
octahedral shear stress when the sample reaches the deformation failure criteria. If the soil 
elements are in the triaxial stress states, the octahedral shear stress and strain are represented by 
Eqs. (18) and (19), respectively. 

 8 2 3z      (18)

 

8 2 z   (19)

 
where σz, σθ and εz denote the axial stress, circumferential stress and axial strain. 

 
3.1 Triaxial compression tests 
 
Reconstituted soft clay was used in the experiment. The basic physical index of the soil 

samples are shown in Table 1. 
The initial size of the samples is 8.0 cm in height and 3.91 cm in diameter. The HX-100 

Electric Servo Control Triaxial Apparatus was used in these experiments. Then, unconsolidated 
undrained static and cyclic triaxial compression tests were performed under the stress- 

 
 

Table 1 Basic physical indexes of the soil samples 

Unit weight (kN/m3) Water content (%) Plastic limit Liquid limit Plastic index 

16.2 31.0 21 45 24 
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Table 2 Static and cyclic stress ratios for the cyclic triaxial compression tests 

τ8,a / τ8,f τ8,cy / τ8,f τ8,a / τ8,f τ8,cy / τ8,f τ8,a / τ8,f τ8,cy / τ8,f

0.3 1.577 0.5 1.087 0.7 1.022 

0.3 0.412 0.5 0.494 0.7 0.280 

0.3 0.323 0.5 0.423 0.7 0.215 

0.3 0.263 0.5 0.358 0.7 0.183 

0.3 0.227 0.5 0.310 0.7 0.165 

0.3 0.152 0.5 0.181 0.7 0.120 
 
 

controlled condition. The confining pressure that was applied to the sample is 100 kPa during the 
experiment. 

The following tests were performed: 
Unconsolidated undrained static triaxial compression tests. The static compression strength σf 

was determined according to these tests. σf is the axial deviatoric stress when the axial strain of 
sample reaches 10%. The obtained results are: σf is 25 kPa, and the corresponding τ8,f is 11.79 kPa. 

Unconsolidated undrained cyclic triaxial compression tests under the joint actions of different 
static and cyclic stress. By performing these tests, the radius of the bounding surface A0, shear 
modulus G and parameter μ were determined. 

The octahedral static shear stress ratio and cyclic shear stress ratio were defined as τ8,a / τ8,f and 
τ8,cy / τ8,f, respectively, to represent the static deviatoric stress level and cyclic stress level that were 
applied to the sample during the experiment. For each τ8,a / τ8,f, different τ8,cy / τ8,f values were 
selected to do the tests, as shown in Table 2. 

 

The main experimental steps are as follows: 
(1) 100 kPa confining pressure was applied to the sample after setting it in the triaxial cell. 
(2) Axial static deviatoric stress was applied to the sample under unconsolidated undrained 

condition. 
(3) A 0.1 Hz sinusoidal constant-amplitude cyclic deviatoric stress was not exerted until there 

was a relatively stable axial deformation. 
 

The static and cyclic stress ratios that corresponded to the cyclic triaxial compression tests 
under high cyclic stress level are shown in the second line of Table 2. These tests were used to 
determine the radius of bounding surface A0 and shear modulus G. For the effect of the loading 
rate, the compression strength and shear modulus of the soil element under cyclic loading are 
different from those under static loading when they reach the identical deformation failure criteria. 
To consider the loading rate effect, the cyclic triaxial compression tests under high cyclic stress 
level with different initial static stress level were performed. In these tests, τ8,a / τ8,f are set as 0.3, 
0.5 and 0.7. A larger cyclic stress amplitude (the axial deformation is beyond 10% after loading for 
a quarter cycle) was selected for each τ8,a / τ8,f. The tests were finished after loading for a cycle. 

Cyclic triaxial compression tests that corresponded to other static and cyclic stress ratios in 
Table 2 were used to determine the parameter μ. The tests were finished if the sum of octahedral 
static shear strain and octahedral cyclic accumulative shear strain was over 14.1% after applying 
the cyclic stress to the sample. Fig. 2 shows the typical stress-strain curves obtained from the test 
results; γ8,a is the octahedral static shear strain caused by the octahedral static shear stress τ8,a; γ8,p is 
the octahedral cyclic accumulative shear strain caused by octahedral cyclic stress τ8,cy; Δγ8,p is the 
octahedral cyclic accumulative shear strain increment after each loading cycle. 
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Fig. 2 Typical stress-strain curve for cyclic triaxial compression tests with the initial axial deviatoric stress
 
 

 

Fig. 3 Initial stress-strain response curves with different static stress ratios 
 
 
3.2 Parameters A0 and G 

 
Fig. 3 shows the initial loading curve that was obtained from the cyclic triaxial tests under high 

cyclic stress level with different static stress ratios. These results indicate that their initial stress-
strain responses follow the same initial loading curve, although the octahedral static shear stress 
ratios are different. According to bounding surface Eq. (5) in the triaxial stress states, the axial 
deviatoric stress R  when the soil sample is damaged is the radius of bounding surface A0, which 
was determined using the failure criteria of reaching 10% axial strain, and the result is A0 = 39.5 
kPa. Obviously, for the effect of the loading rate, the compression strength of the soil element 
under cyclic loading (for a quarter cycle) is bigger than that under static loading when they reach 
the identical deformation failure criteria. 

Furthermore, to determine the tangential modulus E of the initial loading, the stress-strain 
curves were fitted using Eq. (20). Its value is 1/a. The shear modulus G was determined using Eq. 
(21), and the obtained value is 347 kPa. 

 

 R z za b     (20)
 

where a and b are undetermined coefficients; the values obtained from the fitting results are a = 
0.00096 and b = 0.0157 
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 2 1G E   (21)
 

where v denotes the Poisson’s ratio, and its value is 0.5 under undrained condition. 
 

3.3 Parameter μ 
 

To reflect the effects of the stress history on the accumulative strain, parameter μ is shown in 
Eq. (22) 

0 8, pd    (22)
 
 

 

 

Fig. 4 Octahedral cyclic accumulative shear strain versus the number of stress cycles in 
triaxial compression tests 
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where dγ8,p denotes the octahedral accumulative shear strain increment after every stress cycles, 
which depends on the stress history and current cyclic stress level, and controls the trends of the 
accumulative shear strain versus the number of stress cycles; the coefficient μ0 controls the level of 
the accumulative shear strain after a certain number of stress cycles. 

Fig. 4 shows the octahedral cyclic accumulative shear strain versus the number of stress cycles 
using discrete symbols, which were obtained using undrained cyclic triaxial compression tests 
with three groups of octahedral static shear stress ratios and cyclic shear stress ratios. Experimental 
data were fitted using Eq. (23), and the fitting results are presented with solid lines in Fig. 4. The 
octahedral cyclic accumulative shear strain increment is shown in Eq. (24), which was obtained 
using Eq. (23). 

8,
d

p cN  (23)
 

where c and d are coefficients of the fitting function, and their values are listed in Table 3, N is the 
number of stress cycles. 

1
8,

d
pd cdN   (24)

 
The c and d values versus τ8,cy / τ8,f for given τ8,a / τ8,f were fitted using Eqs. (25) and (26) 

separately, as shown in Fig. 5. The coefficients k1 and k2 were fitted using Eqs. (27) and (28) 
separately, as shown in Fig. 6. The c and d values for any given τ8,a / τ8,f and τ8,cy / τ8,f can be 
determined by the Eqs. (25)-(28). 

1 8 8cy fc k    (25)
 

2 8 8cy fd k    (26)
 

   2 3

1 8 8 8 8 8 81.804 1.139 5.559 8.621a f a f a fk           (27)

 

   2 3

2 8 8 8 8 8 81.202 1.071 4.618 6.947a f a f a fk           (28)

 
μ0 can be determined using the following trial calculation method after obtaining dγ8,p: 
For a given incremental deviatoric stress, first, by assuming that a μ0, μ can be determined 
 
 

Fig. 5 c and d values versus τ8,cy / τ8,f for given τ8,a / τ8,f 
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Fig. 6 k1 and k2 values versus τ8,a / τ8,f 
 
 

according to Eq. (22), the elastoplastic modulus of the current stress points is determined using Eq. 
(7). Second, the incremental strain that corresponds to the incremental stress can be calculated 
using Eq. (15). As a result, the axial cyclic deviatoric stress-strain curve of the triaxial sample can 
be obtained. For cyclic failure tests, it is necessary to determine the number of stress cycles (the 
number of cyclic failure) according to the calculation results when the sum of octahedral static 
shear strain and octahedral cyclic accumulative shear strain reach 14.1%. If the determined number 
of stress cycles is inconsistent with the triaxial test results, μ0 must be adjusted to repeat the above 
process until the calculation results are consistent with the experimental results. For the tests 
where the total strain does not satisfy the failure criterion, it is necessary to determine the 
accumulative strain that corresponds to the maximum number of stress cycles according to the 
calculation results of stress-strain curve, then the calculation and test results of accumulative strain 
are compared. If they are inconsistent, μ0 must be adjusted to repeat the above process until the 

 
 

Table 3 Parameters c, d and μ0 with different static and cyclic stress ratios 

τ8,a / τ8,f τ8,cy / τ8,f c d μ0 

0.3 0.412 0.7295 0.5099 3.65 

0.3 0.323 0.6250 0.4233 6.45 

0.3 0.263 0.5252 0.3599 9.05 

0.3 0.227 0.4625 0.3027 13.35 

0.3 0.152 0.3205 0.2460 25.05 

0.5 0.494 0.9416 0.6836 1.82 

0.5 0.423 0.8423 0.6001 1.95 

0.5 0.358 0.7343 0.4987 2.6 

0.5 0.310 0.6699 0.4500 3.75 

0.5 0.181 0.4580 0.3373 10.5 

0.7 0.280 0.8135 0.5319 1.5 

0.7 0.215 0.6085 0.4769 4.2 

0.7 0.183 0.5083 0.3801 6.3 

0.7 0.165 0.4655 0.3586 7.7 

0.7 0.120 0.3510 0.3053 14.2 
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Fig. 7 Parameter μ0 with different static and cyclic stress ratios 
 
 

results are consistent. The μ0 values that are determined in this manner are shown in Table 3. 
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(29)

 

The triaxial compression strength of the soil element under cyclic loading (for a quarter cycle) 
is 1.58 times bigger than that under static loading (the former is 39.5kPa and the latter is 25 kPa). 
Therefore, for these tests in this article, the maximum value of the sum of the octahedral static 
shear stress ratio and cyclic shear stress ratio is 1.58. It is observed that μ0 decreases monotonically 
with the increase of the octahedral cyclic shear stress ratio when the octahedral static shear stress 
ratio remains constant in Fig. 7. μ0 approaches a certain value (It is 60 for these tests) when the 
cyclic shear stress ratio approaches zero, whereas the cyclic accumulative strain of soil element 
approaches zero. μ0 approaches 1 when the sum of the octahedral static shear stress ratio and cyclic 
shear stress ratio approaches the maximum value (It is 1.58 for these tests), which implies that a 
larger cyclic accumulative strain is produced with fewer stress cycles. μ0 for any static stress ratio 
and cyclic stress ratio can be obtained by the Eq. (29). 

 
 

4. Verification of the model performance 
 

To verify the prediction capability of the proposed model, triaxial extension and torsional shear 
tests that were subjected to the different combinations of initial and cyclic stresses were performed 
for the clays. Then, the test results were predicted using the proposed model. First, the cyclic 
triaxial extension and torsional shear tests were introduced; then, the predicted results and test 
results were compared. 

 
4.1 Laboratory experiments 
 
Two groups of tests were performed and numbered as S1, S2: cyclic triaxial extension tests and 

cyclic torsional shear tests respectively. The initial octahedral static shear stress ratio and 
octahedral cyclic shear stress ratio that were applied to the sample are shown in Table 4. The soft 
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clay in the following tests is identical to that in the aforementioned triaxial compression tests. 
 

(1) Cyclic triaxial extension tests (S1). The tests remain stress-controlled, the initial size of 
sample and test procedures are basically identical to the aforementioned triaxial 
compression tests. The difference is: the initial static deviatoric stress was applied to the 
soil sample in the direction of extension, and a 0.1 Hz sinusoidal constant-amplitude cyclic 
deviatoric stress was not exerted until there was a relative stable axial deformation. Finally, 
the test was finished if the sum of octahedral static shear strain and octahedral cyclic 
accumulative shear strain was over 14.1%. 

(2) Cyclic torsional shear tests (S2). The tests were performed using a Vertical-Torsional 
Coupling Shear Apparatus. The hollow cylinder samples were used in the tests with the 
following initial size: inner diameter 3 cm, external diameter 7 cm, and height 10 cm. The 
unconsolidated undrained torsional shear tests were conducted under stress-controlled 
condition after applying an isotropic confining pressure to the sample. 

 

The main experimental procedures are as follows: 
 

(1) The prepared hollow cylinder sample was placed in the pressure chamber, and 100 kPa 
confining pressure was subsequently applied to that after connecting the sealed rubber 
membrane in the inner and outer walls of the pressure chamber. 

 
 

Table 4 Static and cyclic stress ratio of tests with different stress states 

Test number Tests with different stress states τ8,a / τ8,f τ8,cy / τ8,f 

S1 Triaxial extension tests 

0.5 0.495 

0.5 0.451 

0.5 0.250 

0.5 0.205 

S2 Torsional shear tests 

0.3 0.248 

0.3 0.270 

0.3 0.301 

0.3 0.504 
 
 

Fig. 8 Stress state of the sample in the torsional shear tests 
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(2) An initial circumferential static torque was applied to the sample; The initial static stress 
level was represented with the octahedral static shear stress ratio τ8,a / τ8,f, whose values are 
shown in Table 4. 

(3) A 0.1 Hz sinusoidal constant-amplitude circumferential cyclic torque was applied to the 
soil sample after reaching a relative stable circumferential deformation. The cyclic stress 
level was represented with the octahedral cyclic shear stress ratio τ8,cy / τ8,f. The tests were 
performed by choosing different τ8,cy / τ8,f for each τ8,a / τ8,f. The tests were finished when the 
sum of octahedral static shear strain and cyclic accumulative shear strain was over 14.1%. 

 

The stress state of the soil samples is illustrated in Fig. 8. M denotes the cyclic torque that was 
applied to the end of the sample, W denotes the axial load, pi denotes the inner pressure, p0 denotes 
the outer pressure, σz denotes the axial stress, σθ denotes the circumferential stress, σr denotes the 
radial stress, and τzθ denotes the circumferential shear stress. 

For S2, the axial stress that was applied to the sample is equal to the confining pressure, i.e., 
without axial deviatoric stress. When a static torque and a cyclic torque are applied to the end of 
the sample, σz = σr = σθ, τrz = τrθ = 0, for this stress state, the corresponding bounding surface 
equation is Eq. (3), the circumferential shear strain increment and axial strain increment can be 
obtained using Eqs. (13) and (14), respectively. The stress paths of the soil element with two 
different stress states S1, S2 can be seen from Fig. 1. For S1, the stress point always make a 
reciprocating movement along the σR-axis. For S2, the stress point always make a reciprocating 
movement along the τxy-axis. 

 

4.2 Prediction for the triaxial extension tests results 
 

Fig. 9 shows the experimental results and model predictions of the axial cyclic accumulative 
strain εz,p versus the number of stress cycles N in the S1 tests with discrete symbols and continuous 
lines, respectively. The consistency among the data is relatively satisfactory. Therefore, based on 
the model parameters determined by the cyclic triaxial compression tests, using the proposed 
model, the variation tendency of εz,p versus N in the triaxial extension tests can be predicted for the 
tested clays. 

Furthermore, the axial stress-strain curves of the soil sample in the S1 tests were simulated. The 
test results and predicted results are shown in Fig. 10, which shows that the model can describe the 
cyclic hysteresis loop and axial strain accumulation of stress-strain curves. However, the predicted 
hysteresis hoop is relatively smaller than that of the actual tests. 

 
 

Fig. 9 Axial cyclic accumulative strain versus the number of stress cycles in the triaxial extension tests 
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Fig. 10 Comparison of axial stress-strain curves between the test and forecast results in the triaxial 
extension tests 

 
 
4.3 Prediction for the torsional shear test results 
 
The experimental results show that when there is an initial torque, the circumferential cyclic 

torque only causes the accumulation of circumferential shear strain instead of axial strain. Fig. 11 
shows the experimental results and model predictions of the circumferential cyclic accumulative 
shear strain γzθ,p versus the number of stress cycles N using discrete symbols and continuous lines, 
respectively. It is observed that γzθ,p increases with the increase of cyclic stress level under the 
same initial static stress level. The result is similar to the triaxial extension tests, the soil element 
exhibits cyclic shakedown or cyclic failure states with different cyclic stress levels. The 
comparative results indicate that the model can basically predict the trend of γzθ,p versus N. 

Fig. 12 shows the experimental results and model predictions of the circumferential stress -
strain hysteresis curve. It is observed that the model can describe the cyclic hysteresis loop and 
circumferential strain accumulation of soil elements under different cyclic stress levels for the 
tested clays. However, the predictive hysteresis loop is relatively smaller than that of the real tests, 
which is similar to the prediction results of triaxial extension tests. Furthermore, according to Eq. 
(14), the axial strain is always zero under circumferential cyclic torque without axial deviatoric 
stress, which is consistent with the test results. In fact, for S1 and S2, the stress point moves along 
the σR-axis and τx,y-axis, respectively(see Fig. 1). The change rule of stress paths and hardening 
modulus are similar. Thus, the stress-strain responses of the soil elements with two different stress 
states are similar. 
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Fig. 11 Circumferential cyclic accumulative shear strain versus the number of stress cycles 
 
 

  

Fig. 12 Comparison of circumferential stress-strain curves between the test and the forecast results 
 
 
5. Conclusions 
 

A total stress-based elastoplastic constitutive model has been developed to predict the 
behaviour of saturated soft clays under cyclic loads. Furthermore, the model parameters were 
determined according to cyclic triaxial compression tests. Then, the applicability of the proposed 
model was verified by comparing its predictions with the cyclic triaxial extension and torsional 
shear test results. The key conclusions can be summarized as follows: 

 

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

16

 z
,

p /
 %


8,a

 /
8, f

 =0.3

 

N

 
8,cy

 /
8, f

 =0.248

 
8,cy

 /
8, f

 =0.270

 
8,cy

 /
8, f

 =0.301

 
8,cy

 /
8, f

 =0.504

 

0 2 4 6 8 10 12 14 16 18 20

-4

0

4

8

12 Experimental data

 
8,a

 /
8, f

 =0.3

 

 

 
8,cy

 /
8, f

 =0.504

 z
/

kP
a

z / %

 

-2 0 2 4 6 8 10 12 14 16

-4

0

4

8

12 Model simulation

 
8,a

 /
8, f

 =0.3

 

 

 
8,cy

 /
8, f

 =0.504

 z
/

kP
a

z / %

 

0 2 4 6 8 10

0

2

4

6

8

10
Experimental data

 
8,a

 /
8, f

 =0.3

 

 

 
8,cy

 /
8, f

 =0.270

 z
/

kP
a

z / %

 

-2 0 2 4 6 8 10

0

2

4

6

8

10
Model simulation

 
8,a

 /
8, f

 =0.3

 

 
8,cy

 /
8, f

 =0.270

 z
/

kP
a

z / %

341



 
 
 
 
 
 

Xinglei Cheng and Jianhua Wang 

(1) A new hardening rule is developed based on a new interpolation function of the hardening 
modulus that has simple mathematic expression and fewer model parameters. Cyclic 
stress-strain hysteresis curve can be described based on the new hardening rule. In addition, 
because a model parameter that reflects the accumulation rate and level of shear strain is 
introduced to the interpolation function, the proposed model can capture the cyclic 
shakedown and failure behaviour of soil elements with different initial and cyclic stress 
levels. 

(2) The model parameters can be determined according to the cyclic triaxial compression tests. 
To apply the model to the numerical analysis of boundary value problems, the octahedral 
shear stress can be used to represent the stress level of soil elements in general stress states. 
Besides, because some model parameters are associated with stress level of soil elements, 
they can be expressed as the function of the octahedral static shear stress ratio and cyclic 
shear stress ratio. 

(3) The model predictions are in relatively good agreement with the cyclic triaxial tensile and 
torsional shear test results, despite some deviations, which indicate that the model has 
good applicability for elements of the tested clays with different stress states. 

(4) Although the phenomena such as pore-pressure buildup and dissipation cannot be captured, 
it is believed that the new model provides the simplicity that is very much needed for 
practical implementation into 3D nonlinear finite-element analysis codes. Further work 
along this direction with numerical implementation is in progress. 
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