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Abstract.    A simple hyperbolic shear deformation theory taking into account transverse shear deformation effects 
is proposed for the free flexural vibration analysis of thick functionally graded plates resting on elastic foundations. 
By considering further supposition, the present formulation introduces only four unknowns and its governing 
equations are therefore reduced. Hamilton’s principle is employed to obtain equations of motion and Navier-type 
analytical solutions for simply-supported plates are compared with the available solutions in literature to check the 
accuracy of the proposed theory. Numerical results are computed to examine the effects of the power-law index and 
side-to-thickness ratio on the natural frequencies. 
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1. Introduction 
 

Functionally graded materials (FGMs) are a type of advanced composite materials that contain 
higher mechanical response than homogeneous material made of identical constituents. Such kind 
material are obtained by a continuously graded distribution of the volume fractions of the 
constituents (Koizumi 1997), the FGM is thus suitable for diverse applications, such as thermal 
coatings of barrier for ceramic engines, gas turbines, nuclear fusions, spacecraft heat shields, heat 
exchanger tubes, optical thin layers, biomaterial electronics, etc (Akbaş 2015, Bennai et al. 2015, 
Arefi 2015, Ait Atmane et al. 2015a, Belkorissat et al. 2015, Ebrahimi and Dashti 2015, Darılmaz 
et al. 2015, Bouguenina et al. 2015, Boukhari et al. 2016, Ebrahimi and Habibi 2016, Hadji et al. 
2016, Kar et al. 2016, Moradi-Dastjerdi 2016, Trinh et al. 2016). 

Currently, many functionally graded (FG) plate structures which have been employed for 
engineering fields led to the development of various plate models to accurately examine the static, 
buckling and vibration responses of FG structures (Benachour et al. 2011, Jha et al. 2013a, Hadji 
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et al. 2014, Belabed et al. 2014, Hebali et al. 2014, Klouche Djedid et al. 2014, Nguyen et al. 
2015, Tagrara et al. 2015, Pradhan and Chakraverty 2015, Hadji and Adda Bedia 2015a, b, Kar and 
Panda 2015, Hamidi et al. 2015, Bennoun et al. 2016, Eltaher et al. 2016). The classical plate 
theory (CPT) is based on the supposition that straight lines which are normal to the neutral surface 
before deformation remain straight and normal to the neutral surface after deformation. Since the 
transverse shear deformation is neglected (Feldman and Aboudi 1997, Mahdavian 2009, Chen et al. 
2006, Baferani et al. 2011a), it cannot be suitable for the investigating of moderately thick or thick 
plates in which transverse shear deformation effects are more important. For FG thick and 
moderately thick plates; the first-order shear deformation theory (FSDT) has been employed 
(Praveen and Reddy 1998, Croce and Venini 2004, Efraim and Eisenberger 2007, Zhao et al. 2009). 
In such formulation, in-plane displacements are linearly varied within the thickness and need a 
shear correction coefficient to correct the unrealistic distribution of the transverse shear stresses 
and shear strains across the thickness. To avoid the employment of the shear correction coefficient 
and predict a better distribution of the transverse shear deformation in FG plates, higher-order 
shear deformation plate theories (HSDTs) have been developed (Reddy 2000, 2011, Pradyumna 
and Bandyopadhyay 2008, Jha et al. 2013b, Neves et al. 2013, Talha and Singh 2010, Chen et al. 
2009, Mantari and Soares 2012, 2013, Houari et al. 2013, Matsunaga 2008, Tounsi et al. 2013, 
Mahi et al. 2015, Bellifa et al. 2016, Ait Yahia et al. 2015, Al-Basyouni et al. 2015, Bourada et al. 
2015, Attia et al. 2015, Merazi et al. 2015, Abdelhak et al. 2015). However, some of these HSDTs 
are computational costs due to of number of additional variables incorporated to the theory 
(Pradyumna and Bandyopadhyay 2008, Jha et al. 2013a, b, Neves et al. 2013, Reddy 2011, Talha 
and Singh 2010). Thus, a simple higher-order shear deformation theory presented in this article is 
necessary. 

This article aims to propose a simple higher-order shear deformation theory for free vibration 
response of FG plates resting on elastic foundation. By considering a further assumption to the 
existing higher-order shear deformation model, the proposed theory involves only four unknowns 
and their governing equations are consequently reduced. Pasternak model is employed to simulate 
the interactions between the plate and elastic foundation. Equations of motion are obtained via 
Hamilton’s principle. Analytical solutions of simply supported plates are proposed. The computed 
results are compared with the existing solutions to check the accuracy of present formulation in 
predicting the vibration behavior of FG plates resting on elastic foundation. 
 
 
2. Theoretical formulations 
 

A FG rectangular plate with length, width and uniform thickness equal to a, b and h 
respectively is shown in Fig. 1. The FG plate is composed by a mixture of ceramic and metal 
components whose material characteristics change across the plate thickness with a power law 
distribution of the volume fractions of the constituents of the two materials as (Akavci 2015, 
Ahouel et al. 2016) 
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Fig. 1 Schematic representation of a rectangular FG plate resting on elastic foundation 
 
 

where the subscripts m and c denote the metallic and ceramic components, respectively; and p is 
the power law exponent. The value of p equal to zero indicates a fully ceramic plate, whereas 
infinite p represents a fully metallic plate. Since the influences of the variation of Poisson’s ratio v 
on the behavior of FG plates are very small (Yang et al. 2005, Kitipornchai et al. 2006, Bourada et 
al. 2012, Ould Larbi et al. 2013, Saidi et al. 2013, Bousahla et al. 2014, Fekrar et al. 2014, 
Bouchafa et al. 2015, Larbi Chaht et al. 2015, Sallai et al. 2015, Zemri et al. 2015, Meradjah et al. 
2015, Bouderba et al. 2016, Laoufi et al. 2016), it is supposed to be constant for convenience. 

 
2.1 Kinematics and strains 
 
In this work, further simplifying supposition are made to the conventional HSDT so that the 

number of unknowns is reduced. The displacement field of the conventional HSDT is given by 
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where u0; v0; w0, θx, θy are five unknown displacements of the mid-plane of the plate, f(z) denotes 
shape function representing the variation of the transverse shear strains and stresses within the 
thickness. By considering that θx = ‒∂φ(x, y) / ∂x and θy = ‒∂φ(x, y) / ∂y, the displacement field of 
the present model can be expressed in a simpler form as (Draiche et al. 2014) 
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where the shape function f(z) is chosen according to Mahi et al. (2015) as 
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Clearly, the displacement field in Eq. (3) considers only four unknowns (u0, v0, w0 and φ). The 

nonzero strains associated with the displacement field in Eq. (3) are 
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For elastic and isotropic FGMs, the constitutive relations can be expressed as 
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where (σx, σy, τxy, τyz, τxz) and (εx, εy, γxy, γyz, γxz) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (1), stiffness coefficients, Cij, can be written as 
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2.2 Equations of motion 
 
Hamilton’s principle is herein employed to determine the equations of motion 
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where δU is the variation of strain energy; δV is the variation of work done; and δK is the variation 
of kinetic energy. 

The variation of strain energy of the plate is computed by 
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where A is the top surface and the stress resultants N, M, and S are defined by 
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The variation of the potential energy of elastic foundation can be calculated by 
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where fe is the density of reaction force of foundation. For the Pasternak foundation model 
(Bounouara et al. 2016, Abdelbari et al. 2016, Ait Atmane et al. 2016, Chikh et al. 2016, Bakora 
and Tounsi 2015, Tebboune et al. 2015, Meksi et al. 2015, Ait Amar Meziane et al. 2014, Zidi et 
al. 2014, Khalfi et al. 2014, Bouderba et al. 2013) 
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where KW is the modulus of subgrade reaction (elastic coefficient of the foundation) and KS1 and 
KS2 are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is 
homogeneous and isotropic, we will get KS1 = KS2 = KS. If the shear layer foundation stiffness is 
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neglected, Pasternak foundation becomes a Winkler foundation. 
The variation of kinetic energy of the plate can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
ρ(z) is the mass density given by Eq. (1b); and (Ii, Ji, Ki) are mass inertias expressed by 
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Substituting Eqs. (10), (12), and (14) into Eq. (9), integrating by parts, and collecting the 

coefficients of δu0, δv0, δw0, and δφ; the following equations of motion are obtained 
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where 2 = ∂2 / ∂x2 + ∂2 / ∂x2 is the Laplacian operator in two-dimensional Cartesian coordinate 

294



 
 
 
 
 
 

A simple hyperbolic shear deformation theory for vibration analysis of thick functionally... 

system. 
Substituting Eq. (5) into Eq. (7) and the subsequent results into Eqs. (11), the stress resultants 

are obtained in terms of strains as following compact form 
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and stiffness components are given as 
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Introducing Eq. (17) into Eq. (16), the equations of motion can be expressed in terms of 

displacements (δu0, δv0, δw0, δφ) and the appropriate equations take the form 
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where dij, dijl and dijlm are the following differential operators 
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2.3 Closed-form solution for simply-supported FG plates 
 
Based on Navier method, the following expansions of generalized displacements are taken to 

automatically respect the simply supported boundary conditions 
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where α = mπ / a and β = nπ / b, ω is the frequency of free vibration of the plate, 1i  the 
imaginary unit. 

Substituting Eqs. (22) into Eq. (20) and collecting the displacements and acceleration for any 
values of m and n, the following problem is obtained 
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Eq. (24) is a general form for buckling and free vibration analysis of FG plates resting on 

elastic foundations under in-plane loads. The stability problem can be carried out by neglecting the 
mass matrix while the free vibration problem is achieved by omitting the in-plane loads. 
 
 
3. Numerical examples and discussions 
 

In this section the accuracy of the present theory for vibrational analysis of simply supported 
FG plates is verified. FG plates made of a material combination of metal and ceramic (Al/Al2O3) 
are considered. The material properties of FG plates are given in Table 1. For convenience, the 
following non-dimensional parameters are employed 
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Table 2 aims to prove the accuracy of the present formulation in predicting the free vibration 

response of Al/Al2O3 plate resting on elastic foundations. By considering, different values of 
thickness ratio h / a, power law exponent p and foundation parameters kw; ks, the non-dimensional 
̂  of square plates are listed in Table 2 and compared with those given by Baferani et al. (2011b) 
using a third-order shear deformation theory (TSDT) and Thai and Choi (2014) using a zeroth- 
order shear deformation theory (ZSDT). It can be observed that the computed results are in very 

 
 

Table 1 Material properties employed in the FG plates 

Propriétés Aluminium (Al) Alumina (Al2O3) 

Young’s modulus (GPa) 70 380 

Poisson’s ratio 0.3 0.3 

Mass density kg/m3 2702 3800 
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Table 2 Dimensionless fundamental frequency ̂  of square plates 

kw ks h / a Theory 
Power law index (p) 

0 0.5 1 2 5 

0 0 

0.05 

Ref (a) 0.0291 0.0249 0.0227 0.0209 0.0197 

Ref (b) 0.0291 0.0246 0.0222 0.0202 0.0191 

Present 0.0291 0.0247 0.0222 0.0202 0.0191 

0.10 

Ref (a) 0.1134 0.0975 0.0891 0.0819 0.0767 

Ref (b) 0.1134 0.0963 0.0868 0.0788 0.0740 

Present 0.1134 0.0964 0.0870 0.0790 0.0740 

0.15 

Ref (a) 0.2454 0.2121 0.1939 0.1778 0.1648 

Ref (b) 0.2452 0.2090 0.1885 0.1706 0.1589 

Present 0.2450 0.2090 0.1880 0.1710 0.1600 

0.20 

Ref (a) 0.4154 0.3606 0.3299 0.3016 0.2765 

Ref (b) 0.4150 0.3551 0.3205 0.2892 0.2667 

Present 0.4152 0.3551 0.3205 0.2892 0.2665 

0 100 

0.05 

Ref (a) 0.0406 0.0389 0.0382 0.0380 0.0381 

Ref (b) 0.0406 0.0386 0.0378 0.0374 0.0377 

Present 0.0406 0.0386 0.0378 0.0374 0.0376 

0.10 

Ref (a) 0.1599 0.1540 0.1517 0.1508 0.1515 

Ref (b) 0.1597 0.1526 0.1494 0.1478 0.1487 

Present 0.1597 0.1526 0.1494 0.1478 0.1487 

0.15 

Ref (a) 0.3515 0.3407 0.3365 0.3351 0.3362 

Ref (b) 0.3512 0.3369 0.3304 0.3269 0.3286 

Present 0.3513 0.3369 0.3303 0.3270 0.3285 

0.20 

Ref (a) 0.6080 0.5932 0.5876 0.5861 0.5879 

Ref (b) 0.6075 0.5857 0.5753 0.5694 0.5722 

Present 0.6076 0.5856 0.5752 0.5692 0.5720 

100 0 

0.05 

Ref (a) 0.0298 0.0258 0.0238 0.0221 0.0210 

Ref (b) 0.0298 0.0255 0.0233 0.0214 0.0204 

Present 0.0298 0.0255 0.0232 0.0214 0.0205 

0.10 

Ref (a) 0.1162 0.1012 0.0933 0.0867 0.0821 

Ref (b) 0.1161 0.0999 0.0910 0.0836 0.0795 

Present 0.1162 0.0999 0.0910 0.0837 0.0796 

0.15 

Ref (a) 0.2519 0.2204 0.2036 0.1889 0.1775 

Ref (b) 0.2516 0.2173 0.1982 0.1818 0.1716 

Present 0.2517 0.2173 0.1982 0.1818 0.1716 

0.20 

Ref (a) 0.4273 0.3758 0.3476 0.3219 0.2999 

Ref (b) 0.4269 0.3702 0.3381 0.3097 0.2901 

ZSDT 0.4272 0.3702 0.3380 0.3096 0.2898 
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Table 2 Continued 

kw ks h / a Theory 
Power law index (p) 

0 0.5 1 2 5 

100 100 

0.05 

Ref (a) 0.0411 0.0395 0.0388 0.0386 0.0388 

Ref (b) 0.0411 0.0392 0.0392 0.0381 0.0384 

Present 0.0411 0.0392 0.0384 0.0381 0.0384 

0.10 

Ref (a) 0.1619 0.1563 0.1542 0.1535 0.1543 

Ref (b) 0.1617 0.1549 0.1519 0.1505 0.1515 

Present 0.1617 0.1549 0.1519 0.1505 0.1515 

0.15 

Ref (a) 0.3560 0.3460 0.3422 0.3412 0.3427 

Ref (b) 0.3557 0.3421 0.3359 0.3329 0.3349 

Present 0.3558 0.3420 0.3360 0.3327 0.3348 

0.20 

Ref (a) 0.6162 0.6026 0.5978 0.5970 0.5993 

Ref (b) 0.6156 0.5950 0.5852 0.5800 0.5834 

Present 0.6156 0.5948 0.5852 0.5800 0.5832 
(a) Baferani et al. (2011b) 
(b) Thai and Choi (2014) 

 
 

Table 3 Dimensionless fundamental frequency   of rectangular plates (kw = ks = 100) 

a / b a / h Theory 
Power law index (p) 

0 0.5 1 2 5 10 

0.5 

5 
Ref (a) 11.3952 11.2331 11.1780 11.2018 11.3593 11.4558

Present 11.3959 11.2335 11.1783 11.2019 11.3587 11.4557

10 
Ref (a) 11.7257 11.4992 11.4270 11.4530 11.6243 11.7093

Present 11.7259 11.4993 11.4271 11.4529 11.6239 11.7092

20 
Ref (a) 11.8246 11.5780 11.5005 11.5273 11.7054 11.7886

Present 11.8246 11.5781 11.5005 11.5272 11.7053 11.7885

1 

5 
Ref (a) 15.3904 14.8757 14.6305 14.5004 14.5843 14.6636

Present 15.3923 14.8768 14.6313 14.5006 14.5830 14.6635

10 
Ref (a) 16.1728 15.4895 15.1887 15.0455 15.1497 15.2045

Present 16.1735 15.4898 15.1890 15.0455 15.1488 15.2043

20 
Ref (a) 16.4249 15.6851 15.3663 15.2209 15.3414 15.3929

Present 16.4251 15.6852 15.3663 15.2209 15.3411 15.3928

2 

5 
Ref (a) 28.6467 26.8009 25.7640 24.9077 24.5036 24.4352

Present 28.6591 26.8086 25.7703 24.9109 24.4983 24.4367

10 
Ref (a) 32.3893 29.7133 28.3322 27.2931 26.8741 26.6994

Present 32.3937 29.7163 28.3346 27.2932 26.8675 26.6951

20 
Ref (a) 33.8869 30.8606 29.3467 28.2628 27.9294 27.7426

Present 33.8882 30.8614 29.3474 28.2627 27.9267 27.7419
(a) Thai and Choi (2014) 
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good agreement with those calculated by TSDT (Baferani et al. 2011b) and by ZSDT (Thai and 
Choi 2014). It is also concluded from Table 2 that the increase of the foundation parameters kw; ks, 
leads to an increase of non-dimensional fundamental frequency. Compared to the Winkler 
parameter kw, the Pasternak foundation parameter ks has dominant influence on increasing the non-
dimensional frequency. 

 
 

 
Fig. 2 Effect of winkler parameter (kw) and the length-to-thickness ratio a / h on the 

natural frequency   of Al/Al2O3 square plates (p = 3, ks = 10) 
 
 

 
Fig. 3 Effect of pasternak parameter (ks) and the length-to-thickness ratio a / h on the 

natural frequency   of Al/Al2O3 square plates, (p = 3, kw = 10) 
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Fig. 4 Effect of winkler parameter (kw) and the power law index p on the natural 

frequency   of Al/Al2O3 square plates, (a / h = 10) 
 
 

 
Fig. 5 Effect of pasternak parameter (ks) and the power law index p on the natural 

frequency   of Al/Al2O3 square plates, (a / h = 10 and kw = 10) 
 
 
Table 3 presents non-dimensional fundamental frequencies   of FG rectangular plates resting 

on elastic foundation. In this example, the non-dimensional fundamental frequencies computed by 
present method are compared with those predicted by Thai and Choi (2014) based on ZSDT. The 
non-dimensional foundation parameters (kw, ks) are considered to be 100. The reliability of the 
presented formulation for FG plates can be concluded from Table 3; where the results are in an 
excellent agreement as values of non-dimensional fundamental frequency are consistent with those 
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Fig. 6 Effect of the power- law index p on the natural frequency   of Al/Al2O3 

square plates, (a / h = 10 and kw = ks = 0) 
 
 

predicted by Thai and Choi (2014). 
The variation of non-dimensional frequencies   with various values of length-to-thickness 

ratios are plotted in Figs. 2 and 3 for different values of Winkler parameter kw and Pasternak 
foundation parameter ks, respectively. It can be seen from this figure, that for thin plates where a / h 
takes high values, the frequencies become almost constants. It can be also observed that, 
increasing value of Winkler and Pasternak parameters cause the increase in the natural frequency. 
The figures demonstrate also, that Pasternak parameter of foundation has more significant 
influence than Winkler parameter on the fundamental frequency of plate. 

The variations of non-dimensional fundamental frequencies of square FG plates with respect to 
power law index p and for different values of Winkler and Pasternak parameters are plotted in Figs. 
4 and 5, respectively. It is observed from the figures that, increasing value of power law index 
causes a reduction of the fundamental frequency. It is due to the fact that a higher value of p 
corresponds to lower value of volume fraction of the ceramic phase, and thus makes the plates 
become the softer ones. 

The variation of non-dimensional frequencies in terms of the power-law index is presented in 
Fig. 6 for different mode number. It can be observed from this figure that the frequencies diminish 
with the decrease of the mode number. 

 
 

4. Conclusions 
 

In the current investigation, analytical formulation for free vibration response of FG plates 
resting on elastic foundation is developed on the supposition that transverse shear displacements 
vary as a hyperbolic function within the thickness of plate. The proposed model contains only four 
unknowns and equations of motion are obtained from Hamilton’s principle. Navier-type solutions 
are determined for simply-supported boundary conditions and compared with the existing 
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solutions to check the validity of the proposed theory. The material properties are estimated by 
power-law form. It has been demonstrated that the present analytical formulation can accurately 
predict natural frequencies of FG plates resting on elastic foundation. 
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