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Abstract. A simple hyperbolic shear deformation theory taking into account transverse shear deformation effects
is proposed for the free flexural vibration analysis of thick functionally graded plates resting on elastic foundations.
By considering further supposition, the present formulation introduces only four unknowns and its governing
equations are therefore reduced. Hamilton’s principle is employed to obtain equations of motion and Navier-type
analytical solutions for simply-supported plates are compared with the available solutions in literature to check the
accuracy of the proposed theory. Numerical results are computed to examine the effects of the power-law index and
side-to-thickness ratio on the natural frequencies.
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1. Introduction

Functionally graded materials (FGMs) are a type of advanced composite materials that contain
higher mechanical response than homogeneous material made of identical constituents. Such kind
material are obtained by a continuously graded distribution of the volume fractions of the
constituents (Koizumi 1997), the FGM is thus suitable for diverse applications, such as thermal
coatings of barrier for ceramic engines, gas turbines, nuclear fusions, spacecraft heat shields, heat
exchanger tubes, optical thin layers, biomaterial electronics, etc (Akbag 2015, Bennai et al. 2015,
Arefi 2015, Ait Atmane et al. 2015a, Belkorissat et al. 2015, Ebrahimi and Dashti 2015, Darilmaz
et al. 2015, Bouguenina et al. 2015, Boukhari et al. 2016, Ebrahimi and Habibi 2016, Hadji et al.
2016, Kar et al. 2016, Moradi-Dastjerdi 2016, Trinh et al. 2016).

Currently, many functionally graded (FG) plate structures which have been employed for
engineering fields led to the development of various plate models to accurately examine the static,
buckling and vibration responses of FG structures (Benachour et al. 2011, Jha et al. 2013a, Hadji
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et al. 2014, Belabed et al. 2014, Hebali et al. 2014, Klouche Djedid et al. 2014, Nguyen et al.
2015, Tagrara et al. 2015, Pradhan and Chakraverty 2015, Hadji and Adda Bedia 2015a, b, Kar and
Panda 2015, Hamidi et al. 2015, Bennoun et al. 2016, Eltaher et al. 2016). The classical plate
theory (CPT) is based on the supposition that straight lines which are normal to the neutral surface
before deformation remain straight and normal to the neutral surface after deformation. Since the
transverse shear deformation is neglected (Feldman and Aboudi 1997, Mahdavian 2009, Chen et al.
2006, Baferani et al. 2011a), it cannot be suitable for the investigating of moderately thick or thick
plates in which transverse shear deformation effects are more important. For FG thick and
moderately thick plates; the first-order shear deformation theory (FSDT) has been employed
(Praveen and Reddy 1998, Croce and Venini 2004, Efraim and Eisenberger 2007, Zhao et al. 2009).
In such formulation, in-plane displacements are linearly varied within the thickness and need a
shear correction coefficient to correct the unrealistic distribution of the transverse shear stresses
and shear strains across the thickness. To avoid the employment of the shear correction coefficient
and predict a better distribution of the transverse shear deformation in FG plates, higher-order
shear deformation plate theories (HSDTs) have been developed (Reddy 2000, 2011, Pradyumna
and Bandyopadhyay 2008, Jha ef al. 2013b, Neves et al. 2013, Talha and Singh 2010, Chen et al.
2009, Mantari and Soares 2012, 2013, Houari et al. 2013, Matsunaga 2008, Tounsi et al. 2013,
Mahi et al. 2015, Bellifa et al. 2016, Ait Yahia ef al. 2015, Al-Basyouni ef al. 2015, Bourada et al.
2015, Attia et al. 2015, Merazi et al. 2015, Abdelhak et al. 2015). However, some of these HSDTs
are computational costs due to of number of additional variables incorporated to the theory
(Pradyumna and Bandyopadhyay 2008, Jha et al. 2013a, b, Neves et al. 2013, Reddy 2011, Talha
and Singh 2010). Thus, a simple higher-order shear deformation theory presented in this article is
necessary.

This article aims to propose a simple higher-order shear deformation theory for free vibration
response of FG plates resting on elastic foundation. By considering a further assumption to the
existing higher-order shear deformation model, the proposed theory involves only four unknowns
and their governing equations are consequently reduced. Pasternak model is employed to simulate
the interactions between the plate and elastic foundation. Equations of motion are obtained via
Hamilton’s principle. Analytical solutions of simply supported plates are proposed. The computed
results are compared with the existing solutions to check the accuracy of present formulation in
predicting the vibration behavior of FG plates resting on elastic foundation.

2. Theoretical formulations

A FG rectangular plate with length, width and uniform thickness equal to a, b and %
respectively is shown in Fig. 1. The FG plate is composed by a mixture of ceramic and metal
components whose material characteristics change across the plate thickness with a power law
distribution of the volume fractions of the constituents of the two materials as (Akavci 2015,
Ahouel et al. 2016)

E(z)=E, +(E,—E, )G+%jp (1a)

p(2)=p, +(p. P )(%TJ (1b)
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Fig. 1 Schematic representation of a rectangular FG plate resting on elastic foundation
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where the subscripts m and ¢ denote the metallic and ceramic components, respectively; and p is
the power law exponent. The value of p equal to zero indicates a fully ceramic plate, whereas
infinite p represents a fully metallic plate. Since the influences of the variation of Poisson’s ratio v
on the behavior of FG plates are very small (Yang et al. 2005, Kitipornchai et al. 2006, Bourada et
al. 2012, Ould Larbi et al. 2013, Saidi et al. 2013, Bousahla et al. 2014, Fekrar et al. 2014,
Bouchafa et al. 2015, Larbi Chaht et al. 2015, Sallai et al. 2015, Zemri et al. 2015, Meradjah et al.
2015, Bouderba et al. 2016, Laoufi et al. 2016), it is supposed to be constant for convenience.

2.1 Kinematics and strains

In this work, further simplifying supposition are made to the conventional HSDT so that the
number of unknowns is reduced. The displacement field of the conventional HSDT is given by

U 220) = (5, 0) =2 (210, (53,0 (2a)
X
aM}O

v(x,y,z,t):vo(x,y,t)—zEan(z)Hy(x,y,t) (2b)

w(x,y,z,t)=w0(x,y,t) (ZC)

where u; vo; wo, 6y, 6, are five unknown displacements of the mid-plane of the plate, f(z) denotes
shape function representing the variation of the transverse shear strains and stresses within the
thickness. By considering that 6, = —0¢(x, ) / 0x and 6, = —0p(x, ) / Oy, the displacement field of
the present model can be expressed in a simpler form as (Draiche et al. 2014)

w(x, v, 2,0) =ty (x, y,£) - ;Mo _ f(z)a—¢ (3a)
ox ox
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ow, 0
V(% 2,2,0) = (x,y,t)—za—;—ﬂz)a—f (3b)
w(x,y,z,t)zwo(x,y,t) (3C)

where the shape function f{(z) is chosen according to Mabhi et al. (2015) as

h z 4 z3
J@)= Etanh(zﬁ) " 3cosh(l) (h_zj @)

Clearly, the displacement field in Eq. (3) considers only four unknowns (uy, vy, wo and ¢). The
nonzero strains associated with the displacement field in Eq. (3) are

e | le| |k ey 0
s Vyz Vyz
£, (=16 1+2 kf +f(21k; ¢, {y}:g(z){ yo}, (5)
0 b s Yz Xz
yxy yxy kxy kx)/
where
6u0 62w0 62¢
0 r o s v 0
3 ox kb 82x k 8§c . op
h ov ) oW, . 0@ 2 Fo:
(90 = _0 b kb = - 0 > ks = BN s wr= y > 6
T w e 12T e {yﬁz} dpr
Vo) | Oug OV vl 0w w9 ox
o  Ox Ox0y Ox0y
and
df (z
gz =7 (6b)
dz
For elastic and isotropic FGMs, the constitutive relations can be expressed as
o] [C,C, 0 0 0]fe,
o, Ch Cyp 0 0 0 (g
Txy =/ 0 0 C66 0 0 ]/xy (7)
T, 0 0 0 Cy 0 |7,
sz L O 0 0 O CSS a }/xz

where (0, 0y, Ty, Tz, Tiz) and (&, &, Vs = Yx:) are the stress and strain components, respectively.
Using the material properties defined in Eq. (1), stiffness coefficients, C;, can be written as
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E(2) v E(z2) E(2)
C,=Cy = , = , Cu=Cs5=Cq = ,
n=tn =00 RN 44 = Lss = Lo 2(l+v) (®)
2.2 Equations of motion
Hamilton’s principle is herein employed to determine the equations of motion
t
0=[(U+sV-5K)dr )
0

where oU is the variation of strain energy; oV is the variation of work done; and 0K is the variation
of kinetic energy.
The variation of strain energy of the plate is computed by

oU= J.[aj & +0,06,+7,0y,+7,07,,+7,.0 ;/xz]dV
Vv

= ([N &0+ NG el + N Syl + MOS KD+ MES KL+ MES K, (10)
A
MG +MIS K + MGk, + 5.5y, +805 0 Jda=0

pz

where 4 is the top surface and the stress resultants N, M, and S are defined by

hi2

h/2
(oMl M )= [(Lz oz, (=xp.0) and (s3.85)= [gleer, e (11)

—h/2 —h/2

The variation of the potential energy of elastic foundation can be calculated by

SV = 1.6 wyda (12)

where f, is the density of reaction force of foundation. For the Pasternak foundation model
(Bounouara et al. 2016, Abdelbari ef al. 2016, Ait Atmane et al. 2016, Chikh et al. 2016, Bakora
and Tounsi 2015, Tebboune et al. 2015, Meksi et al. 2015, Ait Amar Meziane et al. 2014, Zidi et
al. 2014, Khalfi et al. 2014, Bouderba et al. 2013)

0w 0w
= Kyw—Kg— — Ky 13
f w S1 axz S2 ayz ( )

where Ky is the modulus of subgrade reaction (elastic coefficient of the foundation) and K and
K are the shear moduli of the subgrade (shear layer foundation stiffness). If foundation is
homogeneous and isotropic, we will get Kg; = Ks = K. If the shear layer foundation stiffness is



294 Hayat Saidi, Abdelouahed Tounsi and Abdelmoumen Anis Bousahla

neglected, Pasternak foundation becomes a Winkler foundation.
The variation of kinetic energy of the plate can be expressed as

SK = [[is i +vsv+ws w| p(z)dV
I ]
4

= [{1olig0tty +v48%, + oy 54w, ]

+ Oy +V,

A
s 00w, Ow, . 00w, N ow, 59,
ox ox oy oy

(14)

Ox oy Oy

—Jl[uoaé—q)+a—¢6ao +1>Oa5—¢+a—¢5voj
+[Z(awo 08 Wy, Oivg 85W0J+K2(6_¢)55(0+6_(055(0j

ox Ox oy Oy ox Ox Oy Oy

J) ow, 6§¢+@6§WO+8W0 65¢+%86w0 A
Ox Ox Ox Ox o oy oy Oy

where dot-superscript convention indicates the differentiation with respect to the time variable z;
p(2) is the mass density given by Eq. (1b); and (/;, J;, K;) are mass inertias expressed by

hl2

(o1, 1)= [ (12,22 )p(2)dz (15a)
—h/2
hl2
(1:72.K5 )= I(f,Zf,fz)p(z)dz (15b)
—h/2

Substituting Egs. (10), (12), and (14) into Eq. (9), integrating by parts, and collecting the
coefficients of duy, ovy, dwy, and dg; the following equations of motion are obtained

aN .. ..
Suy: WNe Doy _p Oy 00
ox oy ox
aN ! aN .. .
Svy: ——+—= :]oi’.o_h%_‘]la_(p
Ox Oy oy Oy
(16)

sz aZMf’ aZMb B .. . ) )
Swy: 2 T R St B S AR ity o | _ 1 2, — g%
Ox Ox0y oy ox 0Oy
2 s aZMS aZMx s aSs .. .
661‘?): +2 p 6Xy + p 2)’ + agxz + ayz =J1[6u0 + avOJ_J2V2w0 —K2V2¢5
X X0y 'y X 4%

Sp:
? ox Oy

where V> = &* / &x* + & / 6x” is the Laplacian operator in two-dimensional Cartesian coordinate
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system.
Substituting Eq. (5) into Eq. (7) and the subsequent results into Egs. (11), the stress resultants
are obtained in terms of strains as following compact form

N A B Bl|le
M= B D D*[k°}, S=A4A%, (17)
MS BS DS HS kS

in which
N={NLNLN M=t Mt} e = e e (18a)
e={0a%0 K=k, ke =fkk ] (18b)
All A12 O Bll BIZ 0 Dll D12 0
A=| Ay, Ay 0], B= By, By, 0|, D= 2 Doy 0 1, (18¢)
0 0 A 0 0 By 0 0 Dy
B, B, 0 D 0 Hj, Hj 0
B*=|B5 B, 0|, D'=|D;, Di O |, H° =|H H}) 0 |, (18d)
0 0 B 0 0 D 0 0 H
A5, 0
S=isnsuf. p=hlalf, =T (18¢)
0 Al

and stiffness components are given as

4, By, Dy, B, D, Hj hi2 1
4y, By, Dy, By, Dy, Hy, = IC11<1,z,zz,f(z),zf(z),fz(z) lV dz, (19a)
s s s _ -V
Ass Bes Des Bgs Dgs Hes h2 BN
(Azz,Bzz,Dzz,Bgz,Djz,ng)z(AH,B“,D“,Bfl,Dlsl,Hfl), (19b)
h/2
Ay = Ass = I Culg(2)f dz, (19¢)
—hi2

Introducing Eq. (17) into Eq. (16), the equations of motion can be expressed in terms of
displacements (duy, dvy, owy, dp) and the appropriate equations take the form
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Ay dug + Aged g + (AIZ + Agq )dIZVO =By dy Wy — (BIZ +2Bg )d122W0

s s S .o .. . (203)
- (Blz + 2Beﬁ)d122(0 = B\d, 19 = Lyiiy — 1,d\wy — J,d, @,

Apyd vy + Agedy vy + (Alz + Age )dlzuo = Byyd oWy — (Blz + 2B )dl 12"

s S s . . . (20b)
- (Blz +2Bg )dnz(/’ = B3,d o0 = 14V — 1,dywy — J,d,,

By d,uy + (Blz +2Bg )d122u0 + (BIZ +2Bg )dllz"o + Byyd vy
= Dyydy 1w _2(D12 +2Dgs )dnzzwo = Dyyd oWy — D119

_2(D1Sz + 2D656)d1122¢_D2SZd2222¢_f‘e =I,W,
+11(d1iio +dz‘.’.o)_lz(du‘;‘.’o +d22v'f/0)—J2(d11¢+d22(}5)

(20¢)

Bydyyu, + (BISZ +2Bg )d122u0 + (sz +2Bg )dnzvo + Byydyove = Dyidy 11wy
- 2(D1Sz + 2Dy )dnzzwo —Diydyyywy —Hivdy 9

- Z(Hlsz +2H g )dmz(” — H3yd s+ Ay 0+ Aisdnp = J, (dyiiy + d, )
= Jo(dy iy + doy ity )= Ky (dy 5+ doyp)

(20d)

where d

ii» dij and dj,, are the following differential operators

83

62
dy=—"",
Ox,0x ;0x,

=— o d—i @i, j,l,m=1,2) 21
v ﬁx,-axj’ . 6xA’ S0 e ( )

dijlm T A AL AL AL i
Ox,0x ;0x,0x,,

1

2.3 Closed-form solution for simply-supported FG plates

Based on Navier method, the following expansions of generalized displacements are taken to
automatically respect the simply supported boundary conditions

u, U,.e“" cos(a x)sin(B y)
v 2. | V. e sin(a x)cos
0 :ZZ mn . ( ) ' (ﬂy) (22)
WO m=1 n=1 Wmne Sln(a X) Sln(ﬂ y)
7 X,,.e“" sin(a x)sin( S y)

where o = mz / a and f = nw / b, w is the frequency of free vibration of the plate, Vi=-1 the
imaginary unit.

Substituting Egs. (22) into Eq. (20) and collecting the displacements and acceleration for any
values of m and n, the following problem is obtained

S S Si3 Si my 0 my my | \|\U,, 0
S Sy Sy Sy _ P 0 my my; my, Vin _ 0 (23)
Siz Sy 853 Sy Mz Moy Maz My ||| W, 0
Siy Sy Sz Sy My Moy My My, )X, 0



A simple hyperbolic shear deformation theory for vibration analysis of thick functionally... 297

where
S, = A0+ A2, Sp=af(A,+ Ay), Si= —a(B“az + B, +2B66ﬂ2)’

Siy= _0‘(3510‘2 + BB+ ZBgéﬂz)’ Sy, = 4gg0® + 4,5,

Sy = _ﬂ(Bllﬁz +Ba’ + 2B66a2)’ Sy = _'B(lelﬂz +Bha' + 2Bg6a2)’

Sy, = Dyat +2(D, +2Dg)a* B2 + Do B+ K, + K (0 + ),
Sy4 = Dt +2(Dy, +2Dg)a’ 82 + D3, B -

Sy = Hha* +2(H}, + 2H)a B2 + Hy, B* + Asa® + A, B

my=my =1y, my=-al, my=-aJ,, my==p1, my=-FJ,

my=Iy+L(a* + %), my=J,(a’+B), my=K,(a’+f)

Eq. (24) is a general form for buckling and free vibration analysis of FG plates resting on
elastic foundations under in-plane loads. The stability problem can be carried out by neglecting the
mass matrix while the free vibration problem is achieved by omitting the in-plane loads.

3. Numerical examples and discussions

In this section the accuracy of the present theory for vibrational analysis of simply supported
FG plates is verified. FG plates made of a material combination of metal and ceramic (Al/Al,O;)
are considered. The material properties of FG plates are given in Table 1. For convenience, the
following non-dimensional parameters are employed

2 4 2 3
d=whp,/E,, Eza)a_ p/E, ., k, K,a , ks:KSa , Dm:E’”—h2
h D D 12(1-v7)

(25)

Table 2 aims to prove the accuracy of the present formulation in predicting the free vibration
response of AI/AL,O; plate resting on elastic foundations. By considering, different values of
thickness ratio % / a, power law exponent p and foundation parameters £,; k;, the non-dimensional
@ of square plates are listed in Table 2 and compared with those given by Baferani et al. (2011b)
using a third-order shear deformation theory (TSDT) and Thai and Choi (2014) using a zeroth-
order shear deformation theory (ZSDT). It can be observed that the computed results are in very

Table 1 Material properties employed in the FG plates

Propriétés Aluminium (Al) Alumina (AL,O3)
Young’s modulus (GPa) 70 380
Poisson’s ratio 0.3 0.3

Mass density kg/m’ 2702 3800
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Table 2 Dimensionless fundamental frequency @ of square plates

Power law index (p)

k, k, h/ Th
a S0y 0 0.5 1 2 5
Ref @ 0.0291 0.0249 0.0227 0.0209 0.0197
0.05 Ref ® 0.0291 0.0246 0.0222 0.0202 0.0191
Present 0.0291 0.0247 0.0222 0.0202 0.0191
Ref @ 0.1134 0.0975 0.0891 0.0819 0.0767
0.10 Ref ® 0.1134 0.0963 0.0868 0.0788 0.0740
0 0 Present 0.1134 0.0964 0.0870 0.0790 0.0740
Ref @ 0.2454 0.2121 0.1939 0.1778 0.1648
0.15 Ref ® 0.2452 0.2090 0.1885 0.1706 0.1589
Present 0.2450 0.2090 0.1880 0.1710 0.1600
Ref @ 0.4154 0.3606 0.3299 0.3016 0.2765
0.20 Ref ® 0.4150 0.3551 0.3205 0.2892 0.2667
Present 0.4152 0.3551 0.3205 0.2892 0.2665
Ref @ 0.0406 0.0389 0.0382 0.0380 0.0381
0.05 Ref ® 0.0406 0.0386 0.0378 0.0374 0.0377
Present 0.0406 0.0386 0.0378 0.0374 0.0376
Ref @ 0.1599 0.1540 0.1517 0.1508 0.1515
0.10 Ref ® 0.1597 0.1526 0.1494 0.1478 0.1487
0 100 Present 0.1597 0.1526 0.1494 0.1478 0.1487
Ref @ 0.3515 0.3407 0.3365 0.3351 0.3362
0.15 Ref ® 0.3512 0.3369 0.3304 0.3269 0.3286
Present 0.3513 0.3369 0.3303 0.3270 0.3285
Ref @ 0.6080 0.5932 0.5876 0.5861 0.5879
0.20 Ref ® 0.6075 0.5857 0.5753 0.5694 0.5722
Present 0.6076 0.5856 0.5752 0.5692 0.5720
Ref @ 0.0298 0.0258 0.0238 0.0221 0.0210
0.05 Ref ® 0.0298 0.0255 0.0233 0.0214 0.0204
Present 0.0298 0.0255 0.0232 0.0214 0.0205
Ref @ 0.1162 0.1012 0.0933 0.0867 0.0821
0.10 Ref ® 0.1161 0.0999 0.0910 0.0836 0.0795
100 0 Present 0.1162 0.0999 0.0910 0.0837 0.0796
Ref @ 0.2519 0.2204 0.2036 0.1889 0.1775
0.15 Ref ® 0.2516 0.2173 0.1982 0.1818 0.1716
Present 0.2517 0.2173 0.1982 0.1818 0.1716
Ref @ 0.4273 0.3758 0.3476 0.3219 0.2999
0.20 Ref ® 0.4269 0.3702 0.3381 0.3097 0.2901
ZSDT 0.4272 0.3702 0.3380 0.3096 0.2898
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Table 2 Continued

Power law index (p)

k., k, hl/a Theory

0 0.5 1 2 5

Ref @ 0.0411 0.0395 0.0388 0.0386 0.0388

0.05 Ref ® 0.0411 0.0392 0.0392 0.0381 0.0384
Present 0.0411 0.0392 0.0384 0.0381 0.0384

Ref @ 0.1619 0.1563 0.1542 0.1535 0.1543

0.10 Ref ® 0.1617 0.1549 0.1519 0.1505 0.1515
100 100 Present 0.1617 0.1549 0.1519 0.1505 0.1515
Ref @ 0.3560 0.3460 0.3422 0.3412 0.3427

0.15 Ref ® 0.3557 0.3421 0.3359 0.3329 0.3349
Present 0.3558 0.3420 0.3360 0.3327 0.3348

Ref @ 0.6162 0.6026 0.5978 0.5970 0.5993

0.20 Ref ® 0.6156 0.5950 0.5852 0.5800 0.5834

Present 0.6156 0.5948 0.5852 0.5800 0.5832

@ Baferani ef al. (2011b)
® Thai and Choi (2014)

Table 3 Dimensionless fundamental frequency @ of rectangular plates (k,, = &, = 100)

Power law index (p)
0 0.5 1 2 5 10
Ref @ 11.3952  11.2331  11.1780  11.2018  11.3593  11.4558

alb alh Theory

> Present  11.3959  11.2335  11.1783 112019  11.3587  11.4557

05 0 Ref @ 11.7257  11.4992  11.4270  11.4530  11.6243  11.7093
Present  11.7259  11.4993  11.4271  11.4529  11.6239  11.7092

20 Ref @ 11.8246  11.5780  11.5005  11.5273  11.7054  11.7886

Present  11.8246  11.5781  11.5005  11.5272  11.7053  11.7885

Ref @ 153904  14.8757  14.6305  14.5004 14.5843  14.6636

> Present  15.3923  14.8768  14.6313  14.5006  14.5830  14.6635

. 10 Ref @ 16.1728  15.4895  15.1887  15.0455  15.1497  15.2045
Present  16.1735 154898  15.1890  15.0455  15.1488 152043

20 Ref ® 16.4249  15.6851 153663 152209  15.3414  15.3929

Present  16.4251  15.6852 153663  15.2209 153411 153928

5 Ref® 286467  26.8009  25.7640  24.9077 245036  24.4352

Present  28.6591  26.8086  25.7703 249109  24.4983  24.4367

) 10 Ref® 323893 297133 283322 27.2931  26.8741  26.6994
Present  32.3937  29.7163 283346  27.2932  26.8675  26.6951

20 Ref®  33.8869 30.8606 29.3467 28.2628  27.9294  27.7426

Present  33.8882  30.8614  29.3474 282627  27.9267  27.7419
@ Thai and Choi (2014)




300 Hayat Saidi, Abdelouahed Tounsi and Abdelmoumen Anis Bousahla

good agreement with those calculated by TSDT (Baferani et al. 2011b) and by ZSDT (Thai and
Choi 2014). It is also concluded from Table 2 that the increase of the foundation parameters £,,; &,
leads to an increase of non-dimensional fundamental frequency. Compared to the Winkler
parameter k,, the Pasternak foundation parameter &, has dominant influence on increasing the non-
dimensional frequency.
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Table 3 presents non-dimensional fundamental frequencies @ of FG rectangular plates resting
on elastic foundation. In this example, the non-dimensional fundamental frequencies computed by
present method are compared with those predicted by Thai and Choi (2014) based on ZSDT. The
non-dimensional foundation parameters (k,, k;) are considered to be 100. The reliability of the
presented formulation for FG plates can be concluded from Table 3; where the results are in an
excellent agreement as values of non-dimensional fundamental frequency are consistent with those
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predicted by Thai and Choi (2014).

The variation of non-dimensional frequencies @ with various values of length-to-thickness
ratios are plotted in Figs. 2 and 3 for different values of Winkler parameter k, and Pasternak
foundation parameter £, respectively. It can be seen from this figure, that for thin plates where a/ A
takes high values, the frequencies become almost constants. It can be also observed that,
increasing value of Winkler and Pasternak parameters cause the increase in the natural frequency.
The figures demonstrate also, that Pasternak parameter of foundation has more significant
influence than Winkler parameter on the fundamental frequency of plate.

The variations of non-dimensional fundamental frequencies of square FG plates with respect to
power law index p and for different values of Winkler and Pasternak parameters are plotted in Figs.
4 and 5, respectively. It is observed from the figures that, increasing value of power law index
causes a reduction of the fundamental frequency. It is due to the fact that a higher value of p
corresponds to lower value of volume fraction of the ceramic phase, and thus makes the plates
become the softer ones.

The variation of non-dimensional frequencies in terms of the power-law index is presented in
Fig. 6 for different mode number. It can be observed from this figure that the frequencies diminish
with the decrease of the mode number.

4. Conclusions

In the current investigation, analytical formulation for free vibration response of FG plates
resting on elastic foundation is developed on the supposition that transverse shear displacements
vary as a hyperbolic function within the thickness of plate. The proposed model contains only four
unknowns and equations of motion are obtained from Hamilton’s principle. Navier-type solutions
are determined for simply-supported boundary conditions and compared with the existing
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solutions to check the validity of the proposed theory. The material properties are estimated by
power-law form. It has been demonstrated that the present analytical formulation can accurately
predict natural frequencies of FG plates resting on elastic foundation.
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