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Thermal stability analysis of solar functionally graded plates
on elastic foundation using an efficient hyperbolic
shear deformation theory
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Abstract. In this research work, an exact analytical solution for thermal stability of solar functionally graded
rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is
developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary
through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and
the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing
stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse
displacements consist of bending and shear components, and the shear components of in-plane displacements give
rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses
vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown
displacement functions are used in the present theory against five unknown displacement functions used in the
corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of
many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for
the present theory, demonstrating its importance and accuracy in comparison to other theories.

Keywords: thermal buckling; solar functionally graded plate; analytical modeling; neutral surface position

1. Introduction

Solar plate is employed to concentrate solar radiation onto an absorber positioned at the focal
point in parabolic dish concentrator to provide the solar energy. Concentrating solar collector is
composed of reflector over solar plate, the absorber and the housing. Parabolic disk fabricated
from solar plates. The performance of a solar plate in terms efficiency, service life and optical
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alignment depends on the material and operating conditions. Normally, a solar plate can be
manufactured from polished pure material or coated plate with some special cover (Howell and
Bereny 1979). However, for some specific application, such as in solar satellite, solar power tower
and solar power heat engine can demand low weight and high temperature environment. High
thermal resistance provides suitable stiffness to avoid unsought deformation to better optical
alignment. Such plates need to be manufactured using special material such as a functionally
graded material (FGM) with steel and ceramic combined together (Shahrjerdi et al. 2010, Khalfi et
al. 2014, Hadji et al. 2014, Tounsi et al. 2013, Bouderba ef al. 2013, Attia et al. 2015).

A plentiful number of plates resting on elastic foundation are important in structural
engineering and have wide application in other engineering fields. Such plate structures can be
found in various kinds of industrial applications like raft foundations, storage tanks, swimming
pools, and in most civil engineering constructions. To describe the interaction between the plate
and foundation, various kinds of foundation models have been proposed. The simplest one is
Winkler or one-parameter model (Winkler 1867). However, Winkler’s model is unable to take into
account the continuity or cohesion of the soil. Also, the assumption that there is no interaction
between adjacent springs results in ignoring the influence of the soil on either side of the beam. To
overcome this weakness, many two-parameter elastic foundation models have been proposed, such
as Pasternak (Pasternak 1954) by adding a shear spring to simulate the interactions between the
separated springs in the Winkler model. The Pasternak or two-parameter model is widely used to
describe the mechanical behavior of structure-foundation interactions. Benyoucef et al. (2010)
investigated the bending response of thick functionally graded plates resting on Pasternak’s elastic
foundations. Ait Atmane ef al. (2010) presented a free vibration analysis of a functionally graded
plate resting on a two-parameter elastic foundation using a new shear deformation plate theory.
Kiani and Eslami (2012) studied the thermal buckling and post-buckling response of imperfect
temperature-dependent sandwich FG plates resting on elastic foundation. Sobhy (2013)
investigated the buckling and free vibration of exponentially graded sandwich plates resting on
elastic foundations under various boundary conditions. Zidi et al. (2014) studied the hygro-
thermo-mechanical bending response of FG plate resting on elastic foundations. Ait Amar Meziane
et al. (2014) studied the bending and vibration behaviour of exponentially graded sandwich plates
under various boundary conditions and resting on elastic foundations. Zenkour et al. (2014)
studied the influence of temperature and moisture on the bending behavior of composite FG plates
resting on elastic foundations. Yaghoobi et al. (2014) presented an analytical study on post-
buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation
under thermo-mechanical loadings using VIM. Tebboune et al. (2015) discussed the thermal
buckling behavior of FG plates resting on elastic foundation based on an efficient and simple
trigonometric shear deformation theory. Bounouara et al. (2016) investigated the free vibration of
FG nanoscale plates resting on elastic foundation using a nonlocal zeroth-order shear deformation
theory. Salima et al. (2016) studied the free vibration of FG rectangular plates on Winkler—
Pasternak elastic foundations using an efficient and simple shear deformation theory.

In conventional laminated composite structures, homogeneous elastic laminates are bonded
together to obtain enhanced mechanical and thermal properties (Draiche et al. 2014, Chattibi et al.
2015). However, the abrupt change in material properties across the interface between different
materials can result in large inter-laminar stresses leading to delamination, cracking, and other
damage mechanisms which result from the abrupt change of the mechanical properties at the
interface between the layers. To remedy such defects, functionally graded materials (FGMs) within
which material properties vary continuously, have been proposed (Koizumi 1997). Solar plate is
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employed to focus solar radiation onto an absorber located at the focal point in parabolic dish
concentrator to give the solar energy. Concentrating solar collector consists of reflector over solar
plate, the absorber and the housing. Parabolic disk is fabricated from solar plates. The performance
of a solar plate in terms efficiency, service life and optical alignment depends on the material and
operating conditions. Normally, a solar plate can be made from polished pure material or coated
plate with some special cover (Howell and Bereny 1979). However, for some specific application,
such as in solar satellite, solar power tower and solar power heat engine can demand low weight
and high temperature environment. High thermal resistance provides suitable stiffness to avoid
unsought deformation to better optical alignment. Such plates need to be manufactured by
employing special material such as a functionally graded material (FGM) with steel and ceramic
combined together (Shahrjerdi et al. 2010). The mechanical behavior of structural components
with FGMs is of highly importance in both research and industrial fields (Talha and Singh 2010,
Belabed et al. 2014, Benachour ef al. 2011, Pradhan and Chakraverty 2015, Ait Yahia et al. 2015,
Arefi 2015, Bennai et al. 2015, Sallai et al. 2015, Tagrara et al. 2015, Ebrahimi and Dashti 2015,
Belkorissat et al. 2015, Mahi et al. 2015, Ait Atmane et al. 2015, Kar and Panda 2015, Larbi Chaht
et al. 2015, Zenkour and Abouelregal 2015, Darilmaz 2015, Bennoun et al. 2016, Ait Atmane et al.
2016). Bourada et al. (2012) presented a new four-variable refined plate theory for thermal
buckling analysis of FG sandwich plates. Hamidi et al. (2015) proposed a sinusoidal plate theory
with 5-unknowns and stretching effect for thermo-mechanical bending of FG sandwich plates.
Bouchafa et al. (2015) studied the thermal stresses and deflections of FG sandwich plates using a
new refined hyperbolic shear deformation theory. Akbas (2015) presented an elastic solution of a
curved beam made of functionally graded materials with different cross sections. Nguyen et al.
(2015) examined the bending, vibration and buckling responses of FG sandwich plates using
refined higher-order shear deformation theory.

The solar functionally graded plates (SFGPs) are commonly employed in thermal environments;
they can buckle under thermal and mechanical loads. Thus, the buckling investigation of such
plates is essential to ensure an efficient and reliable design. By using an analytical approach, they
obtained closed-form expressions for buckling loads. Shahrjerdi ef al. (2010) used second order
shear deformation theory to analyze stress distribution for solar functionally graded plates. Using
also the second-order shear deformation theory, Shahrjerdi et a/l. (2011a, b) analyzed the vibration
of temperature-dependent solar FG plates. Lanhe (2004) analyzed the critical temperature and
critical temperature difference of simply supported moderately thick rectangular FG plates on the
basis of the first-order shear deformation theory in the Von Karman sense. For moderately thick
FG plates, it has been pointed out that transverse shear deformation has considerable effects on the
critical buckling temperature difference. Thermal buckling of simply supported FG skew plates
has been investigated using the first-order shear deformation theory by Ganapathi and Prakash
(2006). The effects of aspect and thickness ratios, gradient index and skew angle on the critical
temperature difference were presented. Na and Kim (2006) investigated the thermal postbuckling
of FGM plates by using the three-dimensional finite-element method. Zhao et al. (2009) and Zhao
and Liew (2009) analyzed the buckling and postbuckling behavior of FGM plates by invoking the
element-free kp-Ritz method. Matsunaga (2009) presented a higher order deformation theory for
thermal buckling of FGM plates. By using the method of power series expansion of displacement
components, a set of fundamental equations of rectangular FGM plates was derived. The
trigonometric shear deformation plate theory was employed by Zenkour and Sobhy (2011) to study
the thermal buckling of FGM plates on two-parameter elastic foundation. Bouazza et al. (2010)
investigated the thermoelastic buckling of FGM plate using first shear plate theory. Effects of
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changing plate characteristics, material composition and volume fraction of constituent materials
on the critical temperature difference of FGM plate with simply supported edges are also
investigated. Yaghoobi and Torabi (2013) presented an exact solution for thermal buckling of FG
plates resting on elastic foundations with various boundary conditions. Akil (2014) studied the
post-buckling response of sandwich beams with FG faces using a consistent higher order theory.
Bakora and Tounsi (2015) examined the thermo-mechanical post-buckling behavior of FG plates
resting on Pasternak-type elastic foundation. Hadji et al. (2015) presented an n-order four variable
refined theory for thermal buckling analysis of FG plates.

Since, the material properties of functionally graded plate vary through the thickness direction,
the neutral surface of such plate may not coincide with its geometric middle surface. Therefore,
stretching and bending deformations of FGM plate are coupled. Some researchers (Morimoto ef al.
2006, Abrate 2008, Zhang and Zhou 2008, Saidi and Jomehzadeh 2009, Ould Larbi et al. 2013,
Bousahla et al. 2014, Fekrar et al. 2014, Bourada et al. 2015) have shown that there is no
stretching-bending coupling in constitutive equations if the reference surface is properly selected.

This paper aims to develop an efficient hyperbolic shear deformation theory based on exact
position of neutral surface for thermal buckling analysis of FGM plates resting on two-parameter
elastic foundation. By introducing the physical neutral surface the stretching-bending coupling
terms in the governing differential equations were eliminated. This theory is based on assumption
that the in-plane and transverse displacements consist of bending and shear components in which
the bending components do not contribute toward shear forces and, likewise, the shear components
do not contribute toward bending moments. Just four unknown displacement functions are used in
the present theory against five unknown displacement functions used in the corresponding ones.
The material properties are graded in the thickness direction according to the power-law
distribution in terms of volume fractions of the constituents of the material. The effective material
properties are estimated using a simple power law based on rule of mixture. The accuracy of the
presented results is verified through comparisons with available results in the published literature.
Furthermore, parametric studies are performed to examine the influences of the power of solar
FGM, aspect ratio, foundation stiffness coefficients and thermal loading types on the critical
buckling load of solar FGM rectangular plates.

2. Problem formulation
2.1 Physical neutral surface

Functionally graded materials are a special kind of composites in which their material
properties vary smoothly and continuously due to gradually varying the volume fraction of the
constituent materials along certain dimension (usually in the thickness direction). In this study, the
FGM plate is made from a mixture of ceramic and metal and the properties are assumed to vary
through the thickness of the plate. Due to asymmetry of material properties of FGM plates with
respect to middle plane, the stretching and bending equations are coupled. But, if the origin of the
coordinate system is suitably selected in the thickness direction of the FGM plate so as to be the
neutral surface, the properties of the FGM plate being symmetric with respect to it. To specify the
position of neutral surface of FGM plates, two different planes are considered for the measurement
of z, namely, z,; and z,; measured from the middle surface and the neutral surface of the plate,
respectively, as depicted in Fig. 1.
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Ceramic rich surface

Metal rich surface

Fig. 1 The position of middle surface and neutral surface for a functionally graded plate

The volume-fraction of ceramic V¢ is expressed based on z,,, and z,, coordinates as

k k
z 1 z +C 1
V. — ms 4 - — ns +— 1
¢ (h 2) ( h 2} M

where £ is the power law index which takes the value greater or equal to zero and C is the distance
of neutral surface from the mid-surface. Material non-homogeneous properties of a functionally
graded material plate may be obtained by means of the Voigt rule of mixture (Suresh and
Mortensen 1998). Thus, using Eq. (1), the material non-homogeneous properties of FG plate P, as
a function of thickness coordinate, become

k
z +C 1
P(Z):PM+PCM(”ST+EJ’ P, =P.—-P, 2)

where Py, and P are the corresponding properties of the metal and ceramic, respectively. In the
present work, we assume that the elasticity modules £, and the thermal expansion coefficient a, are
described by Eq. (2), while Poisson’s ratio v, is considered to be constant across the thickness. The
position of the neutral surface of the FG plate is determined to satisfy the first moment with
respect to Young’s modulus being zero as follows (Zhang and Zhou 2008, Bourada et al. 2015,
Meradjah et al. 2015, Al-Basyouni et al. 2015)

hi2

_[E(st)(zms _C)dzms =0 (3)

—h/2

Consequently, the position of neutral surface can be obtained as

h/2
J‘E(st )stdzms

C = =hi2 (4)

hi2
[,z

—h/2

It is clear that the parameter C is zero for homogeneous isotropic plates, as expected.
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Fig. 2 Coordinate system and geometry for rectangular FG plates on elastic foundation

X

2.2 Theoretical model

Consider a rectangular FGM plate with the length a, width b and uniform thickness 4, resting
on two-parameter elastic foundation is considered as depicted in Fig. 2. Unlike the other shear
deformation theory, just four unknowns functions are needed in the proposed efficient hyperbolic
shear deformation theory.

2.2.1 Basic assumptions
Assumptions of the present theory are as follows:

(1) The origin of the Cartesian coordinate system is taken at the neutral surface of the FGM
plate.

(ii)) The transverse displacement w includes two components of bending w,, and shear ws.
These components are functions of coordinates x, y only

W(x’yvzns)zWb(xay)-'-ws(x’y) (5)

(iii) The transverse normal stress o. is negligible in comparison with in-plane stresses o, and o,.
(iv) The displacements u in x-direction and v in y-direction consist of extension, bending, and

shear components
u=uy+u,+u, V=vy+v,+v, (6)

The bending components u, and v, are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for u;, and v, can be given as

b nsax’ b nsay ()

The shear components u; and v, give rise, in conjunction with wy, to the parabolic variations of
shear strains y,., y,. and hence to shear stresses 7.., 7,. through the thickness of the plate in such a

way that shear stresses 7,., 7,. are zero at the top and bottom faces of the plate. Consequently, the
expression for u; and v, can be given as
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ow ow
u,=—f (Zns)a—xs, vy =—f (zm)a—; (8)

It is noted that in this work the shape function f(z,;) developed by Hebali et al. (2014) is
modified based on the concept of the neutral surface position as follows

(h/ﬂ)smh( (e, + c)j_(z,,s +C)

[cosh(z/2)—-1]

)

f(z,)=

2.2.2 Kinematics
Based on the assumptions made in the preceding section, the displacement field can be
obtained using Egs. (5)-(9) as

ow ow
u(x’yﬁzns)zuO(xay)_Zns_b_f(Zns) * (loa)
ox ox
ﬁwb
V('x y’Zns) VO(x y) Zns f( Vlé) (IOb)
WX, ¥,2,,) = W, (X, ¥) + w(x, ) (10c)
The non-linear von Karman strain—displacement equations are as follows
£, & ky ks ,
_J .0 b s Ve | _ Ve
0 b K Xz Xz
7/xy ]/xy kxy kxy
where
2
Ouy 42 (awb + ow, j
0 ox ox  Ox
gX
ol w1 (% 5W] |
»° Ox a Oy
i Ou, 0v, (ow, oOw, \ow, Ow,
o e \ox e Ny o
y y o Oy (123)
B o*w, B o%w,
k? Ox* kS ox? ow,
e lo) azwb pe o) aZWS }/jz _ oy
o [ 1T e b e
o), 0*w, vl 9w, ox
Ox0y Ox0y
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and
df (z,,)
Z,)=1———7"5
g(z,,) i, (12b)
2.2.3 Constitutive relations
The plate is subjected to a thermal load 7(x, y, z,,). The linear constitutive relations are
Oy O, O, 0 |l&—al
7’—yz Q44 0 7/ vz
0,=0n 0n 0 &, —al and = (13)
sz 0 QSS 7/ zx
Txy 0 0 Q66 Y Xy

where (o, 0y, Ty, Tpz, T) a0d (x, €, Yxys V= V) are the stress and strain components, respectively.
Using the material properties defined in Eq. (2), stiffness coefficients, O;, can be expressed as

0,=0,= f(zmz) ) (14a)
-V
E(z .
an%l%ﬁ, (14b)
-v
E
Oy = 0ss = Oy :2(1(#_:‘;))» (14c)

2.2.4 Stability equations

The equilibrium equations of the FG plate resting on the Pasternak elastic foundation under
thermal loadings may be derived on the basis of the stationary potential energy. The total potential
energy of the plate, V, may be written in the form

V=U+U, (15)

Here, U is the total strain energy of the plate, and is calculated as (Zenkour and Sobhy 2010
and 2011)

ab
T O R T30 T
00

and Uy is the strain energy due to the Pasternak elastic foundation, which is given by (Ait Atmane
et al. 2010)

ab
Up =5 [ [ 1.0, +w v a”
00

where f, is the density of reaction force of foundation. For the Pasternak foundation model
(Zenkour 2009, Zenkour et al. 2014, Besseghier et al. 2015)
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fo =Ky (w, +w,) =K V2(w, +w,) (18)

where K is the Winkler foundation stiffness and K, is a constant showing the effect of the shear
interactions of the vertical elements.

Using Egs. (11), (12) and (13) and employing the virtual work principle to minimize the
functional of total potential energy function result in the expressions for the equilibrium equations
of plate resting on two parameters elastic foundation as

ON, . ON,,

=0
Ox oy
a]v_va+a&=0
Ox oy
oMb oMb oPMP  — (19)
=42 =+ ——=+N-f,=0
ox Ox0y oy
M o°M:,  O*M*® s a8 —
aMMrz > 4 y+aS”+ Z+N-f,=0
ox? oxoy oy? Ox oy
with
B 2 2 2
N = Nx a (Wb :_WS)"'Q'ny a (Wb +WS)+Ny a (Wb :_Wv) (20)
Ox Ox0y oy
and
Nx’ Ny’ ny h/2-C 1
M)lc)ﬂ M)ljﬂ M)lc)y = J. (O-x’ay’rxy Zns dzns’ (Zla)
M3, M3, M3,| i f(z)
h/2—C
( ;Z’S;Z): J.(sz’Tyz )g(ZnS)dZns‘ (21b)
—h/2-C

Using Eq. (13) in Eq. (21), the stress resultants of the FGM plate can be related to the total
strains by

N A 0 B |[e NT
MP =l 0 D D*Nkb\-dMTL, S=Ay, (22)
Ms Bs Ds Hs ks MST

where
N={N NN, Mt (it e = v M) (23a)

t t !

NT={NTNTOf M = (Mt M of Mo = (T M7 of (23b)
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e={e0e0 0 . kb ={kt it L ke =k ) (23¢)
A, A, 0 Dy, Dy, 0
A= 4y 4y 0|, D=|Dy Dy 0 |, (23d)
0 0 A 0 0 Dy
B B 0 Dy Dy, 0 Hy Hy, 0
B*=\B, B, 0|, D'=\D), D5, 0 |, H'=\H) H;5 0 |, (23¢)
0 0 B 0 0 D 0 0 Hg
s s 4 s A4:4 0
R S S o3
55
where 4, Dy, etc., are the plate stiffness, defined by
N s s h
4, Dy, B, Dy Hy ¢ 1
A12 DIZ BISZ DISZ H1S2 = J‘Qll(l’zzﬁf(zns)’zns f(Zns)’fz(Zns) IV dzns’ (243)
s s s -V
Ass Des Bes Des Hee *%*C >
and
(42- D22, B2, Do H3, )= (41,11, By, Dy H ). (24b)
2c
, ) E(z,) 2
Ay = Ais = = Z, )] Az, 24
44 = 4ss 1{[ 2(1+V)[g( )] : (24¢)
2c

2

The stress and moment resultants, N/ = N7, M =M!", and M}" =M}’ due to thermal
loading are defined by

h

NXT E*C g 1

MfT = L’“)a(zns <z dz,, (25)
, —v

M;T _%_C f(Zns)

The stability equations for FGM plates may be obtained by mean of the adjacent-equilibrium
criterion. Let us assume that the state of equilibrium of sandwich plate under thermal loads is
defined in terms of the displacement components u), vy, wy and w’. The displacement
components of a neighbouring state of the stable equilibrium differ by ug, v, w,, w! with respect

to the equilibrium position. Thus, the total displacements of a neighbouring state are

_ .0, 1 0,1 ) 1 .0 1
Uy =uy +uy, Vy=Vy+Vy, W,=W,+wW,, W =W, +Ww (26)
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Accordingly, the stress resultants are divided into two terms representing the stable equilibrium
and the neighbouring state. The stress resultants with superscript 1 are linear functions of
displacement with superscript 1. Considering all these mentioned above and using Eqs. (19) and
(26), the stability equations becomes

Ox Oy
1 1
ON,, . ON, _
Ox oy
oMy, *M7 N o*M}!
ox* oxoy oy*
M 0’M3, *M3 assl 6S))]
42 + +—=+

—1
+ Z+N - f1=0
ox? Ox0y oy? Ox oy Je

I AN!
ON, +—2=0

0
(27)
AN - fl=0

with

GZ(W}, + wi)

. GZ(W},+W;)+NO Gz(w},+w§)
X

Ox0y 7 oy? }

N'= [Nf +2N), (28a)

Sl =Ky Wy +w) =K V2 (w, +w)) (28b)

The terms N?, N° and N » are the pre-buckling force resultants obtained as

”TC a(z,)EEIT

0 _ 0 _ 0 _
Nx_Ny__ 1—v Zns’ ny_O (29)

-h/2-C
2.3 Trigonometric solution to thermal buckling

Rectangular plates are generally classified in accordance with the type of support used. We are
here concerned with the exact solution of Eq. (27) for a simply supported FGM plate. The
following boundary conditions are imposed for the present refined shear deformation theory at the
side edges

0 1

Vo =W, =w) = awszNjcszle‘;lzo at x=0,a, (30a)
y

1 1 L _ Oy 1 b1 s1

uozwbzwszgzNszy =M; =0 at y=0,0b. (30b)

The following approximate solution is seen to satisfy both the differential equation and the
boundary conditions
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Uy U,y c0s(A x)sin(u y)
v < i V! sin(A x)cos(u y) a1
Wll7 m=1 n=1 I/Vblmn Sin(]’ x) Sin(/u y)
W W g SIN(A X)siN( 12 y)

where U! V! W} ~—and W! are arbitrary parameters to be determined and A=mz/a and

mn> " mn> "’ bmn> smn

w1 =nr/b. Substituting Egs. (22) and (31) into Eq. (27), one obtains

[KKa}=0, (32)

where {A} denotes the column

{A}: {Urlrln’Vl W;mn’VVslmn }t (33)

mn?>
and [K] is the symmetric matrix given by
Gy 413 dy

[K]: apy Ay dyz Ay ’ (34)

a3 Qy3 A3z A3y
iy Ay A3y Ayy
in which

ay = _(An/iz + Assﬂz)

a,=-Au (A12 + A%)

a;;=0

ay, = A[BS2? +(By +2Bge) 1]

) :_(A66ﬂ'2 +A22:u2)

a,; =0 (35)

ayy = p[(BY, +2Bg) 2 + B3, 1]

as;, = —(D”A4 +2(Dy, +2Dgo) 2P pi* + Dyypt* + NJ 22 + N pi? +Kg(/12 +y2)+KW)

ayy = (D52 + 2Dy, + 2D 12 + D5 pt A N2+ N + K (2 + 42 )+ K,
H{ A+ 2(H Yy + 2H )P 1 + Hy, i + A5 % + Ay pi?

a44:_(+NJ8/12+N;’y2+Kg(}LZ+,u2)+KW }

and [K] is the symmetric matrix given by

Mf]] Eﬂ{i}z{g} (36)
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where

e T o Pl A o el o7

Qap Ay 24 A3y Ayy
U} W,
1 _ mn 2 _ mn
o={tel, oo o
Eq. (37) represents a pair of two matrix equations
[k ]A + K12 ]a2 =0 (38a)
[k2] A +[k2]a =0 (382)

Solving Eq. (39a) for A' and then substituting the result into Eq. (39b), the following equation
is obtained

[E”J A =0 (39)

where

(&bl e e 2 (on)

as, by,

and
b

P i o - _ et S Z2
A33 =0y, Q3 =A3y, =0y, by=ay,—ay, b dyy b’
)

0 (40b)

_ 42 _ _ — _
by =ayay —ap, b =ay,ay —anay, b,=a,ay -ajay,

For nontrivial solution, the determinant of the coefficient matrix in Eq. (40) must be zero. This
gives the following expression for the thermal buckling load

2
NO = N0 = 1 A33bsy — az
x =y

41
B+ p? ay +ay, —2ay, *h

2.3.1 Buckling of FG plates under uniform temperature rise

The plate initial temperature is assumed to be 7;. The temperature is uniformly raised to a final
value T in which the plate buckles. The temperature change is AT = Ty— T;. Using this distribution
of temperature, the critical buckling temperature change AT, becomes by using Eqgs. (29) and (42)

1 ayb,, —a?
AT, =— 33044 — 34 474
131(12 +,U2) a3y +ay —2ay (422)

where
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2.3.2 Buckling of FG plates subjected to graded temperature change
across the thickness
We assume that the temperature of the top surface is 7), and the temperature varies from 7T,
according to the power law variation through-the-thickness, to the bottom surface temperature 7,
in which the plate buckles. In this case, the temperature through-the-thickness proposed by
(Zenkour and Sobhy 2010 and 2011) is modified by considering the concept of physical neutral
surface

V4
T(z,)= AT( Z]: ¢, %j ‘T, 43)

where the buckling temperature difference AT = T¢ — T), and y is the temperature exponent (0 <y <
). Note that the value of y equal to unity represents a linear temperature change across the
thickness. While the value of y excluding unity represents a non-linear temperature change
through-the-thickness.

Similar to the previous loading case, the critical buckling temperature change AT, becomes by
using Egs. (29) and (42)

_ y3by _3324 +Ty B (12 "‘ﬂzx%s + a4 —2a5,)

ATcr 2 2 (44a)
Bo (X + ™) ag; + agy —2as,)
where
hi2-C r
E C
_ﬂz _ a(z,)E(z,) (zns * +1J dz, (44b)
—h/2-C 1-v 4

Note that the value of y equal to unity represents a linear temperature change across the
thickness. While the value of y excluding unity represents a non-linear temperature change through
the thickness.

3. Numerical results and discussion

The general approach outlined in the previous sections for the thermal buckling analysis of the
homogeneous and solar FG plates under uniform, linear and non-linear temperature rises through
the thickness is illustrated in this section using the present efficient hyperbolic plate theory based
on exact neutral surface position. The solar FG plate is taken to be made of Aluminum and
Alumina with the following material properties:

o Metal (Aluminium, Al): Ey, = 70 GPa; v = 0.3; o, = 23. 10°%/°C; ky =204 W/mL.
e Ceramic (Alumina, Al,O;): Ec=380 GPa; v=0.3; ac="7.4 10°/°C; ke = 10.4 W/mK.

For the non-linear temperature rises through the thickness, the temperature rises 5°C in the
metal-rich surface of the plate (i.e., 7;, = 5°C). The shear correction factor of FPT is fixed to be 5/6.
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The following dimensionless of Winkler’s and Pasternak’s elastic foundation parameters, as
well as the critical buckling temperature difference are used in the present analysis

where D= E.h*/[12(1-v?)].

3.1 Comparative studies

g

k,=2K,,
D

g

T, =107AT,

(45)

In order to demonstrate the accuracy of the present closed-form exact solution, the correlation
between the present theory and different higher- and first-order shear deformation theories and
classical plate theory is established. The description of various displacement models is given in

Table 1.

Results were obtained for foundationless FG plates (k¢ = 1) under uniform temperature rise
through the thickness based on the present theory with only four unknown functions and compared
with those other various theories (Samsam Shariat and Eslami 2007, Lanhe 2004, Zenkour and
Sobhy 2011) with five unknown functions as shown in Table 2. It is observed that the obtained

Table 1 Displacement models

Model Theory Unknown functions
CPT Classical plate theory 3
FPT First-order shear deformation theory (Zenkour and Sobhy 2011) 5
TPT Trigonometric shear deformation plate theory 5
(Zenkour and Sobhy 2011)
HPT Higher order shear deformation theory 5
(Zenkour and Sobhy 2011, Reddy 2000)
Present Present hyperbolic plate theory 4

Table 2 Critical buckling temperature change 7, of foundationless FG plates under uniform temperature rise
versus the side-to-thickness and aspect ratios based on the various theories

alb Theory a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100
Present 0.758423  0.196267  0.049501 0.022037  0.0124029  0.0079400
) TPT® 0.758451  0.196269  0.049502  0.022037  0.012403 0.007940
HPT® 0.758396  0.196265  0.049502  0.022037  0.012403 0.007940
CPT® 0.794377  0.198594  0.049649  0.022066  0.012412  0.007944
Present 1.77567 0.482196  0.123208  0.054983  0.0309729 0.0198359
TPT® 1.775899  0.482206  0.123209  0.054984  0.030973 0.019836
) HPT® 1.775555  0.482184  0.123208  0.054984  0.030973 0.019836
HPT® 1.7756 0.48218 0.12321 0.05498 0.03097 0.01984
FPT® 1.8072 0.48451 0.12336 0.05501 0.03098 0.01984
CpPT® 1.985943  0.496486  0.124121 0.055165  0.031030  0.019859
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Table 2 Continued

alb Theory  a/h=10 a/h=20 a/h=40 a/h=60 a/h=80 a/h=100
Present  3.212203  0.937430  0.244617  0.109608  0.0618316  0.0396248

; TPT® 3213338 0937475  0.244620  0.109609  0.061838  0.039625
HPT® 3211975 0937389  0.244614  0.109608  0.061831  0.039625

CPT® 3.971886  0.992972  0.248243  0.110330  0.062061  0.039719
Present 4.81864 1.53365  0.411643  0.185484  0.1048428  0.0672509

TPT® 4.822477  1.533805  0.411650  0.185485  0.104843  0.067251

A HPT® 4818675  1.533556  0.411634  0.185482  0.104842  0.067251

HPT® 48187 1.5336 0.41163 0.18548 0.10484 0.06725

FPT® 5.0530 1.5571 0.41333 0.18583 0.10495 0.06730

CpPT® 6.752207  1.688052  0.422013  0.187561  0.105503  0.067522

@ Results taken from Zenkour and Sobhy (2011)
® Results taken from Samsam Shariat and Eslami (2007)
© Results taken from Lanhe (2004)

results using the present theory are identical to those computed by the other theories (Samsam
Shariat and Eslami 2007, Lanhe 2004, Zenkour and Sobhy 2011) which validate the high accuracy
of the present formulations and procedure.

Another comparative study for evaluation of critical buckling temperatures between the
presented theory based on exact neutral surface position and analytical solution developed by
Zenkour and Sobhy (2011) based on TPT, FPT and CPT, is performed in Tables 3 to 6. Indeed,
Tables 3 to 5 exhibit the critical buckling temperature difference 7., of FG square plate without
elastic foundation or resting on one- or two-parameter elastic foundations for different values of
the power law index k& and the side-to-thickness ratio a/ /& using the present various plate theories.

Table 3 Critical buckling temperature change 7., of FG square plates under uniform temperature rise for
different values of the power law index and side-to-thickness ratio

k=0, k=0 k=10, kg =0 k=0, kg =10

k  Theory ah=5 10 20 ah=5 10 20  ah=5 10 20
TPT® 558556 1.61882 0.42154 5.76109 1.66270 0.43252 9.22610 2.52896 0.64908
HPT® 558344 1.61868 0.42154 575899 1.66257 0.43251 9.22398 2.52882 0.64907

0  FPT® 558069 1.61862 0.42153 575622 1.66251 0.43251 9.22123 2.52876 0.64907
CPT®  6.83964 1.70991 0.42748 7.01519 1.75380 0.43845 10.48019 2.62005 0.65501
Present 5.58393 1.61875 0.42154 5.75947 1.66263 0.43251 9.22448 252888 0.64907
TPT® 2.67241 0.75845 0.19627 2.83603 0.79935 0.20649 6.06558 1.60674 0.40834
HPT® 267153 0.75840 0.19627 2.83515 0.79930 0.20649 6.06470 1.60669 0.40835

1 FPT® 267039 0.75837 0.19626 2.83400 0.79930 0.20649 6.06356 1.60667 0.40834
CPT® 3.17751 0.79438 0.19859 3.34112 0.83528 0.20882 6.57068 1.64267 0.41067
Present 2.67173 0.758423 0.19626 2.83534 0.79932 0.20649 6.06491 1.60671 0.40834
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Table 3 Continued

ky=0,k,=0 k=10, k,=0 k=0, k,=10

k Theory a/h=5 10 20 alh=15 10 20 alh=>5 10 20
TPT® 227131 0.67895 0.17851 2.49808 0.73564 0.19268 6.97440 1.85472 0.47245
HPT® 227501 0.67931 0.17854 2.50179 0.73600 0.19271 6.97810 1.85508 0.47248

5 FPT® 235948 0.68678 0.17905 2.58625 0.74348 0.19322 7.06257 1.86255 0.47229
CPT® 290629 0.72657 0.18164 3.13305 0.78326 0.19582 7.60938 1.90234 0.47559
Present 2.27935 0.679719 0.17856 2.50612 0.73641 0.19273 6.98244 1.85549 0.47250
TPT® 227551 0.69254 0.18313 2.53146 0.75653 0.19913 7.58356 2.01955 0.51489
HPT® 227678 0.69269 0.18314 2.53273 0.75668 0.19914 7.58483 2.01970 0.51490

10 FPT® 236822 0.70108 0.18373 2.62417 0.76507 0.19972 7.67626 2.02809 0.51548
CPT® 298770 0.74693 0.18673 3.24365 0.81091 0.20273 829575 2.07394 0.51848
Present 2.27936 0.69295 0.18316 2.53530 0.75694 0.19915 7.58740 2.01996 0.51491

@ Results taken from Zenkour and Sobhy (2011)

Table 4 Critical buckling temperature change 7., of FG square plates under linear temperature rise for
different values of the power law index and side-to-thickness ratio

kyw=0,k;=0 k=10, k=0 ky=0,k,=10
K  Theory a/h=5 10 20 alh=>5 10 20 alh=>5 10 20
TPT® 11.16112 3.22764 0.83309 11.51220 3.31541 0.85503 18.44220 5.04791 1.28816
HPT® 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814
0  FPT® 11.15138 3.22725 0.833306 11.50246 3.31502 0.85501 18.43246 5.04752 1.28814
CPT® 13.66929 3.40982 0.84496 14.02036 3.49759 0.86690 20.95037 5.23009 1.30002
Present 11.15787 3.22750 0.83308 11.5089 3.31527 0.85502 18.43896 5.04777 1.28814
TPT®  5.00264 1.41307 0.35872 5.30948 1.48978 0.37789 11.36642 3.00402 0.75645
HPT® 500099 1.41297 0.35871 5.30784 1.48968 0.37789 11.36477 3.00391 0.75645
1 FPT® 499885 1.41292 0.35871 5.30570 1.48964 0.37789 11.36263 3.00387 0.75645
CPT® 594993 1.48045 0.36308 6.25678 1.55716 0.38226 12.31372 3.07140 0.76082
Present 5.00137 1.41302 0.358715 5.30822 1.48973 0.37789 11.36515 3.00396 0.756451
TPT® 3.90098 1.6006 0.28966 4.29132 1.25765 0.32306 11.99637 3.18391 0.80462
HPT® 3.90735 1.16069 0.29871 4.29770 1.25827 0.32310 12.00275 3.18453 0.80467
5  FPT® 4.05274 1.17354 0.29959 4.44308 1.27113 0.32399 12.14816 3.19739 0.80555
CPT® 499396 1.24204 0.30405 538430 1.33962 0.32845 13.08936 3.26588 0.81002
Present 3.91482 1.16138 0.29875 4.30516 1.25897 0.32315 12.01022 3.18523 0.80471
TPT®  4.02350 1.21837 0.31566 4.47705 133176 0.34401 13.42969 3.56992 0.90355
HPT®  4.02576 121864 0.31568 4.47930 1.33203 0.34403 13.43194 3.57019 0.90357
10 FPT® 4.18778 1.23350 031672 4.64132 1.34688 0.34506 13.59396 3.58504 0.90460
CPT® 528555 1.31474 0.32204 5.73910 1.42813 0.35039 14.691174 3.66629 0.90993
Present 4.03031 1.21910 0.31571 4.48386 1.33249 0.34406 13.43650 3.57065 0.90360
@ Results taken from Zenkour and Sobhy (2011)
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Table 5 Critical buckling temperature change T, of FG square plates under non-linear temperature rise (y =3)
for different values of the power law index and side-to-thickness ratio

k=0, k, =0

k=10, ky =0

k=0, k= 10

k  Theory

alh=5

10

20

alh=5

10

20

alh=5

10

20

TPT®
HPT®
0  FPT®
CPT®
Present

22.32223
22.31376
22.30276
27.33857
22.31575

6.45528
6.45473
6.45450
6.81964
6.45501

1.66618
1.66614
1.66614
1.68991
1.66616

23.02439
23.01592
23.00491
28.04073
23.01791

6.63082
6.63027
6.63003
6.99518
6.63055

1.71006
1.71003
1.71002
1.73380
1.71004

36.88440
36.87594
36.86493
41.90074
36.87792

10.09582
10.09527
10.09527
10.46019
10.09555

2.57631
2.57628
2.57627
2.60005
2.57629

TPT®
HPT®
1 FPT®
CPT®
Present

10.00817
10.00488
10.00060
11.90332
10.00565

2.82696
2.82676
2.82667
2.96176
2.82686

0.71764
0.71763
0.71763
0.72637
0.71763

10.62205
10.61875
10.61447
12.51719
10.61952

2.98043
2.98022
2.98014
3.11523
2.98033

0.75601
0.75600
0.75600
0.76474
0.75600

22.73943
22.73614
22.73185
24.63458
22.73691

6.00978
6.00957
6.00948
6.14457
6.00967

1.51334
1.51333
1.51333
1.52207
1.51334

TPT®
HPT®
5 FPT®
CPT®
Present

6.77655
6.78763
7.04019
8.67523
6.80061

2.01520
2.01628
2.03861
2.15759
2.01749

0.51882
0.51889
0.52043
0.52819
0.51897

7.45464
7.46571
7.71827
9.35331
7.47869

2.18472
2.18580
2.20813
2.32711
2.18701

0.56120
0.56127
0.56281
0.57057
0.56135

20.83942
20.85050
21.10305
22.73809
20.86347

5.53091
5.53199
5.55433
5.67331
5.53321

1.39775
1.39782
1.39936
1.40711
1.39790

TPT®
HPT®
FPT®
CPT®
Present

10

6.92562
6.92950
7.20839
9.09798
6.93735

2.09717
2.09763
2.12321
2.26306
2.09843

0.54335
0.54338
0.54516
0.55433
0.54344

7.70631
7.71019
7.98908
9.87867
7.71804

2.29235
2.29281
2.31838
2.45823
2.29360

0.59214
0.59218
0.59396
0.60312
0.59223

23.11642
23.12029
23.39918
25.28877
23.12814

6.14487
6.14533
6.17091
6.31075
6.14613

1.55531
1.55531
1.55709
1.56625
1.55536

@ Results taken from Zenkour and Sobhy (2011)

From the results presented in Tables 3 to 5, it is observed that results have a good agreement. Also,
note that the results of critical buckling using the present theory are very close to those of HPT
(Zenkour and Sobhy 2011). It is clear that the results have significant differences between the
shear deformation plate theories and the classical plate one, indicating the shear deformation effect.

Finally, the present comparative studies show that the results obtained from the proposed
method agree well with existing analytical results in the literature which validate the reliability and
accuracy of the present analytical approach. It should be noted that the proposed efficient
hyperbolic plate theory based on exact neutral surface position involves four unknowns as against
five in case of other shear deformations theories TPT, HPT and FPT.

3.2 Parametric studies
In this section, to examine the effects of different parameters of plate and elastic foundation on

the critical buckling temperature a solar FG plate, the comprehensive results are plotted in Figs. 3
to 9.
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Fig. 3 Variation of the neutral surface position versus power law index

3.2.1 Effect of the power law index on location of the neutral surface

In order to better understand the location of the neutral surface, the variation of non-
dimensional parameter C/A is depicted in Fig. 3 versus the power law index k& of FGM. It can be
observed when the power law index of FGM becomes zero (fully ceramic) or infinity (fully
metallic); the neutral surface coincides on the middle surface, as expected.
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Fig. 4 Effect of Winkler modulus parameter on the critical buckling temperature of square FG
plate for various side-to-thickness ratios a/h with k, = 10 and k= 2.
(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature y = 3
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Fig. 4 Continued

3.2.2 Effect of Winkler modulus parameter

To study the influence of the side-to-thickness ratio a/h and Winkler modulus £, on the critical
buckling temperature, Fig. 4 is presented. In this present computation, a constant value of the
power law index, k = 2, is employed and the Pasternak shear modulus parameter is assumed as k, =
10. From the figure it is observed that, regardless of the loading type, as the Winkler modulus
parameter increases, the critical buckling temperature increases for all the different side-to-
thickness ratio of FG square plate considered, especially for thicker plate. This implies that for
embedded solar FG plate, there would be much shift of critical buckling temperature values from a
soft elastic medium to a hard elastic medium. Moreover, it is observed that the change in critical
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buckling temperature is more affected by the side-to-thickness ratios a/h. For a thin solar FG plate
the effect of Winkler modulus on critical buckling temperature is less compared to thick solar FG
plate.

3.2.3 Effect of Pasternak shear modulus parameter

Fig. 5 shows the effect of the side-to-thickness ratio a/# on the thermal buckling response of
solar FG square plate with elastic medium modelled as Pasternak-type foundation. The Winkler
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Fig. 5 Effect of Pasternak shear modulus parameter on the critical buckling temperature of
square FG plate for various side-to-thickness ratios a/h with k, = 10 and k= 2.
(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature y = 3
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Fig. 5 Continued

modulus parameter is assumed as k, = 10 and a constant value of the power law index k = 2, is
employed. As the shear modulus parameter increases, the critical buckling temperature increases,
especially for thicker plate and this regardless of the loading type. Like the variation of critical
buckling temperature with stiffness parameter, considering Winkler-type foundation, the variation
of critical buckling temperature considering Pasternak-type foundation is also linear in nature. In
addition, it is observed, that change in critical buckling temperature is more affected by low side-
to-thickness ratio values as seen in the Fig. 5.

50
Uniform Temperature

Power law index k

Fig. 6 Effect of power law index on the critical buckling temperature of square FG plate for
various side-to-thickness ratios a/h with k,, = k, = 10.
(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature y = 3
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Fig. 6 Continued

3.2.4 Effect of the power law index on critical buckling temperature

To study the influence of the power law index k on the critical buckling temperature, Figs. 6
and 7 are presented for different side-to-thickness ratios a/A and aspect ratios a/b. It is assumed
that the solar FG plate on elastic foundation with k,, = k, = 10. It can be seen that in general the
critical buckling temperature decreases as the power law index of solar FGM increases. This is due
to the fact that increasing the power law index of solar FGM increases the volume fraction of
metal. Furthermore, it can be found that the critical buckling temperature decreases with increasing
the side-to-thickness ratios a/h. However, increasing the aspect ratio a/b, leads to an increase of the
critical buckling temperature. It can be concluded that the performance of a solar FG plate in terms
efficiency and service life depends on the material and operating conditions.
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Fig. 7 Effect of power law index on the critical buckling temperature of FG plate (a/h = 10)
for various aspect ratios a/h with k,, = k; = 10.

(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature y = 3
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Fig. 8 Critical buckling temperature difference of FG square plate due to uniform, linear and non-linear
temperature rise across the thickness versus the side-to-thickness ratio a/h with k,, =k, = 10 and k=5
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Fig. 9 Critical buckling temperature difference of FG plate (a/h = 10) due to uniform, linear and non-linear
temperature rise across the thickness versus the aspect ratio a/b with k, =k, =10 and k=5

3.2.5 Effect of thermal loads types on critical buckling temperature

To examine the influence of thermal loads types on the critical buckling temperature, the
variation of T, versus the side-to-thickness ratio a/# and aspect ratio /b under various types of
temperature loads is plotted in Figs. 8 and 9, respectively. It can be seen from Figs. 8 and 9 that 7.,
of the solar plate under uniform temperature rise is smaller than that of the plate under linear
temperature rise and the latter is smaller than that of the plate under non-linear temperature rise. In
addition, it can be observed that T, is very sensitive to the variation of the temperature exponent .
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4. Conclusions

In this research work, thermal buckling analysis of thick solar functionally graded rectangular
plates resting on two-parameter foundation in thermal environment has been presented. The
mechanical properties of the plate have been assumed to vary through the thickness of the plate as
a power function. The neutral surface position for such plates has been determined. An efficient
hyperbolic plate theory based on exact neutral surface position has been used to find the basic
equations of solar FG plates on elastic foundation. The accuracy of the present theory is
ascertained by comparing it with other higher-order shear deformation theories where an excellent
agreement was observed in all cases. Furthermore, the influences of plate parameters such as
power law index, aspect ratio, foundation stiffness coefficients and thermal loading types on the
critical buckling temperature of solar FG rectangular plate have been comprehensively
investigated. It can be concluded that the performance of a solar FG plate in terms efficiency and
service life depends on the material and operating conditions.
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