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Abstract.    In this research work, an exact analytical solution for thermal stability of solar functionally graded 
rectangular plates subjected to uniform, linear and non-linear temperature rises across the thickness direction is 
developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary 
through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and 
the efficient hyperbolic plate theory based on exact neutral surface position is employed to derive the governing 
stability equations. The displacement field is chosen based on assumptions that the in-plane and transverse 
displacements consist of bending and shear components, and the shear components of in-plane displacements give 
rise to the quadratic distribution of transverse shear stress through the thickness in such a way that shear stresses 
vanish on the plate surfaces. Therefore, there is no need to use shear correction factor. Just four unknown 
displacement functions are used in the present theory against five unknown displacement functions used in the 
corresponding ones. The non-linear strain-displacement relations are also taken into consideration. The influences of 
many plate parameters on buckling temperature difference will be investigated. Numerical results are presented for 
the present theory, demonstrating its importance and accuracy in comparison to other theories. 
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1. Introduction 
 

Solar plate is employed to concentrate solar radiation onto an absorber positioned at the focal 
point in parabolic dish concentrator to provide the solar energy. Concentrating solar collector is 
composed of reflector over solar plate, the absorber and the housing. Parabolic disk fabricated 
from solar plates. The performance of a solar plate in terms efficiency, service life and optical 
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alignment depends on the material and operating conditions. Normally, a solar plate can be 
manufactured from polished pure material or coated plate with some special cover (Howell and 
Bereny 1979). However, for some specific application, such as in solar satellite, solar power tower 
and solar power heat engine can demand low weight and high temperature environment. High 
thermal resistance provides suitable stiffness to avoid unsought deformation to better optical 
alignment. Such plates need to be manufactured using special material such as a functionally 
graded material (FGM) with steel and ceramic combined together (Shahrjerdi et al. 2010, Khalfi et 
al. 2014, Hadji et al. 2014, Tounsi et al. 2013, Bouderba et al. 2013, Attia et al. 2015). 

A plentiful number of plates resting on elastic foundation are important in structural 
engineering and have wide application in other engineering fields. Such plate structures can be 
found in various kinds of industrial applications like raft foundations, storage tanks, swimming 
pools, and in most civil engineering constructions. To describe the interaction between the plate 
and foundation, various kinds of foundation models have been proposed. The simplest one is 
Winkler or one-parameter model (Winkler 1867). However, Winkler’s model is unable to take into 
account the continuity or cohesion of the soil. Also, the assumption that there is no interaction 
between adjacent springs results in ignoring the influence of the soil on either side of the beam. To 
overcome this weakness, many two-parameter elastic foundation models have been proposed, such 
as Pasternak (Pasternak 1954) by adding a shear spring to simulate the interactions between the 
separated springs in the Winkler model. The Pasternak or two-parameter model is widely used to 
describe the mechanical behavior of structure-foundation interactions. Benyoucef et al. (2010) 
investigated the bending response of thick functionally graded plates resting on Pasternak’s elastic 
foundations. Ait Atmane et al. (2010) presented a free vibration analysis of a functionally graded 
plate resting on a two-parameter elastic foundation using a new shear deformation plate theory. 
Kiani and Eslami (2012) studied the thermal buckling and post-buckling response of imperfect 
temperature-dependent sandwich FG plates resting on elastic foundation. Sobhy (2013) 
investigated the buckling and free vibration of exponentially graded sandwich plates resting on 
elastic foundations under various boundary conditions. Zidi et al. (2014) studied the hygro-
thermo-mechanical bending response of FG plate resting on elastic foundations. Ait Amar Meziane 
et al. (2014) studied the bending and vibration behaviour of exponentially graded sandwich plates 
under various boundary conditions and resting on elastic foundations. Zenkour et al. (2014) 
studied the influence of temperature and moisture on the bending behavior of composite FG plates 
resting on elastic foundations. Yaghoobi et al. (2014) presented an analytical study on post-
buckling and nonlinear free vibration analysis of FG beams resting on nonlinear elastic foundation 
under thermo-mechanical loadings using VIM. Tebboune et al. (2015) discussed the thermal 
buckling behavior of FG plates resting on elastic foundation based on an efficient and simple 
trigonometric shear deformation theory. Bounouara et al. (2016) investigated the free vibration of 
FG nanoscale plates resting on elastic foundation using a nonlocal zeroth-order shear deformation 
theory. Salima et al. (2016) studied the free vibration of FG rectangular plates on Winkler–
Pasternak elastic foundations using an efficient and simple shear deformation theory. 

In conventional laminated composite structures, homogeneous elastic laminates are bonded 
together to obtain enhanced mechanical and thermal properties (Draiche et al. 2014, Chattibi et al. 
2015). However, the abrupt change in material properties across the interface between different 
materials can result in large inter-laminar stresses leading to delamination, cracking, and other 
damage mechanisms which result from the abrupt change of the mechanical properties at the 
interface between the layers. To remedy such defects, functionally graded materials (FGMs) within 
which material properties vary continuously, have been proposed (Koizumi 1997). Solar plate is 
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employed to focus solar radiation onto an absorber located at the focal point in parabolic dish 
concentrator to give the solar energy. Concentrating solar collector consists of reflector over solar 
plate, the absorber and the housing. Parabolic disk is fabricated from solar plates. The performance 
of a solar plate in terms efficiency, service life and optical alignment depends on the material and 
operating conditions. Normally, a solar plate can be made from polished pure material or coated 
plate with some special cover (Howell and Bereny 1979). However, for some specific application, 
such as in solar satellite, solar power tower and solar power heat engine can demand low weight 
and high temperature environment. High thermal resistance provides suitable stiffness to avoid 
unsought deformation to better optical alignment. Such plates need to be manufactured by 
employing special material such as a functionally graded material (FGM) with steel and ceramic 
combined together (Shahrjerdi et al. 2010). The mechanical behavior of structural components 
with FGMs is of highly importance in both research and industrial fields (Talha and Singh 2010, 
Belabed et al. 2014, Benachour et al. 2011, Pradhan and Chakraverty 2015, Ait Yahia et al. 2015, 
Arefi 2015, Bennai et al. 2015, Sallai et al. 2015, Tagrara et al. 2015, Ebrahimi and Dashti 2015, 
Belkorissat et al. 2015, Mahi et al. 2015, Ait Atmane et al. 2015, Kar and Panda 2015, Larbi Chaht 
et al. 2015, Zenkour and Abouelregal 2015, Darılmaz 2015, Bennoun et al. 2016, Ait Atmane et al. 
2016). Bourada et al. (2012) presented a new four-variable refined plate theory for thermal 
buckling analysis of FG sandwich plates. Hamidi et al. (2015) proposed a sinusoidal plate theory 
with 5-unknowns and stretching effect for thermo-mechanical bending of FG sandwich plates. 
Bouchafa et al. (2015) studied the thermal stresses and deflections of FG sandwich plates using a 
new refined hyperbolic shear deformation theory. Akbaş (2015) presented an elastic solution of a 
curved beam made of functionally graded materials with different cross sections. Nguyen et al. 
(2015) examined the bending, vibration and buckling responses of FG sandwich plates using 
refined higher-order shear deformation theory. 

The solar functionally graded plates (SFGPs) are commonly employed in thermal environments; 
they can buckle under thermal and mechanical loads. Thus, the buckling investigation of such 
plates is essential to ensure an efficient and reliable design. By using an analytical approach, they 
obtained closed-form expressions for buckling loads. Shahrjerdi et al. (2010) used second order 
shear deformation theory to analyze stress distribution for solar functionally graded plates. Using 
also the second-order shear deformation theory, Shahrjerdi et al. (2011a, b) analyzed the vibration 
of temperature-dependent solar FG plates. Lanhe (2004) analyzed the critical temperature and 
critical temperature difference of simply supported moderately thick rectangular FG plates on the 
basis of the first-order shear deformation theory in the Von Karman sense. For moderately thick 
FG plates, it has been pointed out that transverse shear deformation has considerable effects on the 
critical buckling temperature difference. Thermal buckling of simply supported FG skew plates 
has been investigated using the first-order shear deformation theory by Ganapathi and Prakash 
(2006). The effects of aspect and thickness ratios, gradient index and skew angle on the critical 
temperature difference were presented. Na and Kim (2006) investigated the thermal postbuckling 
of FGM plates by using the three-dimensional finite-element method. Zhao et al. (2009) and Zhao 
and Liew (2009) analyzed the buckling and postbuckling behavior of FGM plates by invoking the 
element-free kp-Ritz method. Matsunaga (2009) presented a higher order deformation theory for 
thermal buckling of FGM plates. By using the method of power series expansion of displacement 
components, a set of fundamental equations of rectangular FGM plates was derived. The 
trigonometric shear deformation plate theory was employed by Zenkour and Sobhy (2011) to study 
the thermal buckling of FGM plates on two-parameter elastic foundation. Bouazza et al. (2010) 
investigated the thermoelastic buckling of FGM plate using first shear plate theory. Effects of 
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changing plate characteristics, material composition and volume fraction of constituent materials 
on the critical temperature difference of FGM plate with simply supported edges are also 
investigated. Yaghoobi and Torabi (2013) presented an exact solution for thermal buckling of FG 
plates resting on elastic foundations with various boundary conditions. Akil (2014) studied the 
post-buckling response of sandwich beams with FG faces using a consistent higher order theory. 
Bakora and Tounsi (2015) examined the thermo-mechanical post-buckling behavior of FG plates 
resting on Pasternak-type elastic foundation. Hadji et al. (2015) presented an n-order four variable 
refined theory for thermal buckling analysis of FG plates. 

Since, the material properties of functionally graded plate vary through the thickness direction, 
the neutral surface of such plate may not coincide with its geometric middle surface. Therefore, 
stretching and bending deformations of FGM plate are coupled. Some researchers (Morimoto et al. 
2006, Abrate 2008, Zhang and Zhou 2008, Saidi and Jomehzadeh 2009, Ould Larbi et al. 2013, 
Bousahla et al. 2014, Fekrar et al. 2014, Bourada et al. 2015) have shown that there is no 
stretching-bending coupling in constitutive equations if the reference surface is properly selected. 

This paper aims to develop an efficient hyperbolic shear deformation theory based on exact 
position of neutral surface for thermal buckling analysis of FGM plates resting on two-parameter 
elastic foundation. By introducing the physical neutral surface the stretching-bending coupling 
terms in the governing differential equations were eliminated. This theory is based on assumption 
that the in-plane and transverse displacements consist of bending and shear components in which 
the bending components do not contribute toward shear forces and, likewise, the shear components 
do not contribute toward bending moments. Just four unknown displacement functions are used in 
the present theory against five unknown displacement functions used in the corresponding ones. 
The material properties are graded in the thickness direction according to the power-law 
distribution in terms of volume fractions of the constituents of the material. The effective material 
properties are estimated using a simple power law based on rule of mixture. The accuracy of the 
presented results is verified through comparisons with available results in the published literature. 
Furthermore, parametric studies are performed to examine the influences of the power of solar 
FGM, aspect ratio, foundation stiffness coefficients and thermal loading types on the critical 
buckling load of solar FGM rectangular plates. 
 
 
2. Problem formulation 
 

2.1 Physical neutral surface 
 
Functionally graded materials are a special kind of composites in which their material 

properties vary smoothly and continuously due to gradually varying the volume fraction of the 
constituent materials along certain dimension (usually in the thickness direction). In this study, the 
FGM plate is made from a mixture of ceramic and metal and the properties are assumed to vary 
through the thickness of the plate. Due to asymmetry of material properties of FGM plates with 
respect to middle plane, the stretching and bending equations are coupled. But, if the origin of the 
coordinate system is suitably selected in the thickness direction of the FGM plate so as to be the 
neutral surface, the properties of the FGM plate being symmetric with respect to it. To specify the 
position of neutral surface of FGM plates, two different planes are considered for the measurement 
of z, namely, zms and zns measured from the middle surface and the neutral surface of the plate, 
respectively, as depicted in Fig. 1. 
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Fig. 1 The position of middle surface and neutral surface for a functionally graded plate 
 
 
The volume-fraction of ceramic VC is expressed based on zms and zns coordinates as 
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where k is the power law index which takes the value greater or equal to zero and C is the distance 
of neutral surface from the mid-surface. Material non-homogeneous properties of a functionally 
graded material plate may be obtained by means of the Voigt rule of mixture (Suresh and 
Mortensen 1998). Thus, using Eq. (1), the material non-homogeneous properties of FG plate P, as 
a function of thickness coordinate, become 
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where PM and PC are the corresponding properties of the metal and ceramic, respectively. In the 
present work, we assume that the elasticity modules E, and the thermal expansion coefficient α, are 
described by Eq. (2), while Poisson’s ratio ν, is considered to be constant across the thickness. The 
position of the neutral surface of the FG plate is determined to satisfy the first moment with 
respect to Young’s modulus being zero as follows (Zhang and Zhou 2008, Bourada et al. 2015, 
Meradjah et al. 2015, Al-Basyouni et al. 2015) 
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It is clear that the parameter C is zero for homogeneous isotropic plates, as expected. 
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Fig. 2 Coordinate system and geometry for rectangular FG plates on elastic foundation 
 
 
2.2 Theoretical model 
 
Consider a rectangular FGM plate with the length a, width b and uniform thickness h, resting 

on two-parameter elastic foundation is considered as depicted in Fig. 2. Unlike the other shear 
deformation theory, just four unknowns functions are needed in the proposed efficient hyperbolic 
shear deformation theory. 

 
2.2.1 Basic assumptions 
Assumptions of the present theory are as follows: 
 

(i) The origin of the Cartesian coordinate system is taken at the neutral surface of the FGM 
plate. 

(ii) The transverse displacement w includes two components of bending wb, and shear ws. 
These components are functions of coordinates x, y only 

 

),(),(),,( yxwyxwzyxw sbns   (5)
 
(iii) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 
(iv) The displacements u in x-direction and ν in y-direction consist of extension, bending, and 

shear components 

sb uuuu  0 ,   sb vvvv  0  (6)
 

The bending components ub and vb are assumed to be similar to the displacements given by the 
classical plate theory. Therefore, the expression for ub and vb can be given as 
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The shear components us and vs give rise, in conjunction with ws, to the parabolic variations of 
shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such a 
way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 
expression for us and vs can be given as 
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It is noted that in this work the shape function f(zns) developed by Hebali et al. (2014) is 

modified based on the concept of the neutral surface position as follows 
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2.2.2 Kinematics 
Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (5)-(9) as 
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The non-linear von Karman strain–displacement equations are as follows 
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2.2.3 Constitutive relations 
The plate is subjected to a thermal load T(x, y, zns). The linear constitutive relations are 
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where (σx, σy, τxy, τyz, τyx) and (εx, εy, γxy, γyz, γyx) are the stress and strain components, respectively. 
Using the material properties defined in Eq. (2), stiffness coefficients, Qij, can be expressed as 
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2.2.4 Stability equations 
The equilibrium equations of the FG plate resting on the Pasternak elastic foundation under 

thermal loadings may be derived on the basis of the stationary potential energy. The total potential 
energy of the plate, V, may be written in the form 

 

FUUV   (15)
 

Here, U is the total strain energy of the plate, and is calculated as (Zenkour and Sobhy 2010 
and 2011) 
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and UF is the strain energy due to the Pasternak elastic foundation, which is given by (Ait Atmane 
et al. 2010) 
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where fe is the density of reaction force of foundation. For the Pasternak foundation model 
(Zenkour 2009, Zenkour et al. 2014, Besseghier et al. 2015) 
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where KW is the Winkler foundation stiffness and Kg is a constant showing the effect of the shear 
interactions of the vertical elements. 

Using Eqs. (11), (12) and (13) and employing the virtual work principle to minimize the 
functional of total potential energy function result in the expressions for the equilibrium equations 
of plate resting on two parameters elastic foundation as 
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Using Eq. (13) in Eq. (21), the stress resultants of the FGM plate can be related to the total 
strains by 
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where Aij, Dij, etc., are the plate stiffness, defined by 
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The stress and moment resultants, ,T
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The stability equations for FGM plates may be obtained by mean of the adjacent-equilibrium 
criterion. Let us assume that the state of equilibrium of sandwich plate under thermal loads is 
defined in terms of the displacement components ,0

0u ,0
0v 0

bw  and .0
sw  The displacement 

components of a neighbouring state of the stable equilibrium differ by ,1
0u ,1

0v ,1
bw 1

sw  with respect 
to the equilibrium position. Thus, the total displacements of a neighbouring state are 
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Accordingly, the stress resultants are divided into two terms representing the stable equilibrium 
and the neighbouring state. The stress resultants with superscript 1 are linear functions of 
displacement with superscript 1. Considering all these mentioned above and using Eqs. (19) and 
(26), the stability equations becomes 
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The terms ,0

xN 0
yN  and 

0
xyN are the pre-buckling force resultants obtained as 
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2.3 Trigonometric solution to thermal buckling 
 
Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eq. (27) for a simply supported FGM plate. The 
following boundary conditions are imposed for the present refined shear deformation theory at the 
side edges 
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The following approximate solution is seen to satisfy both the differential equation and the 

boundary conditions 
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where ,1
mnU ,1

mnV ,1
bmnW  and 1

smnW  are arbitrary parameters to be determined and am /   and 
./ bn   Substituting Eqs. (22) and (31) into Eq. (27), one obtains 
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and [K] is the symmetric matrix given by 
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where 
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Eq. (37) represents a pair of two matrix equations 
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Solving Eq. (39a) for Δ1 and then substituting the result into Eq. (39b), the following equation 

is obtained 
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For nontrivial solution, the determinant of the coefficient matrix in Eq. (40) must be zero. This 

gives the following expression for the thermal buckling load 
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2.3.1 Buckling of FG plates under uniform temperature rise 
The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final 

value Tf in which the plate buckles. The temperature change is ΔT = Tf ‒ Ti. Using this distribution 
of temperature, the critical buckling temperature change ΔTcr becomes by using Eqs. (29) and (42) 
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2.3.2 Buckling of FG plates subjected to graded temperature change 

across the thickness 
We assume that the temperature of the top surface is TM and the temperature varies from TM, 

according to the power law variation through-the-thickness, to the bottom surface temperature TM 
in which the plate buckles. In this case, the temperature through-the-thickness proposed by 
(Zenkour and Sobhy 2010 and 2011) is modified by considering the concept of physical neutral 
surface 
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where the buckling temperature difference ΔT = TC ‒ TM and γ is the temperature exponent (0 < γ < 
∞). Note that the value of γ equal to unity represents a linear temperature change across the 
thickness. While the value of γ excluding unity represents a non-linear temperature change 
through-the-thickness. 

Similar to the previous loading case, the critical buckling temperature change ΔTcr becomes by 
using Eqs. (29) and (42) 
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Note that the value of γ equal to unity represents a linear temperature change across the 
thickness. While the value of γ excluding unity represents a non-linear temperature change through 
the thickness. 
 
 
3. Numerical results and discussion 
 

The general approach outlined in the previous sections for the thermal buckling analysis of the 
homogeneous and solar FG plates under uniform, linear and non-linear temperature rises through 
the thickness is illustrated in this section using the present efficient hyperbolic plate theory based 
on exact neutral surface position. The solar FG plate is taken to be made of Aluminum and 
Alumina with the following material properties: 

 

● Metal (Aluminium, Al): EM = 70 GPa; ν = 0.3; αM = 23. 10-6/°C; kM = 204 W/mL. 
● Ceramic (Alumina, Al2O3): EC = 380 GPa; v = 0.3; αC = 7.4 10-6/°C; kC = 10.4 W/mK. 

 

For the non-linear temperature rises through the thickness, the temperature rises 5°C in the 
metal-rich surface of the plate (i.e., Tm = 5°C). The shear correction factor of FPT is fixed to be 5/6. 
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The following dimensionless of Winkler’s and Pasternak’s elastic foundation parameters, as 
well as the critical buckling temperature difference are used in the present analysis 
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where )].1(12/[ 23  hED C  
 
3.1 Comparative studies 
 
In order to demonstrate the accuracy of the present closed-form exact solution, the correlation 

between the present theory and different higher- and first-order shear deformation theories and 
classical plate theory is established. The description of various displacement models is given in 
Table 1. 

Results were obtained for foundationless FG plates (k = 1) under uniform temperature rise 
through the thickness based on the present theory with only four unknown functions and compared 
with those other various theories (Samsam Shariat and Eslami 2007, Lanhe 2004, Zenkour and 
Sobhy 2011) with five unknown functions as shown in Table 2. It is observed that the obtained  

 
 

Table 1 Displacement models 

Model Theory Unknown functions

CPT Classical plate theory 3 

FPT First-order shear deformation theory (Zenkour and Sobhy 2011) 5 

TPT 
Trigonometric shear deformation plate theory 

(Zenkour and Sobhy 2011) 
5 

HPT 
Higher order shear deformation theory 

(Zenkour and Sobhy 2011, Reddy 2000) 
5 

Present Present hyperbolic plate theory 4 
 
 

Table 2 Critical buckling temperature change Tcr of foundationless FG plates under uniform temperature rise 
versus the side-to-thickness and aspect ratios based on the various theories 

a/b Theory a / h = 10 a / h = 20 a / h = 40 a / h = 60 a / h = 80 a / h = 100

1 

Present 0.758423 0.196267 0.049501 0.022037 0.0124029 0.0079400

TPT(a) 0.758451 0.196269 0.049502 0.022037 0.012403 0.007940 

HPT(a) 0.758396 0.196265 0.049502 0.022037 0.012403 0.007940 

CPT(a) 0.794377 0.198594 0.049649 0.022066 0.012412 0.007944 

2 

Present 1.77567 0.482196 0.123208 0.054983 0.0309729 0.0198359

TPT(a) 1.775899 0.482206 0.123209 0.054984 0.030973 0.019836 

HPT(a) 1.775555 0.482184 0.123208 0.054984 0.030973 0.019836 

HPT(b) 1.7756 0.48218 0.12321 0.05498 0.03097 0.01984 

FPT(c) 1.8072 0.48451 0.12336 0.05501 0.03098 0.01984 

CPT(a) 1.985943 0.496486 0.124121 0.055165 0.031030 0.019859 
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Table 2 Continued 

a/b Theory a / h = 10 a / h = 20 a / h = 40 a / h = 60 a / h = 80 a / h = 100

3 

Present 3.212203 0.937430 0.244617 0.109608 0.0618316 0.0396248

TPT(a) 3.213338 0.937475 0.244620 0.109609 0.061838 0.039625 

HPT(a) 3.211975 0.937389 0.244614 0.109608 0.061831 0.039625 

CPT(a) 3.971886 0.992972 0.248243 0.110330 0.062061 0.039719 

4 

Present 4.81864 1.53365 0.411643 0.185484 0.1048428 0.0672509

TPT(a) 4.822477 1.533805 0.411650 0.185485 0.104843 0.067251 

HPT(a) 4.818675 1.533556 0.411634 0.185482 0.104842 0.067251 

HPT(b) 4.8187 1.5336 0.41163 0.18548 0.10484 0.06725 

FPT(c) 5.0530 1.5571 0.41333 0.18583 0.10495 0.06730 

CPT(a) 6.752207 1.688052 0.422013 0.187561 0.105503 0.067522 
(a) Results taken from Zenkour and Sobhy (2011) 
(b) Results taken from Samsam Shariat and Eslami (2007) 
(c) Results taken from Lanhe (2004) 

 
 

results using the present theory are identical to those computed by the other theories (Samsam 
Shariat and Eslami 2007, Lanhe 2004, Zenkour and Sobhy 2011) which validate the high accuracy 
of the present formulations and procedure. 

Another comparative study for evaluation of critical buckling temperatures between the 
presented theory based on exact neutral surface position and analytical solution developed by 
Zenkour and Sobhy (2011) based on TPT, FPT and CPT, is performed in Tables 3 to 6. Indeed, 
Tables 3 to 5 exhibit the critical buckling temperature difference Tcr of FG square plate without 
elastic foundation or resting on one- or two-parameter elastic foundations for different values of 
the power law index k and the side-to-thickness ratio a / h using the present various plate theories. 

 
 

Table 3 Critical buckling temperature change Tcr of FG square plates under uniform temperature rise for 
different values of the power law index and side-to-thickness ratio 

 kw = 0, kg = 0 kw = 10, kg = 0 kw = 0, kg = 10 

k Theory a/h = 5 10 20 a/h = 5 10 20 a/h = 5 10 20 

0 

TPT(a) 5.58556 1.61882 0.42154 5.76109 1.66270 0.43252 9.22610 2.52896 0.64908

HPT(a) 5.58344 1.61868 0.42154 5.75899 1.66257 0.43251 9.22398 2.52882 0.64907

FPT(a) 5.58069 1.61862 0.42153 5.75622 1.66251 0.43251 9.22123 2.52876 0.64907

CPT(a) 6.83964 1.70991 0.42748 7.01519 1.75380 0.43845 10.48019 2.62005 0.65501

Present 5.58393 1.61875 0.42154 5.75947 1.66263 0.43251 9.22448 2.52888 0.64907

1 

TPT(a) 2.67241 0.75845 0.19627 2.83603 0.79935 0.20649 6.06558 1.60674 0.40834

HPT(a) 2.67153 0.75840 0.19627 2.83515 0.79930 0.20649 6.06470 1.60669 0.40835

FPT(a) 2.67039 0.75837 0.19626 2.83400 0.79930 0.20649 6.06356 1.60667 0.40834

CPT(a) 3.17751 0.79438 0.19859 3.34112 0.83528 0.20882 6.57068 1.64267 0.41067

Present 2.67173 0.758423 0.19626 2.83534 0.79932 0.20649 6.06491 1.60671 0.40834
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Table 3 Continued 

 kw = 0, kg = 0 kw = 10, kg = 0 kw = 0, kg = 10 

k Theory a/h = 5 10 20 a/h = 5 10 20 a/h = 5 10 20 

5 

TPT(a) 2.27131 0.67895 0.17851 2.49808 0.73564 0.19268 6.97440 1.85472 0.47245

HPT(a) 2.27501 0.67931 0.17854 2.50179 0.73600 0.19271 6.97810 1.85508 0.47248

FPT(a) 2.35948 0.68678 0.17905 2.58625 0.74348 0.19322 7.06257 1.86255 0.47229

CPT(a) 2.90629 0.72657 0.18164 3.13305 0.78326 0.19582 7.60938 1.90234 0.47559

Present 2.27935 0.679719 0.17856 2.50612 0.73641 0.19273 6.98244 1.85549 0.47250

10 

TPT(a) 2.27551 0.69254 0.18313 2.53146 0.75653 0.19913 7.58356 2.01955 0.51489

HPT(a) 2.27678 0.69269 0.18314 2.53273 0.75668 0.19914 7.58483 2.01970 0.51490

FPT(a) 2.36822 0.70108 0.18373 2.62417 0.76507 0.19972 7.67626 2.02809 0.51548

CPT(a) 2.98770 0.74693 0.18673 3.24365 0.81091 0.20273 8.29575 2.07394 0.51848

Present 2.27936 0.69295 0.18316 2.53530 0.75694 0.19915 7.58740 2.01996 0.51491
(a) Results taken from Zenkour and Sobhy (2011) 

 
 

Table 4 Critical buckling temperature change Tcr of FG square plates under linear temperature rise for 
different values of the power law index and side-to-thickness ratio 

 kw = 0, kg = 0 kw = 10, kg = 0 kw = 0, kg = 10 

K Theory a/h = 5 10 20 a/h = 5 10 20 a/h = 5 10 20 

0 

TPT(a) 11.16112 3.22764 0.83309 11.51220 3.31541 0.85503 18.44220 5.04791 1.28816

HPT(a) 11.15688 3.22736 0.83307 11.50796 3.31513 0.85501 18.43797 5.04764 1.28814

FPT(a) 11.15138 3.22725 0.833306 11.50246 3.31502 0.85501 18.43246 5.04752 1.28814

CPT(a) 13.66929 3.40982 0.84496 14.02036 3.49759 0.86690 20.95037 5.23009 1.30002

Present 11.15787 3.22750 0.83308 11.5089 3.31527 0.85502 18.43896 5.04777 1.28814

1 

TPT(a) 5.00264 1.41307 0.35872 5.30948 1.48978 0.37789 11.36642 3.00402 0.75645

HPT(a) 5.00099 1.41297 0.35871 5.30784 1.48968 0.37789 11.36477 3.00391 0.75645

FPT(a) 4.99885 1.41292 0.35871 5.30570 1.48964 0.37789 11.36263 3.00387 0.75645

CPT(a) 5.94993 1.48045 0.36308 6.25678 1.55716 0.38226 12.31372 3.07140 0.76082

Present 5.00137 1.41302 0.358715 5.30822 1.48973 0.37789 11.36515 3.00396 0.756451

5 

TPT(a) 3.90098 1.6006 0.28966 4.29132 1.25765 0.32306 11.99637 3.18391 0.80462

HPT(a) 3.90735 1.16069 0.29871 4.29770 1.25827 0.32310 12.00275 3.18453 0.80467

FPT(a) 4.05274 1.17354 0.29959 4.44308 1.27113 0.32399 12.14816 3.19739 0.80555

CPT(a) 4.99396 1.24204 0.30405 5.38430 1.33962 0.32845 13.08936 3.26588 0.81002

Present 3.91482 1.16138 0.29875 4.30516 1.25897 0.32315 12.01022 3.18523 0.80471

10 

TPT(a) 4.02350 1.21837 0.31566 4.47705 1.33176 0.34401 13.42969 3.56992 0.90355

HPT(a) 4.02576 1.21864 0.31568 4.47930 1.33203 0.34403 13.43194 3.57019 0.90357

FPT(a) 4.18778 1.23350 0.31672 4.64132 1.34688 0.34506 13.59396 3.58504 0.90460

CPT(a) 5.28555 1.31474 0.32204 5.73910 1.42813 0.35039 14.691174 3.66629 0.90993

Present 4.03031 1.21910 0.31571 4.48386 1.33249 0.34406 13.43650 3.57065 0.90360
(a) Results taken from Zenkour and Sobhy (2011) 
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Table 5 Critical buckling temperature change Tcr of FG square plates under non-linear temperature rise (γ =3) 
for different values of the power law index and side-to-thickness ratio 

 kw = 0, kg = 0 kw = 10, kg = 0 kw = 0, kg = 10 

k Theory a/h = 5 10 20 a/h = 5 10 20 a/h = 5 10 20 

0 

TPT(a) 22.32223 6.45528 1.66618 23.02439 6.63082 1.71006 36.88440 10.09582 2.57631

HPT(a) 22.31376 6.45473 1.66614 23.01592 6.63027 1.71003 36.87594 10.09527 2.57628

FPT(a) 22.30276 6.45450 1.66614 23.00491 6.63003 1.71002 36.86493 10.09527 2.57627

CPT(a) 27.33857 6.81964 1.68991 28.04073 6.99518 1.73380 41.90074 10.46019 2.60005

Present 22.31575 6.45501 1.66616 23.01791 6.63055 1.71004 36.87792 10.09555 2.57629

1 

TPT(a) 10.00817 2.82696 0.71764 10.62205 2.98043 0.75601 22.73943 6.00978 1.51334

HPT(a) 10.00488 2.82676 0.71763 10.61875 2.98022 0.75600 22.73614 6.00957 1.51333

FPT(a) 10.00060 2.82667 0.71763 10.61447 2.98014 0.75600 22.73185 6.00948 1.51333

CPT(a) 11.90332 2.96176 0.72637 12.51719 3.11523 0.76474 24.63458 6.14457 1.52207

Present 10.00565 2.82686 0.71763 10.61952 2.98033 0.75600 22.73691 6.00967 1.51334

5 

TPT(a) 6.77655 2.01520 0.51882 7.45464 2.18472 0.56120 20.83942 5.53091 1.39775

HPT(a) 6.78763 2.01628 0.51889 7.46571 2.18580 0.56127 20.85050 5.53199 1.39782

FPT(a) 7.04019 2.03861 0.52043 7.71827 2.20813 0.56281 21.10305 5.55433 1.39936

CPT(a) 8.67523 2.15759 0.52819 9.35331 2.32711 0.57057 22.73809 5.67331 1.40711

Present 6.80061 2.01749 0.51897 7.47869 2.18701 0.56135 20.86347 5.53321 1.39790

10 

TPT(a) 6.92562 2.09717 0.54335 7.70631 2.29235 0.59214 23.11642 6.14487 1.55531

HPT(a) 6.92950 2.09763 0.54338 7.71019 2.29281 0.59218 23.12029 6.14533 1.55531

FPT(a) 7.20839 2.12321 0.54516 7.98908 2.31838 0.59396 23.39918 6.17091 1.55709

CPT(a) 9.09798 2.26306 0.55433 9.87867 2.45823 0.60312 25.28877 6.31075 1.56625

Present 6.93735 2.09843 0.54344 7.71804 2.29360 0.59223 23.12814 6.14613 1.55536
(a) Results taken from Zenkour and Sobhy (2011) 

 
 

From the results presented in Tables 3 to 5, it is observed that results have a good agreement. Also, 
note that the results of critical buckling using the present theory are very close to those of HPT 
(Zenkour and Sobhy 2011). It is clear that the results have significant differences between the 
shear deformation plate theories and the classical plate one, indicating the shear deformation effect. 

Finally, the present comparative studies show that the results obtained from the proposed 
method agree well with existing analytical results in the literature which validate the reliability and 
accuracy of the present analytical approach. It should be noted that the proposed efficient 
hyperbolic plate theory based on exact neutral surface position involves four unknowns as against 
five in case of other shear deformations theories TPT, HPT and FPT. 

 
3.2 Parametric studies 
 
In this section, to examine the effects of different parameters of plate and elastic foundation on 

the critical buckling temperature a solar FG plate, the comprehensive results are plotted in Figs. 3 
to 9. 
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Fig. 3 Variation of the neutral surface position versus power law index 
 
 
3.2.1 Effect of the power law index on location of the neutral surface 
In order to better understand the location of the neutral surface, the variation of non-

dimensional parameter C/h is depicted in Fig. 3 versus the power law index k of FGM. It can be 
observed when the power law index of FGM becomes zero (fully ceramic) or infinity (fully 
metallic); the neutral surface coincides on the middle surface, as expected. 

 
 

 

Fig. 4 Effect of Winkler modulus parameter on the critical buckling temperature of square FG 
plate for various side-to-thickness ratios a/h with kg = 10 and k = 2. 
(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature γ = 3 
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Fig. 4 Continued 
 
 
3.2.2 Effect of Winkler modulus parameter 
To study the influence of the side-to-thickness ratio a/h and Winkler modulus kw on the critical 

buckling temperature, Fig. 4 is presented. In this present computation, a constant value of the 
power law index, k = 2, is employed and the Pasternak shear modulus parameter is assumed as kg = 
10. From the figure it is observed that, regardless of the loading type, as the Winkler modulus 
parameter increases, the critical buckling temperature increases for all the different side-to-
thickness ratio of FG square plate considered, especially for thicker plate. This implies that for 
embedded solar FG plate, there would be much shift of critical buckling temperature values from a 
soft elastic medium to a hard elastic medium. Moreover, it is observed that the change in critical 
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buckling temperature is more affected by the side-to-thickness ratios a/h. For a thin solar FG plate 
the effect of Winkler modulus on critical buckling temperature is less compared to thick solar FG 
plate. 

 
3.2.3 Effect of Pasternak shear modulus parameter 

 
Fig. 5 shows the effect of the side-to-thickness ratio a/h on the thermal buckling response of 

solar FG square plate with elastic medium modelled as Pasternak-type foundation. The Winkler 
 
 

 
 

 

Fig. 5 Effect of Pasternak shear modulus parameter on the critical buckling temperature of 
square FG plate for various side-to-thickness ratios a/h with kg = 10 and k = 2. 
(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature γ = 3 
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Fig. 5 Continued 
 
 

modulus parameter is assumed as kw = 10 and a constant value of the power law index k = 2, is 
employed. As the shear modulus parameter increases, the critical buckling temperature increases, 
especially for thicker plate and this regardless of the loading type. Like the variation of critical 
buckling temperature with stiffness parameter, considering Winkler-type foundation, the variation 
of critical buckling temperature considering Pasternak-type foundation is also linear in nature. In 
addition, it is observed, that change in critical buckling temperature is more affected by low side-
to-thickness ratio values as seen in the Fig. 5. 

 
 

 

Fig. 6 Effect of power law index on the critical buckling temperature of square FG plate for 
various side-to-thickness ratios a/h with kw = kg = 10. 
(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature γ = 3 
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Fig. 6 Continued 
 
 
 
3.2.4 Effect of the power law index on critical buckling temperature 
To study the influence of the power law index k on the critical buckling temperature, Figs. 6 

and 7 are presented for different side-to-thickness ratios a/h and aspect ratios a/b. It is assumed 
that the solar FG plate on elastic foundation with kw = kg = 10. It can be seen that in general the 
critical buckling temperature decreases as the power law index of solar FGM increases. This is due 
to the fact that increasing the power law index of solar FGM increases the volume fraction of 
metal. Furthermore, it can be found that the critical buckling temperature decreases with increasing 
the side-to-thickness ratios a/h. However, increasing the aspect ratio a/b, leads to an increase of the 
critical buckling temperature. It can be concluded that the performance of a solar FG plate in terms 
efficiency and service life depends on the material and operating conditions. 
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Fig. 7 Effect of power law index on the critical buckling temperature of FG plate (a/h = 10) 
for various aspect ratios a/h with kw = kg = 10. 
(a) Uniform temperature; (b) Linear temperature; (c) Non-linear temperature γ = 3 
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Fig. 8 Critical buckling temperature difference of FG square plate due to uniform, linear and non-linear 

temperature rise across the thickness versus the side-to-thickness ratio a/h with kw = kg = 10 and k = 5
 
 

 
Fig. 9 Critical buckling temperature difference of FG plate (a/h = 10) due to uniform, linear and non-linear 

temperature rise across the thickness versus the aspect ratio a/b with kw = kg = 10 and k = 5 
 
 
3.2.5 Effect of thermal loads types on critical buckling temperature 
To examine the influence of thermal loads types on the critical buckling temperature, the 

variation of Tcr versus the side-to-thickness ratio a/h and aspect ratio a/b under various types of 
temperature loads is plotted in Figs. 8 and 9, respectively. It can be seen from Figs. 8 and 9 that Tcr 
of the solar plate under uniform temperature rise is smaller than that of the plate under linear 
temperature rise and the latter is smaller than that of the plate under non-linear temperature rise. In 
addition, it can be observed that Tcr is very sensitive to the variation of the temperature exponent γ. 
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4. Conclusions 
 

In this research work, thermal buckling analysis of thick solar functionally graded rectangular 
plates resting on two-parameter foundation in thermal environment has been presented. The 
mechanical properties of the plate have been assumed to vary through the thickness of the plate as 
a power function. The neutral surface position for such plates has been determined. An efficient 
hyperbolic plate theory based on exact neutral surface position has been used to find the basic 
equations of solar FG plates on elastic foundation. The accuracy of the present theory is 
ascertained by comparing it with other higher-order shear deformation theories where an excellent 
agreement was observed in all cases. Furthermore, the influences of plate parameters such as 
power law index, aspect ratio, foundation stiffness coefficients and thermal loading types on the 
critical buckling temperature of solar FG rectangular plate have been comprehensively 
investigated. It can be concluded that the performance of a solar FG plate in terms efficiency and 
service life depends on the material and operating conditions. 
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