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Abstract.  In this paper, process of dynamic powder compaction is investigated experimentally using impact of 

drop hammer and die tube. A series of test is performed using aluminum powder with different grain size. The energy 

of compaction of powder is determined by measuring height of hammer and the results presented in term of compact 

density and rupture stress. This paper also presents a mathematical modeling using experimental data and neural 

network. The purpose of this modeling is to display how the variations of the significant parameters changes with the 

compact density and rupture stress. The closed-form obtained model shows very good agreement with experimental 

results and it provides a way of studying and understanding the mechanics of dynamic powder compaction process. 

In the considered energy level (from 733 to 3580 J), the relative density is varied from 63.89% to 87.41%, 63.93% to 

91.52%, 64.15% to 95.11% for powder A, B and C respectively. Also, the maximum rupture stress are obtained for 

different types of powder and the results shown that the rupture stress increases with increasing energy level and grain 

size. 
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1. Introduction 
 

The powder compaction subjected to both static and dynamic loading has been 

comprehensively investigated by manufactures (Majzoobi et al. 2015a, b, Sukegawa et al. 2000, 

Vivek et al. 2014, Vogler et al. 2007). In these studies, the effects of grain size, loading conditions, 

temperature and pressure history on mechanical properties of metal powders were studied. 

Although, less experimental work has been performed to realize the low velocity compaction of 

aluminum powder. So, a good comprehension of the effects of loading conditions on the 

compaction process is missing. In addition to manufacturing matters, the mechanical behavior of 

aluminum powder subjected to impact loading is important to realize the geological materials 

behavior for planetary science applications, penetration and seismic coupling (Housen and 

Holsapple 2003). 
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Low velocity compaction is a new manufacturing technique with low cost and more safety 

(Majzoobi et al. 2015a, b). This method includes shock waves propagation through particles of 

material to persuade quick densification. In manufacturing process, the shock wave is produced by 

giving the hammer or projectile a specified impact velocity by drop hammer system and hydraulic 

press subjected to dynamic and static loading respectively (Babaei et al. 2015a, c). The primary 

impact velocity along with the hammer mass results in an energy of compaction that adjusts the 

dynamic production process. In recent years, high and low velocity impact has been studied both 

experimentally and numerically, however less works have been perform for low velocity 

compaction (Khan et al. 2013, Yan et al. 2013, Yin et al. 2013). 

Modelling of processes and system identification using input-output data have always attracted 

many research efforts (Babaei et al. 2015b, d). In fact, system identification techniques are applied 

in many fields in order to model and predict the behaviours of unknown and/or very complex 

systems based on given input-output data (Natke 2014). Theoretically, in order to model a system, 

it is required to understand the explicit mathematical input-output relationship precisely. Such 

explicit mathematical modelling is, however, very difficult and is not readily tractable in poorly 

understood systems. Alternatively, soft-computing methods (Jamali et al. 2014, Porkhial et al. 

2015), which concern computation in imprecise environment, have gained significant attention. 

The main components of soft computing, namely, fuzzy-logic, neural network, and genetic 

algorithm have shown great ability in solving complex non-linear system identification and control 

problems. Several research efforts have been expended to use evolutionary methods as effective 

tools for system identification (Iba et al. 1993, Kristinsson and Dumont 1992, Porter and Zadeh 

1995). Among these methodologies, the Group Method of Data Handling (GMDH) algorithm is 

self-organizing approach by which gradually more complicated models are generated based on the 

evaluation of their performances on a set of multi-input-single-output data pairs. The GMDH was 

firstly developed by (Ivakhnenko 1971) as a multivariate analysis method for complex systems 

modelling and identification. In this way, GMDH was used to circumvent the difficulty of having a 

priori knowledge of a mathematical model of the process being considered. The main idea of 

GMDH is to build an analytical function in a feed forward network based on a quadratic node 

transfer function (Farlow 1984) whose coefficients are obtained using a regression technique. 

GMDH, which is an inductive learning method, is similar to neural approach but is bounded in 

nature. In neural networks, the output of each unit passes through a threshold logic unit which can 

be linear or nonlinear transfer function such as sigmoid functions. Each unit depends on the state 

of many other units which creates different level of interactions in such unbounded network 

structure. The error of output is back-propagated in order to re-tune the connection weights 

adaptively. However, in inductive GMDH algorithms, a bounded network structure with all 

combinations of input pairs is trained by scanning the measure of threshold objective function 

through the optimal connection weights for all inputs-output data pairs. In recent years, the use of 

such self-organizing network leads to successful application of the GMDH type algorithm in a 

broad range area in engineering, science, and economics (Darvizeh et al. 2003, Madandoust et al. 

2010, Nariman-Zadeh et al. 2003, Nariman-Zadeh and Jamali 2007). 

The main purpose of this paper is to characterize the relative density and rupture stress of the 

aluminium compacts and to realize how they correspond to powder morphology. The experimental 

procedure and set-up will be explain first, next, the experimental results will be described in detail. 

In third section, the results are shown that GMDH-type neural network can effectively model and 

predict the relative density and rupture stress of compacts, each as a function of important input 

parameters in aluminum powder compaction process. Moreover, it is shown that such GMDH-type 
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Fig. 1 Schematic and photograph of experimental set-up 

 

 

neural network modelling leads to a better and simpler polynomial representation of the 

compaction process when a set of dimensionless parameters is used as input variables rather than 

the physical input parameters. Consequently, GMDH-type neural networks for modelling the data 

obtained from low velocity compaction process can be effectively constructed and designed. 
 
 

2. Experimental study 
 

The drop hammer testing system is used to study the mechanical behavior of aluminum powder 

compaction subjected to impact loading at low strain rate. Fig. 1 demonstrates photographs of the 

drop hammer rig. 

The device is 4 m long and is guided by four steel tracks with winch system, an electrical 

magnetic release and a hammer. Also, this device has a box to raise energy level by appending 

more masses. After dropping hammer from maximum height, the device can attain drop velocity 

of 8ms-1. The different components of the system and its performance has been studied extensively 

in previous researches (Babaei et al. 2015a, c). 

The compaction mechanism involves the transmission of a pressure pulse from impact loads 

causing densification of the powder mass. When the hammer was dropped, the hammer potential 

energy is converted into the piston kinetic energy quickly. By impacting the piston on the surface 

of powder, the piston kinetic energy is transferred to pressure energy in the powder and the piston 

is decelerated. The pressure pulse will move to the inside surface of the cylinder wall where most 

of the energy of the pulse will be reflected back into the cylinder wall as a tensile pulse. The 

reflected tensile pulse will continue to be reflected from the cylinder surfaces, alternately in 

compression and in tension, until it is attenuated to zero. Thus, the shock pulse from the impact 

load will not be transmitted to the powder mass but will, instead, cause the rapid acceleration of 

the cylinder wall towards its axis. Those powder particles in contact with the cylinder wall will be 

accelerated inwards, causing impacts with adjacent particles. This will give rise to inter particle 

shearing, resulting in particles being broken up and oxide layers being ruptured. The cleaned 

particle surfaces will, thus, be capable of welding together, resulting in a dense, coherent mass of 

compact. Compaction will be completed when the velocity of the powder is reduced to zero. The 
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Fig. 2 SEM micrograph of aluminum powder before compaction process 
 

 

  

Fig. 3 SEM micrograph of aluminum powder after compaction process 

 

 

density achieved during this sequence of the events will depend on the initially potential energy, a 

fully dense compact resulting from the correct amount of energy. Too low a compaction energy 

results in compacts exhibiting central porosity, while an excess of energy gives rise to melting of 

the compact center. 

To perform the test, the aluminum powder with a grain size less than 250μm that has a purity of 

99%, is used. Figs. 2 and 3 show the aluminum powder before and after compaction process which 

is provided by Scanning Electron Microscopy (SEM). In these figures, the decrease in the empty 

space among particles which is along with density increase, is totally clear. 

To investigate the effect of grain size on the mechanical properties of compacts, particles 

divided into three types with grain size of 100 μm to 150 μm (Powder A), 150 μm to 200 μm 

(Powder B) and 200 μm to 250 μm (Powder C). In this procedure, 125 gr of chosen powder is put 

into the cylinder to be under impact loads. Different energy levels have been created for tested 

samples by raising the height of the hammer and increasing its mass. The hydraulic jack has been 

used in order to remove the compacts after compaction. 

The obtained experimental results describe amount of compact density and rupture stress 

subjected to low velocity impact loading. The effects of variation of grain size and loading 

conditions are considered in these investigations. 

Tensile testing is so hard to carry out directly on brittle materials. In these cases, the material 
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Fig. 4 Photographs of the three point bending tests 
 

 

Table 1 Summary of experimental results for aluminum powder compacts subjected to impact loading. (ρAl = 

2700 kg/m3 and σAl = 120 MPa for all cases) 

Compact label Energy (J) 
Compact 

height (mm) 

Compact density 

(kg/m3) 

Relative 

density (%) 

Rupture force 

P (N) 

Rupture stress 

σrup (Mpa) 

A-1 733 102.5 1725 63.89 473 1.91 

A-2 1100 95.3 1855 68/70 862 3.48 

A-3 1467 89.0 1987 73.59 1640 6.63 

A-4 1834 86.3 2050 75.95 1820 7.35 

A-5 2200 81.9 2160 80 2230 9.01 

A-6 2568 80.9 2207 81.74 2540 10.26 

A-7 2920 78.4 2257 83.59 2960 11.96 

A-8 3580 74.9 2360 87.41 3470 14.02 

B-1 733 102.5 1726 63.93 505 2.04 

B-2 1100 94.5 1871 69.30 955 3.86 

B-3 1467 88.2 2006 74.30 1680 6.79 

B-4 1834 84.1 2102 77.85 1880 7.60 

B-5 2200 81.0 2184 80.89 2375 9.60 

B-6 2568 78.5 2252 83.41 2620 10.59 

B-7 2920 75.8 2333 86.41 3010 12.16 

B-8 3580 71.6 2471 91.52 3540 14.30 

 

 

tensile strength can be calculated by carrying out a bending test in which compressive stress 

develops on one side and corresponding tensile stress develops on the opposite side. If the material 

is considerably stronger in tension than compression, fracture begins on the compressive side of 

the part and, therefore, provides the essential data to obtain the tensile strength of material. 

In the three point bending test (TPB), the upper bar produces compression stress concentration 

at the point of contact. As shown in Fig. 4, the specimen (D = 30.5 mm) is located above two 

simply support beams. The load is imported on the upper surface of specimen through the above 

bar during the bending test. It is necessary to note that the distance between two beams is L = 45 

mm. The results of the experiments on aluminum powders are shown in Table 1. 
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Table 1 Summary of experimental results for aluminum powder compacts subjected to impact loading. (ρAl = 

2700 kg/m3 and σAl = 120 MPa for all cases) 

Compact label Energy (J) 
Compact 

height (mm) 

Compact density 

(kg/m3) 

Relative 

density (%) 

Rupture force 

P (N) 

Rupture stress 

σrup (Mpa) 

C-1 733 102.1 1732 64.15 520 2.10 

C-2 1100 94.4 1873 69.37 732 2.96 

C-3 1467 84.7 2089 77.37 1670 6.75 

C-4 1834 80.8 2189 81.07 1940 7.84 

C-5 2200 78.8 2243 83.07 2490 10.06 

C-6 2568 76.7 2307 85.44 2700 10.91 

C-7 2920 72.7 2431 90.04 3210 12.97 

C-8 3580 68.9 2568 95.11 3750 15.15 

*
3

8
rup

PL

D





 
 

 

Fig. 5 Aluminum powder compacts 
 

 

Figs. 6 and 7 show the compact density and rupture stress versus applied energy respectively. 

The decrease in porosity space which occurs in the first phase of compaction, causes a decrease in 

the volume occupied by powder and leads to an increase in density. Also, the results show that the 

increase in the grain size causes an increase in the rupture stress. 
 

 

 

Fig. 6 Compact density versus compaction energy 
 

114



 

 

 

 

 

 

Dynamic compaction of cold die Aluminum powders 

 

Fig. 7 Rupture stress of compact versus compaction energy 

 

 

3. Modelling using GMDH-type neural networks 
 

The classical GMDH algorithm can be represented as a set of neurons in which different pairs 

of them in each layer are connected through a quadratic polynomial and thus produce new neurons 

in the next layer. Such representation can be used in modelling to map inputs to outputs. The 

formal definition of the identification problem is to find a function f̂ which can be approximately 

used instead of actual one, f, in order to predict output ŷ  for a given input vector X = (x1, x2, x3, ..., 

xn) as close as possible to its actual output y. Therefore, given M observation of multi-input-single-

output data pairs so that 
 

𝑦𝑖 = 𝑓 𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , … , 𝑥𝑖𝑛             𝑖 = 1,2,3, … , 𝑀  (1) 
 

It is now possible to train a GMDH-type neural network to predict the output values iŷ  for any 

given input vector Xi = (xi1, xi2, xi3, ..., xin), that is 
 

𝑦 𝑖 = 𝑓  𝑥𝑖1 , 𝑥𝑖2 , 𝑥𝑖3 , … , 𝑥𝑖𝑛             𝑖 = 1,2,3, … , 𝑀  (2) 
 

The problem is now to determine a GMDH-type neural network so that the square of difference 

between the actual output and the predicted one is minimized, that is 
 

 
2

1 2 3

1

, , ,ˆ , min?
M

i i i in i

i

f x x x x y


   
   (3) 

 

General connection between inputs and output variables can be expressed by a complicated 

polynomial of the form 

0

1 1 1 1 1 1

 
n n n n n n

i i ij i j ijk i j k

i i j i j k

y a a x a x x a x x x
     

       (4) 

 

General connection between inputs and output variables can be expressed by a complicated 

polynomial of the form 
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  2 2

0 1 2 3 4 5
ˆ ,i j i j i j i jy G x x a a x a x a x x a x a x        (5) 

 

To predict the output y. The coefficient ai in Eq. (5) are calculated using regression techniques, 

so that the difference between actual output, y and the calculated one, ,ŷ for each pair of xi, xj as 

input variables is minimized. Indeed, it can be seen that a tree of polynomials is constructed using 

the quadratic form given in Eq. (5) whose coefficients are obtained in a least-squares sense. In this 

way, the coefficients of each quadratic function Gi are obtained to optimally fit the output in the 

whole set of input-output data pair, that is 
 

  
12

2

2

1

M

i i

i

M

i

i

y G

r

y











 (6) 

 

In the basic form of the GMDH algorithm, all the possibilities of two independent variables out 

of total n input variables are taken in order to construct the regression polynomial in the form of 

Eq. (5) that best fits the dependent observations (yi, i = 1, 2, ..., M) in a least-squares sense. 

Consequently, 
2

)1(

2










 nnn
 neurons will be built up in the second layer of the feed forward 

network from the observations {(yi, xip, xiq); (i = 1, 2, ..., M)} for different p, q{i = 1, 2, ..., M}. In 

other words, it is now possible to construct M data triples {(yi, xip, xiq); (i = 1, 2, ..., M)} from 

observation using such p, q{i = 1, 2, ..., M} in the form .
222
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qp

qp
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yxx

yxx
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Using the quadratic sub-expression in the form of Eq. (5) for each row of M data triples, the 

following matrix equation can be readily obtained as 
 

A a Y  (7) 
 

Where a is the vector of unknown coefficients of the quadratic polynomial in Eq. (5). 
 

 0 1 2 3 4 5, , , , ,a a a a a aa  (8) 

and 

 1 2 3, , , ,?
T

My y y y Y  (9) 

 

Where Y is the vector of output’s value from observation. It can be readily seen that 
 

2 2

1 1 1 1 1 1

2 2

2 2 2 2 2 2

2 2

1

1

1

p q p q p q

p q p q p q

Mp Mq Mp Mq Mp Mq

x x x x x x

x x x x x x
A

x x x x x x

 
 
 
 
 
  

 (10) 
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The least-squares technique from multiple-regression analysis leads to the solution of the 

normal equations in the form of 

 
1

T TA A A


a Y  (11) 

 

Which determines the vector of the best coefficients of the quadratic Eq. (5) for the whole set 

of M data triples. However, such solution directly from normal equations is rather susceptible to 

round off error and, more importantly, to the singularity of these equations. 

SVD is the method for solving most linear least squares problems where some singularities 

may exist in the normal equations. The SVD of a matrix, A 6MA
M×6, is a factorization of the matrix 

into the product of three matrices, column-orthogonal matrix U 6MA
M×6, diagonal matrix W 6MA

M×6 with non-negative elements (singular values), and orthogonal matrix V 6MA
6×6 such that 

 

TA UWV  (12) 
 

The most popular technique for computing the SVD was originally proposed in (Babaei and 

Darvizeh 2011, Darvizeh et al. 2003, Gharababaei et al. 2010, Nariman-Zadeh et al. 2002b). The 

problem of optimal selection of vector of the coefficients in Eqs. (8) and (11) is firstly reduced to 

finding the modified inversion of diagonal matrix W, in which the reciprocals of zero or near zero 

singulars (according to a threshold) are set to zero. Then, such optimal a are calculated using the 

following relation. 

1 T

j

V diag U
w

  
   

 
   

a Y  (13) 

 

Such procedure of SVD approach of finding the optimal coefficients of quadratic polynomials, 

a, improves the performance of self-organizing GMDH type algorithms that is employed to build 

networks based on input-output observation data triples. 

 

 
4. Structure identification of GMDH-Type networks 
 

For simultaneous determination of structure and parametric identification of GMDH-type 

neural networks, the numbers of layers as well as the number of neurons in each layer are 

determined according to a threshold for error Eq. (6). In addition, unlike two previous approaches, 

some of input variables or generated neurons in different layers can be included in subsequent 

layers. The main steps of this approach are described as follows: 

Step 1: Set K = 1; Set Threshold. 

Step 2: Construct 
2

)1( 
 kk

k

NN
N neurons according to all possibilities of connection by each 

pair of neurons in the layer. This can be achieved by forming the quadratic expression 

G(xi, xj) which approximates the output y in Eq. (5) with least-squares errors of Eq. (6) 

either by solving the normal Eq. (11) or by SVD approach Eq. (13). 

Step 3: Select the single best neuron out of these kN   neurons, x′, according to its value of r2. 

If (Error < Threshold) Then END; Otherwise Set Vec_of_Var = {x1, x2, x3, ..., xn, x′}. 

Step 4: Set Nk = Nk + 1; goto 2. 
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5. GMDH-Type neural network modelling and prediction of behavior of Aluminum 
powder compaction subjected to impact loading 

 
The method described in previous sections is now used to design GMDH-type network systems 

for a set of dimensionless parameters constructed upon experimental input-output data in a series 

of compaction tests given in Table 1. Accordingly, the set of output-inputs variables used to train 

the GMDH-type neural network is a dimensionless set, Π = {π1, π2, π3, ..., πk}, rather than the set 

of real physical variables {y, X} = {y, x1, x2, x3, ..., xn}. Hence, given M observation of multi-input-

single-output data pairs which have been converted to the equivalent dimensionless parameters 

(Babaei and Darvizeh 2011, Darvizeh et al. 2003, Gharababaei et al. 2010). 

So that 

   1 2 3 4, , ,..., 1,2,3,...,i i i i kif i M       (14) 

 

It is now possible to train a GMDH-type neural network to predict the output values i1̂ for any 

given input vector (π2i, π3i, π4i, ..., πki), that is 
 

   1 2 3 4
ˆˆ , , ,..., 1,2,3,...,i i i i kif i k       (15) 

 

The problem is now to determine a GMDH-type neural network so that the square of difference 

between the actual dimensionless output and the predicted one is minimized, that is 
 

 
2

2 3 4 1

1

ˆ, , , , mˆ in?
M

i i i ki i

i

f     


   
   (16) 

 

Again, the quadratic form of only two variables is used in the form of Eq. (17) to predict the 

output π1. 

  2 2

1 0 1 2 3 4 5
ˆ ,i j i j i j i jG a a a a a a                (17) 

 

In order to construct such independent dimensionless parameters in the case of modelling of 

compact density ρcompact (kg/m3) and rupture stress of compact σrup (Pa), height of hammer H (m), 

compact height h (m), grain size A (m), cylinder diameter D (m), mass of hammer M (kg), mass of 

powder m (kg), static yield stress of pure aluminum σAl (Pa) and density of that ρAl (kg/m3) have 

been considered as input parameters in neural network, that is 
 

 , , , , , , ,compact rup Al Alf H h A D M m      (18) 

 

From this set of inputs-output parameters, 4 independent dimensionless parameters have been 

constructed according to 3 main dimensions (M, L, T), as follows 
 

1

compact

Al







 

(for modelling of relative density) (19a) 

 

1

rup

Al







 
(for modelling of relative rupture stress) (19b) 
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2

h

A
   (20) 

 

3

H

D
   (21) 

 

4

M

m
   (22) 

So that 

 1 2 3 4, ,f     (23) 

 

It should be noted that the simplest possible dimensionless parameters have been considered 

according to the involved physical parameters. 

In order to model, based on experimental data presented in Table 1, the multi-input-single-

output set of constructed dimensionless data according to Eqs. (19a)-(22), the method previously 

mentioned was used separately in conjunction with SVD approach for the coefficient of the 

quadratic polynomials.  

In order to demonstrate the prediction ability of such GMDH-type neural networks in the case 

of dimensionless modelling, the data have been randomly divided into two different sets, namely, 

training and testing sets. The training set, which consists of 18 out of 24 inputs-output data pairs, is 

used for training the GMDH-type neural network models using SVD approach for the coefficients 

of the quadratic polynomials. The predicting set, which consists of 6 unforeseen inputs-output data 

samples during the training process, is merely used for predicting to show the prediction ability of 

such GMDH-type neural networks models during the training process.  

Accordingly, Figs. 8 and 9 show the relative density of aluminum powder compacts, using 

GMDH-type network model constructed with singular value decomposition approach for the 

coefficients of the quadratic polynomials. 

Also, the coefficient of determination (R2) for training and prediction data are reported in these 

figures, which show that GMDH-type network model can predict well. The structures of GMDH-

type network are depicted in Fig. 10. 

 

 

 

Fig. 8 Variation of compact relative density with input data samples: comparison of experimental 

values with computed/predicted values 
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Fig. 9 Comparison of experimental values with computed/predicted values by GMDH-type network 
 

 

 

Fig. 10 GMDH-type network for relative density 
 

 

 

Fig. 11 Variation of compact relative rupture stress with input data samples: comparison of 

experimental values with computed/predicted values 

 

 

Consequently, it is now possible to present the obtained polynomial equations for relative 

density based on the structure of the GMDH-type neural network depicted in Fig. 10 using SVD 

approach for the coefficient of the quadratic polynomials in the form of 
 

2 2

1 3 4 3 4 3 40.002286+0.3748 0.1275 0.0002131 0.00006134 0.0001114S            (24a) 
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2 2

2 2 1 2 1 2 10.02573-0.03385 1.361 0.00003924 0.002104 0.0002315S S S S        (24b) 

 
2 2

3 3 2 3 2 3 20.1030-1.577 2.677 0.01061 0.03209 0.04149S S S S        (24c) 

 
2 2

1 1 3 1 3 1 30.06864+1.848 0.8265 0.06219 0.08517 0.1477S S S S S S       (24d) 

 

Similarly, Figs. 11 and 12 show the relative rupture stress of aluminum powder compacts 

subjected to impact loading. Also, the structures of GMDH-type network are depicted in Fig. 13. 

The obtained polynomial equations for relative rupture stress based on the structure of the 

GMDH-type neural network depicted in Fig. 13 are presented in the form of 
 

2 2

3 4 3 4 3 40.000145+0.0207 0.001529 0.00035 0.000004378 0.0002P            (25a) 

 

 

 

Fig. 12 Comparison of experimental values with computed/predicted values by GMDH-type network 

 

 

 

Fig. 13 GMDH-type network for relative rupture stress 
 

 

Table 2 Values of modelling and prediction error 

Data Training data Prediction data 

Model Relative density Relative rupture stress
 

Relative density Relative rupture stress
 

Error 0.010710072 0.108391391 0.013769102 0.137088282 
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2 2

1 2 2 20.07141-0.002512 1.251 0.000003745 0.006039 0.0003586P P P         (25b) 
 

Also, the comparison results of modelling and prediction error which have been calculated by 

Eq. (6) are demonstrated in Table 2. 

 

 

6. Conclusions 
 

The aim of this study was to investigate the behavior of aluminum powder compaction 

subjected to impact loading. Three various types of powders have been tested by drop hammer 

system. Also, the three point bending test has been done for each compacts until fracture to 

calculate the rupture stress. The method for designing GMDH-type networks have been proposed 

and successfully used for the modelling and prediction of the process parameters of the very 

complex process of compaction of aluminum powder under low velocity impact loads. 
 

 In the considered energy level (from 733 to 3580 J), the relative density is varied from 63.89% 

to 87.41%, 63.93% to 91.52%, 64.15% to 95.11% for powder A, B and C respectively. 

 There is a linear relation between compaction energy and relative density. 

 The maximum rupture stress are obtained for different types of powder and the results shown 

that the rupture stress increases with increasing energy level and grain size. 

 It has been shown that GMDH-type networks provide effective means to model and predict 

both relative density and rupture stress of compact according to different inputs. 

 It has been shown that (SVD) can effectively improve the performance of such GMDH-type 

networks over the traditional use of normal equations, especially in cases when all inputs-

output data pairs have been used for the modelling. 
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