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Abstract.  The hyperbolic stress–strain model has been shown to be valid for modeling nonlinear stress–strain 

behavior for rockfill materials. The Duncan-Chang nonlinear constitutive model was adopted to characterize the 

behavior of the modeled rockfill materials in this study. Accurately estimating the model parameters of rockfill 

materials is a key problem for simulating dam deformations during both the dam construction period and the dam 

operation period. In order to estimate model parameters, triaxial compression experiments of rockfill materials were 

performed. Based on a genetic algorithm, the constitutive model parameters of the rockfill material were determined 

from the triaxial compression experimental data. The investigation results show that the predicted strains provide 

satisfactory precision when compared with the observed strains and the strains forecasted by a gradient-based 

optimization algorithm. The effectiveness of the proposed inversion procedure of model parameters was verified by 

experimental investigation in a laboratory. 
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1. Introduction 
 

Rockfill dams are constructed using mostly quarried rockfill materials obtained by blasting 

rock and have been increasingly used for purposes such as irrigation, power generation, and flood 

control. Nonlinear constitutive models are often adopted to characterize the deformation behavior 

of the rockfill materials. Accurately estimating the model parameters of rockfill materials is a 

significant problem of interest for scientific investigators and engineers. The inverse problem of 

parameter estimation is often ill-posed. The ill-posed quality of the inverse problem can be 

characterized by the nonuniqueness and instability of the identified parameters. Avril et al. (2008a) 

classified constitutive parameter identification procedures as the finite element model updating 

method, the constitutive equation gap method, the virtual fields method, the equilibrium gap 

method, and the reciprocity gap method. In the most intuitive approach, it consists of performing 

iteratively finite element simulations of the test to find constitutive parameters that achieve the 
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best match between the computed and actual measurements. Avril and Pierron (2007) reviewed 

several approaches available in the literature for identifying the constitutive parameters of linear 

elastic materials from full-field measurements. Avril et al. (2008b) dealt with the identification of 

elastoplastic constitutive parameters from deformation fields measured over the surface of thin flat 

specimens with the grid method. The approach for recovering the constitutive parameters was the 

virtual fields method. Varadarajan et al. (2003) performed test investigations and proposed an 

estimation procedure for the model parameters of rockfill materials. The constitutive relation of 

rockfill materials is crucial for the formulation of the finite element method mode. For most 

rockfill materials, the strain–stress relation has characteristics of hyperbolic form. The commonly 

used constitutive models in rockfill materials include the Duncan–Chang model and the 

elastoplastic model. Because of its simplicity and easy implementation in practice, the Duncan–

Chang model has been widely used in FEM applications (Duncan and Chang 1970). Fahey and 

Carter (1993) performed a finite element study of the pressuremeter test in sand using a nonlinear 

elastic plastic model. Varadarajan et al. (2006) developed the relationships between the material 

constants of the modeled rockfill materials and the characteristics of the particles; these were used 

to predict the material constants for the prototype-size rockfill materials. A series of isotropically 

consolidated–drained and consolidated–undrained triaxial tests were performed on freshly 

deposited silt and clayey silts to provide guidance for selecting the hyperbolic parameters for these 

materials (Timothy et al. 1994). Because observation errors exist in measuring data, the local 

optimization problem is induced in solving the inverse problem of model parameter identification. 

Traditional gradient-based optimization algorithms cannot solve this problem. A genetic algorithm 

(GA) is an optimization procedure inspired by genetics and evolution. These algorithms may 

incorporate stochastic mutation, exchange of information between members of a population of 

solutions, and selection of possible solutions in subsequent generations based on relative fitness. 

Although GA optimizations cannot be guaranteed to find the global optimum, they are effective 

techniques for finding good solutions to high-dimensional problems with difficult search spaces 

consisting of many local optima. GAs have been widely used in inverse analysis (Cropper et al. 
2012), parameter estimation (Harrouni et al. 1996), the estimation of thermophysical properties 

(Adili et al. 2010), nonlinear least-squares estimates (Mitra and Mitra 2012), and modeling for 

aluminum stress–strain prediction (Yang et al. 1996). Suched et al. (2013) estimated geotechnical 

parameters from pressuremeter tests for the MRT Blue Line extension in Bangkok. Bagheripour et 

al. (2011) developed the Hoek–Brown failure criterion for strength prediction in anisotropic rock, 

and Silvestri and Abou-Samra (2009) presented an analytical solution procedure of the stress–

strain relationship of modified Cam clay in undrained shear. The aim of this paper is to propose an 

inverse procedure for estimating the model parameters of rockfill materials based on a GA and 

strain measurements in triaxial compression experiments of rockfill materials; to deal with the 

local minima problem in the inverse problem of parameter identification; and to increase the 

prediction accuracy of computing models in numerical simulation. 

 

 

2. Constitutive model and triaxial compression test of rockfill materials 
 

The constitutive model developed by Desai (2001) based on the disturbed state concept has 

been adopted to characterize the behavior of rockfill materials in the present study. This model 

allows for a number of factors such as irreversible plastic strains, plastic hardening, and 

nonassociative aspects. The disturbance referred to in this model includes microcracking, decay, 
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and degradation observed in many natural systems. The degradation of rockfill materials due to the 

breakage of particles has been used to formulate the disturbance function by Varadarajan et al. 

(2006) in depicting the behavior of two rockfill materials using the model. The hyperbolic relation 

between stress and strain developed by Duncan and Chang (1970) is defined in terms of an initial 

modulus, the material shear strength, and a reduction factor Rf. The reduction factor defines the 

deviatoric stress on the hyperbolic curve. The initial modulus is defined by the following equation 

(Duncan and Chang 1970) 
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where k is the modulus number; n is the modulus exponent; 3 is effective confining pressure; and 

pa is atmospheric pressure. The tangent modulus Et for a given iteration is accordingly defined as 
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where d is the principal stress difference between axial pressure and confining pressure; d = 1 − 

3; and 1 is axial pressure. If the Mohr–Coulomb failure envelope is nonlinear, the following 

expression (Duncan and Chang 1970) can be used to model the variation of  with 3 
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where 0 and  are constants. When the E-B model is applied, the tangent bulk modulus is 

calculated by 
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where Bt is the tangent bulk modulus and kb and m are the coefficient and exponent of the tangent 

bulk modulus, respectively. According to the relationship between the Poisson’s ratio and  

 

 

 

Fig. 1 Rockfill material 
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voluminal modulus and the relationship between the Poisson’s ratio and elastic modulus, the 

tangent Poisson’s ratio can be calculated after the voluminal modulus and elastic modulus are 

known. 
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where t is the tangent Poisson’s ratio. The rockfill material, as shown in Fig. 1, was used as the 

cushion zone of the Pushihe concrete-face rockfill dam. The largest size of the rockfill particles 

was 100 mm, as shown in Fig. 2; the smallest size was 0.1 mm. Triaxial compression tests of the  
 

 

 

Fig. 2 Particle size distribution for rockfill material 
 

 

 

Fig. 3 Triaxial compression tests of rockfill material 
 

 

 

Fig. 4 Variation of principal stress difference versus axial strain in triaxial compression tests of 

rockfill material 
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rockfill material were performed in a laboratory. The diameter of the test model was 300 mm, and 

the height was 700 mm, as shown in Fig. 3. The typical variation curves of the principal stress 

difference versus axial strain in the triaxial compression tests of the rockfill material are shown in 

Fig. 4. 
 

 

3. Identification procedures of model parameters of rockfill material using GA 
 

Parameter identification estimates model parameters by calculating the difference between the 

observed strain and computed strain minimization in triaxial compression tests of rockfill materials. 

The output residual method has hence been developed as an alternative approach. It consists of 

minimizing the objective function of the form (Adili et al. 2010) 
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Parameter identification estimates model parameters by calculating the difference between the 

observed strain and computed strain minimization in triaxial compression tests of rockfill materials. 

The output residual method has hence been developed as an alternative approach. It consists of 

minimizing the objective function of the form (Adili et al. 2010) 
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There are two kinds of solving procedures for estimating model parameters. One kind of 

approach is a gradient-based optimal search algorithm, such as the BFGS optimization method, the 

Gauss–Newton (G–N) algorithm (Yeh 1981), and the Powell optimization method, which have fast 

computational efficiency and do not ensure global optimization. Other kinds of approaches, such 

as GA, the ant colony algorithm (Abbaspour 2001), the simulated annealing algorithm (Li and Liu 

2008), and the Tabu search algorithm, are able to find global optimization. Because there are 

observation errors during experiments, the objective function of parameter inversion is non-convex, 

as shown in Fig. 5. 

The G–N algorithm has proven to be an effective algorithm to perform minimization in 

gradient-based optimal search algorithms. The popularity of this algorithm stems from the fact that 

it does not require calculation of the Hessian matrix, as is required by the Newton method, and the 

rate of convergence is superior when compared to traditional gradient searching procedures. The 

 

 

 

Fig. 5 Non-convex characteristics of objective function of parameter inversion 
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G–N algorithm generates the following parameter sequence for an unconstrained minimization 

problem (Yeh 1986). 
1i i i ip p d    (8) 

where 
i i iA d g  (9) 
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where e is the error vector; JJ is the Jacobian matrix of strain with respect to model parameter p;  i 

is step size; d i is the G–N direction vector; and i denotes the number of iterations. The estimated 

model parameters based on the G–N optimization algorithm are listed in Table 3. 

Because some local optimizations exist for the objective function, some gradient-based optimal 

search algorithms cannot deal with the global optimization problem, as shown in Fig. 5. Therefore, 

a GA is used to solve the inverse problem of parameter identification. A simple GA works on the 

chromosomes of the population and not on the decision variables. Individuals in the population are 

coded as strings (known as chromosomes) so that genotypes (chromosome values) are uniquely 

mapped to the decision variables (known as phenotypes). A chromosome needs to be decoded into 

its phenotypic values, and the objective function (fitness) of the chromosome can then be 

evaluated. 

The mapping from a binary string to a real number in domain [cj, dj] for variable pj is 

completed as follows 
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where mj denotes the required bits for variable pj, and cj and dj are the lower and upper bounds of 

variable pj, respectively. 
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where 
d
jp  is the decimal number of variable pj and [bmj − 1, , , b2, b1, b0] is the binary substring of 

variable pj. 

The search process in GAs operates on the encoding of the decision variables rather than on 

the decision variables themselves, except in cases where the genotypes are identical to the 

phenotypes, as in the case of a real-value coding. It starts by generating chromosomes representing 

the initial population with a specific number of individuals. The fitness values of the individuals 

are evaluated on the basis of the objective function of the optimization problem. Hereafter, genetic 

evolution proceeds from generation to generation. In producing a new generation, the parents 

needed for breeding a new child are first selected according to their fitness values and put into the 

mating pool. The fitness of the individual in the population is related to its value of the objective 

function 
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where fj is the fitness of some jth individual. 

The extraction probability of each individual is proportional to the ratio of its fitness to the 

average fitness of all the individuals. In the selection process, the reproduction probabilities of 

individuals are given by their relative fitness (Li and Liu 2006) 
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where proj is the reproduction probability of a jth individual and M is population size. 

The selection will ensure that high-fitted individuals have a high probability of being selected. 

The evolution usually starts from a population of randomly generated individuals and happens in 

generations. In each generation, every chromosome is evaluated by measuring its fitness function 

in the population and assigning it a score. Based on their fitness, multiple individuals are 

stochastically selected from the current population to form a new population. To create the next 

generation, new individuals—called offspring—are formed by either merging two chromosomes 

from the current generation using a crossover operator or modifying a chromosome using a 

mutation operator. The crossover operator takes two selected individuals and combines them about 

a crossover point, thereby creating two new individuals. The mutation operator randomly modifies 

the genes of a chromosome, introducing further randomness into the population. The cycle restarts 

by the formulation of a new generation by selection according to the fitness values. Some of the 

best parents and offspring are kept—the others are rejected to keep the population size constant. 

A one-point crossover operator randomly selects one crossover point and then copies 

everything before this point from the first parent and then copies everything after the crossover 

point from the second parent. For example, two binary strings before single-point crossover 

operation are expressed as [1100101] and [0011011]. The crossover site is randomly selected on 

the fifth gene. After single-point crossover operation, two new binary strings are changed to 

[1100011] and [0011101]. 

Recombination takes place to produce children from the selected parents, often via some kind 

of crossover operation. The generated children can go through mutations, with some bits in the 

chromosome being mutated. The purpose of mutation, which is generally a background operator 

with a small probability, is to prevent premature convergence of the population. The GA sequence 

ends when either the maximum generations have been produced or other predefined termination 

conditions are satisfied. The average performance of individuals in the population is expected to 

increase during the evolution of the population as good individuals are preserved and bred with 

one another and less-fit individuals die out (Mitra and Mitra. 2012). 

Mutation, with a preassigned low mutation probability, is further applied to the new 

chromosomes produced by the crossover process. Mutation is a genetic operator that ensures that 

the probability of searching any given string belonging to the parameter space will never be zero 

and thus has the effect of avoiding the possibility of convergence of the procedure to a local 

optimum. For the binary chromosomes, mutation causes a single bit to change its state from 0 to 1 

and vice versa (Mitra and Mitra 2012). For example, a binary string before mutation is expressed 

as [1100011]. The mutation site is randomly selected on the fourth gene. After mutation operation, 
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Fig. 6 Block diagram of a simple GA for solving the inverse problem 
 

 

Table 1 General parameters of a GA for solving the inverse problem 

GA parameters Value 

Population size 80 

Bits of precision 64 

Cross probability 0.86 

Mutation probability 0.06 

Maximum number of generations 100 

 

 

Table 2 Solution domains of identified model parameters of rockfill materials 

Parameters C/kPa 0/ / k n Rf Kb m 

Minimum value 0.00 45.0 3.0 100 0.4 0.5 100 0.15 

Maximum value 10.0 60.0 10.0 800 0.95 0.95 500 0.45 

 

 

a new binary string is changed to [11001011]. 

The GA terminates when either a maximum number of generations has been produced or a 

satisfactory fitness level has been reached (Adili et al. 2010). A block diagram of a simple GA is 

depicted in Fig. 6. Table 1 lists the general parameters of a GA for solving the inverse problem. 

After investigating the model parameters of the rockfill materials of other dams (Zheng et al. 

2013, Zhou et al. 2010, 2011, Xu et al. 2012), the solution domains of identified model parameters 

of rockfill materials were determined and are listed in Table 2. 
 

 

4. Experimental verification of identification procedure of model parameters 
 

In order to verify the effectiveness of the proposed parameter identification of rockfill material, 

three-dimensional compression tests were performed in different confining pressures. The material 
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Fig. 7 Variation of fitting function versus evolution generation 

 

 

Table 3 Identified model parameters of rockfill materials 

Parameters C/kPa 0/ / k n Rf Kb m 

Estimated by G–N algorithm 0.00 50.3 7.7 347 0.64 0.82 195 0.23 

Estimated by GA 0.02 54.4 4.8 253 0.65 0.72 163 0.26 

 

 

parameters of the Duncan–Chang constitutive model were identified based on a GA and measured 

strain data. Table 3 presents the hyperbolic stress–strain parameters obtained from the triaxial 

compression tests by using the GA and G–N optimization algorithm. Fig. 7 shows the variation of 

the fitting function for the average population value and the optimal individual value versus 

evolution generation. From this figure, we can observe that the average population value of the 

fitting function approaches the optimal individual value after 35 evolution generations. 
 

 

 

Fig. 8 Comparison of predicted strains with observed ones (confining pressure of 1200 kPa) 
 
 

 

Fig. 9 Comparison of predicted strains with observed ones (confining pressure of 600 kPa) 
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Fig. 10 Comparison of predicted strains with observed ones (confining pressure of 400 kPa) 

 

 

Figs. 8-10 show the comparison of predicted axial strains with observed ones in different 

confining pressures. From Fig. 8, in the case of confining pressure of 1200 kPa, we can observe 

that the maximum relative error of the axial strain forecasted by the GA falls to 25% from 50% 

forecasted by initial estimation using the G–N optimization algorithm. 

From Fig. 9, in the case of confining pressure of 600 kPa, we can observe that the maximum 

relative error of the axial strain forecasted by the GA falls to 15% from 59% forecasted by the G–

N optimization algorithm. 

From Fig. 10, in the case of confining pressure of 400 kPa, we can observe that the maximum 

relative error of the axial strain forecasted by the GA falls to 17% from 63% forecasted by the G–

N optimization algorithm. 
 

 

 

Fig. 11 Comparison of forecast radial strains with observed ones (confining pressure 3 = 600 kPa) 
 

 

 

Fig. 12 Comparison of forecast radial strains with observed ones (confining pressure 3 = 400 kPa) 
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Fig. 13 Comparison of forecast radial strains with observed ones (confining pressure 3 = 1200 kPa) 

 

 

From Figs. 11-13, we can observe that the maximum relative errors of the radial strains 

forecasted by the GA and G–N optimization algorithm are almost the same. The advantages of the 

GA for solving the inverse problem cannot be found. Perhaps local minimization of the objective 

function for the inverse problem approaches global minimization. This may be because the radial 

strain is not sensitive to model parameters. The larger changes of model parameters will only 

produce a smaller difference of radial strain. 
 

 

5. Conclusions 
 

Triaxial compression experiments were conducted on rockfill materials obtained from a dam 

construction site. The stress–strain change relationships of the rockfill materials are presented and 

discussed. The inversion procedure used for estimating model parameters is presented based on a 

GA. Some comparisons were performed for predicting the deformation behaviors of the rockfill 

materials by using the GA and a gradient-based optimization search algorithm, respectively. The 

investigations revealed that the proposed inversion procedure based on the GA provides more 

satisfactory prediction accuracy than a traditional gradient-based optimization algorithm. 
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