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Bearing capacity factor Nγ for a rough conical footing
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Abstract: The bearing capacity factor Nγ is computed for a rough conical footing placed over horizontal
ground surface. The axisymmetric lower bound limit analysis formulation, in combination with finite
elements and linear programming, proposed recently by the authors is used in this study. The variation of
Nγ with cone apex angle (β ), in a range of 30o-180o, is obtained for different values of φ; where φ is soil
friction angle. For φ < 30o, the magnitude of Nγ is found to decrease continuously with an increase in β
from 30o to 180o. On the other hand, for φ > 30o, the minimum magnitude of Nγ is found to occur
generally between β = 120o and β = 150º. In all the cases, it is noticed that the magnitude of Nγ becomes
maximum for β = 30o. For a given diameter of the cone, the area of the plastic zone reduces generally
with an increase in β. The obtained values of Nγ are found to compare quite well with those available in
literature. 
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1. Introduction

In recent years, a number of investigations have been performed on the determination of the

bearing capacity factor Nγ for strip and circular footings. For strip footings, the solutions have been

obtained mainly by using (i) the method of stress characteristics (Larkin 1968, Bolton and Lau

1993, Kumar 2003, 2009), (ii) the lower and upper bound finite element limit analysis (Ukritchon et

al. 2003, Hjiaj et al. 2005, Lyamin et al. 2002, 2007, Kumar and Kouzer 2007, Kumar and Khatri

2008), (iii) the finite element method (Griffiths 1982), and (iv) FLAC (Frydman and Burd 1997).

On the other hand, the available solutions for finding Nγ of circular footings have been obtained

primarily by using the method of stress characteristics, in which case it is being assumed that the

magnitude of the hoop stress (σθ) becomes equal to the minimum normal compressive stress (σ3).

For a flat smooth circular cylinder placed on a general c-φ soil, the solution for determining the

magnitude of failure load on the basis of the method of stress characteristics was provided by Cox

(1962). Further, Bolton and Lau (1993) and Martin (2004, 2005), computed Nγ for circular footings

both with smooth and rough interfaces. For a rough footing base, due to an employment of a

triangular (not curved) trapped wedge below the footing base, the Nγ values obtained by Bolton and

Lau (1993) were found to be a little higher as compared to the solution of Martin (2004, 2005). By

using FLAC, Erickson and Drescher (2002) have obtained the magnitude of Nγ for a rigid circular
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footing. With the usage of a three dimensional finite element limit analysis with non-linear

programming, Lyamin et al. (2007) solved the problem of circular footings embedded in sand.

Using the method of characteristics, Cassidy and Houlsby (2002) have provided the solution for

finding the ultimate bearing capacity of conical footings placed on the surface of sand. In the

present study, it is also intended to determine the collapse loads for conical footings placed on sand.

The axi-symmetric lower bound limit analysis formulation presented earlier by the authors (Khatri

and Kumar 2009) for φ = 0o condition, and later extended by the authors (Kumar and Khatri 2009)

for a general c-φ soil, is used in the present paper. The Nγ values are determined for various

combinations of friction angles (φ) and cone apex angles (β ). The effect of β on the plastic zones is

also examined. The results obtained from the analysis are compared with those available in

literature using different numerical methods. 

2. Problem definition

A rigid conical footing with a rough base, and having an apex (interior) angle β, is placed on a

homogeneous soil medium with horizontal ground surface. The footing is having radius b and is

subjected to vertical downward load (Q) with its point of application coinciding with the vertical

axis of the footing. It is prescribed that the footing is rigid and is subjected to vertical downward

movement. The rigidity of the footing will ensure a uniform vertical displacement everywhere along

the footing-soil interface; however, no attempt has been made in this study to incorporate

exclusively the kinematics of the problem. The soil mass is assumed to be perfectly plastic, and it

obeys an associated flow rule; Mohr-Coulomb’s failure criterion is assumed to be applicable. It is

required to determine the lower bound magnitude of the collapse load due to the component of soil

unit weight (γ ), for different combinations of β and φ. 

3. Mesh details

Due to the symmetry about the vertical line passing through the centre of the footing, there is no

need to consider the complete volumetric domain while solving the problem. Similar to a typical

plane strain problem, the problem domain only in a r-z plane starting from r = 0 to r = ∞ has been

considered like a very thin piece of pie; the parameters r and z refer to radial and vertical directions,

respectively. The chosen domain and the associated stress boundary conditions are indicated in Fig.

1(a). The depth (d) of domain (refer Fig. 1a), was kept equal to Lg; where Lg is the horizontal extent

of the chosen domain measured from the footing edge (point O in Fig. 1a). The values of Lg and d

were computationally arrived by using a number of trials such that (i) the boundaries of the plastic

zones, obtained from the analysis, were found to contain well within the boundaries of the chosen

problem domain and (ii) the magnitude of the collapse load remains almost constant even if the size

of the domain was further increased. The value of d is kept equal to (i) 5b for φ = 5o, and (ii) 26b

for φ = 45o. The domain is discretized into a number of three noded triangular elements; the mesh is

generated in a manner such that all the three sides of a given triangular element remain almost of

the same size. The sizes of all the elements are gradually made smaller approaching towards the

footing edge (point O in the Fig. 1a). Typical meshes chosen in the analysis for φ = 30o and with

different cone angles (β ) are illustrated in Figs. 2-4; the parameters E, N, Ni and Dc in these figures
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refer to the total number of (i) elements, (ii) nodes, (iii) nodes along the footing-soil interface, and

(iv) discontinuities, respectively.

4. Analysis

The axi-symmetric lower bound limit analysis formulation for φ = 0 condition proposed earlier by

authors (Khatri and Kumar 2009) and later extended to a general c-φ soil mass (Kumar and Khatri

2009) is used in the present article for carrying out the analysis. The axi-symmetric formulation

proposed by the authors is simply a modification over the plane strain methodology presented

Fig. 1 (a) Problem domain and stress boundary conditions, (b) free body diagram of soil element along the
cone base, (c) nodal stresses for a typical triangular element and (d) statically admissible stress
discontinuity
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earlier by Sloan (1988). The previous papers of the authors (Khatri and Kumar 2009, Kumar and

Khatri 2009) can be referred for the necessary description about the method. A brief explanation is,

however, provided here for the sake of completeness. 

Nodal stresses (σr, σz, τrz, σθ) are treated as basic unknown variables. Three noded triangular

elements are used to model the stress field as shown in Fig. 1(c). Statically admissible stress

discontinuities, as illustrated in Fig. 1(d), are assumed along all the interfaces among adjacent

triangles; at the interface of the two elements, the normal and shear stresses are assumed to be

continuous. The basic expression for finding the magnitude of the total collapse load is generated

from the integration of the stresses along the conical footing-soil interface on the basis of the

satisfaction of the stress-boundary conditions, equilibrium equations and linearized yield criterion,

along with additional inequality constraints arising from axi-symmetric formulation. The magnitude

Fig. 2 Mesh used in the analysis for φ = 30º with (a) β = 30º and (b) β = 60º

Fig. 3 Mesh used in the analysis for φ = 30º with (a) β = 90º and (b) β = 120º
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of the total collapse load is then maximized subjected to a number of equality and non-equality

linear constraints on the nodal stresses.

The steps followed in this paper only associated with the yield condition exclusively for an axi-

symmetric problem are described below. 

4.1 Yield condition

Following Harr-Von Karman condition, the value of σθ (hoop stress) is specified close to σ3 (least

compressive normal stress) in a r-z plane for finding the ultimate bearing capacity of circular

foundations. With the help of three additional inequality constraints arising from Fig. 5, this

condition is specified. By drawing two Mohr circles having the common centre (that is, with σ =

(σr + σz)/2), the admissible range of σθ (or σ3) is achieved, as shown in Fig. 5. The larger circle

corresponds to at yield and, therefore, it touches the Mohr-Coulomb yield line AF. Whereas, the

smaller circle represents the possible state of stress at a point in the r-z plane with given values of

σr, σz and τrz. On this basis, the possible location of the point E (associated with least compressive

normal stress (σ3) for the smaller circle) can vary between points G (greater of σr and σz) and H

(σ3f associated with larger circle). In order that the value of σθ remains closer to σ3, following three

inequality constraints are arrived:
 

 

where, σθ,i, σr,i, σz,i are the nodal stresses associated with node i and σ3f,i is the minor principal stress

(least compressive normal stress) at failure. These constraints are expressed in the matrix form as,

 (1)

σθ,i σr,i≥

σθ,i σz,i≥

σθ,i σ3f,i≤

Asθ

i
[ ]3 4× θ

i
{ }4 1× bsθ

i
{ }3 1× 1≤

Fig. 4 Mesh used in the analysis for φ = 30º with (a) β = 150º and (b) β = 180º
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where, 

To ensure that the finite element formulation leads to a linear programming problem, the Mohr-

Coulomb yield surface is approximated by a regular polygon of p sides inscribed to the parent yield

surface (Bottero et al. 1980). Following linearized inequality condition needs to be specified in

order that the stress state does not violate the yield condition:

 Akσr + Bkσz + Ckτrz ≤ D;  k = 1, 2, …, p. (2)

where, 

 Ak = cos(2πk/p) + sin φcos(π/p), Bk = sin φcos(π/p) − cos(2πk/p), 

  Ck = 2sin(2πk/p),      D = 2ccosφcos(π/p)              (3)

The inequality constraints imposed on four stresses at node i, due to linearized yield criterion will

become p in number. 

Asθ

i
[ ]3 4×  = 

1 0 0 1–

0 1 0 1–

1 sinφ–( )

2
-----------------------–

1 sinφ–( )

2
-----------------------– 0 1

σ
i

{ }4 1×

T
 = σr,i σz,i σrz,i σθ,i{ }1 4×  

bsθ

i
{ }3 1×

T
 = 0 0 ccosφ{ }

Fig. 5 The possible range for the variation of σθ
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4.2 Objective function

The soil element immediately along the cone base is shown in Fig. 1(b). The magnitude of the

collapse load (objective function) is obtained by numerical integrating the stresses over the complete

area of the conical footing-soil interface, as given by the following expression: 

 (4)

where, s = no of boundary edges chosen along the soil-footing interface, rs = distance measured from

axis of symmetry to the midpoint of a particular ith element; dri and dzi are defined in Fig. 1(b).

Since the stresses are assumed to vary linearly throughout each element, the magnitude of σz and τrz
in the above expression is replaced as,

 (5)

where, σz1, σz2 and τrz1, τrz2 are stresses at the two boundary nodes 1 and 2. After substituting for σz

and τrz Eq. (4) can be written in the matrix form as,

 (6)

It should be noted that, for a flat circular footing (β = 180o), the shear stress terms in Eq. (5) will

simply vanish since dzi = 0. 

The formulation of the lower bound limit analysis is stated in the form of standard linear

programming problem:

Maximize (7a)

Subject to (7b)

 (7c)

where, {σ} is a vector of nodal stresses given by

The solution of this optimization problem, gives statically admissible stress field {σ} and collapse

load {g}T{σ}. For the present problem, the magnitude of the compressive load needs be maximized.

On lines similar with Kumar and Kouzer (2007) and Kumar and Khatri (2008), the linear

optimization is carried out by using “LINPROG” a library program in MATLAB.

5. Definition of Nγ

After obtaining the magnitude of the collapse load (Q), the bearing capacity factor Nγ is defined

by using the following expression:

Q =  

i 1=

s

∑– σzrsdri−τrz rs 0.5dri+( )dzi[ ] 2π( )

σz = 
σz1 σz2+( )

2
------------------------  and  τrz = 

τrz1 τrz2+( )

2
--------------------------

Qs = g
s

{ }1 8×

T
σ
s

{ }8 1×

g
s

{ }
T
 = 0 π– rsdri π dzi rs 0.5dri+( ) 0 0  π– rsdri πdzi rs 0.5dri+( ) 0{ }1 8×

σ
s

{ }
T
 = σ r,1

s
 σ z,1

s
 σ rz,1

s
 σ θ,1

s
 σ r,2

s
 σ z,2

s
 σ rz,2

s
 σ θ,2

s
{ }1 8×

g{ }
T

σ{ }

A1[ ] σ{ } = b1{ }

A2[ ] σ{ } b2{ }≤

σ{ }
T
 = σr 1,  σz 1,  τrz 1,  σθ,1 σr 2,  σz 2,  τrz 2,  σθ,2 … … σr,N, σz,N τrz N,  σθ,N[ ]
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 (8)

It needs to be mentioned that the magnitude of the collapse load (Q) in the above expression implies

the total load which the footing base can impose on soil media; therefore, Q will comprise of the

summation of the weight of the footing (conical base) itself and the load exerted on the top of the

footing.

6. Results and comparisons

The computations were performed for different values of (i) β ranging from 30º to 180º, and (ii) φ

varying from 5º to 45º. The value of p is kept equal to 21. The results from the analysis are

summarized herein:

6.1 The variation of Nγ with β 

The variation of Nγ for different combinations of φ and β is provided in Table 1. These results are

also presented in Fig. 6; in this figure, in order to provide a comparison, the computational results

of Cassidy and Houlsby (2002) on the basis of the method of stress characteristics have also been

included. It can be noted that for φ < 30º, the magnitude of Nγ reduces continuously with an increase

in cone angle (β ) and a flat circular footing (β = 180º) provides always the minimum value of Nγ.

However, for φ > 30º, the minimum magnitude of Nγ occurs somewhere between the value of β

equal to 120º and 150º. For the entire chosen range of φ, the cone with an apex angle of 30º,

always provides the maximum values of Nγ ; the computations, however, were not performed for

β < 30o. The obtained results in all the cases compare quite well with those given by Cassidy and

Houlsby (2002); the present Nγ values were found to be generally very slightly lower.

6.2 The comparison of Nγ for a flat circular footing (β = 180º) 

For a flat circular rough footing (β = 180º), an exclusive comparison of the values of Nγ obtained

Q

πb
2

-------- = 0.5 2b( )γ Nγ

Table 1 The variation of Nγ with β for different values of φ as obtained from the present analysis for a rough
cone base

φ
βº

30 60 90 120 150 180

5 2.67 1.08 0.62 0.38 0.22 0.08

10 5.38 2.00 1.15 0.76 0.51 0.3

15 10.55 3.76 2.19 1.53 1.16 0.88

20 20.73 7.17 4.31 3.18 2.63 2.27

25 41.53 14.37 8.85 6.88 6.1 5.68

30 86.04 30.28 19.34 15.74 14.6 14.65

35 189.07 68.62 45.82 38.92 37.2 39.97

40 455.42 170.91 120.06 108.14 106.28 116.2

45 1225.4 490.33 364.72 341.24 343.44 379.79
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from the present analysis was made with the results given by (i) Martin (2004, 2005) based on the

method of characteristics, (ii) Lyamin et al. (2007) and Krabbenhøft et al. (2008) by using a

rigorous three dimensional finite element lower bound limit analysis, and (iii) Erickson and

Drescher (2002) using FLAC. The comparison of all these results is provided in Table 2. It can be

seen that the present Nγ values are slightly smaller than those obtained with the method of stress

characteristics. The lower bound values of Nγ provided by Lyamin et al. (2007) and Krabbenhøft et

al. (2008) were found to be very close to the present solution; the present Nγ values were generally

noted to be very marginally greater (better lower bound solution) than those given by Lyamin et al.

(2007) and Krabbenhøft et al. (2008). 

Fig. 6 A comparison of Nγ values obtained from the present analysis with those published by Cassidy and
Houlsby (2002)

Table 2 A comparison of Nγ values for a rough circular footing

φº

Present method 
(δ = φ)

Martin 
(2004, 2005)

Erickson and 
Drescher (2002)

Krabbenhoft et al. (2008) Lyamin et al. (2007)

Lower bound Lower bound

a b c d d

5 0.08 0.08 - - -

10 0.30 0.32 - 0.31 -

15 0.88 0.93 - - -

20 2.27 2.41 2.80 2.26 -

25 5.68 6.07 - - 5.65

30 14.65 15.54 - 13.98 14.10

35 39.97 41.97 45.00 - 37.18

40 116.20 124.10 130.00 108.46 106.60

45 379.79 419.44 456.00 - 338.00

a: Lower bound limit analysis with finite elements and linear programming
b: Method of characteristics
c: By using FLAC
d: Three dimensional numerical limit analysis with finite elements and non-linear programming
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It should be mentioned that Nγ values presented in this paper become exactly the same as those

given by the authors for a flat circular foundation (Kumar and Khatri 2009). In the companion

paper of Kumar and Khatri (2009), the computational results are obtained for a general c-φ soil but

only with a flat circular foundation base (β = 180o, not for a conical base) for smooth as well as

rough footing-soil interface. 

6.3 Plastic zones

In case if the Mohr circle associated with a given state of stress touches the failure envelope, the

point will be in a state of shear failure. In the present case, the states of all elements with reference

to the shear failure, at their respective centroids, were defined in terms of a ratio, a/d; where

Fig. 7 Plastic zones obtained from the analysis for φ = 30º with (a) β = 30º and (b) β = 60º

Fig. 8 Plastic zones obtained from the analysis for φ = 30º with (a) β = 90º and (b) β = 120º
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a = (σr − σz)
2 + (2τrz)

2, and d = [2c cosφ − (σr + σz)sinφ]2; cohesion, c = 0 in the present case. If a/d <

1, it will indicate that the point will be in a non-plastic state. On the other hand, if the value of a/d

becomes equal to 1, the point will be in a state of shear failure. In this manner, the plastic zones

were obtained for different values of β. The plastic zones for the different cases, with φ = 30º, are

illustrated in Figs. 7-9; the plastic zones are drawn in a manner such that the color of an element

becomes continuously darker when approaching towards the shear failure (a/d = 1). It can be

noticed that a very dark zone exists everywhere around the footing base. This dark zone indicates

the region of the plastic failure in the soil mass. It can be noticed that the area of the plastic zone,

with respect to a given diameter of the footing, decreases generally in a continuous fashion with an

increase in the value of β; the size of the plastic zone becomes maximum for β = 30o. It can further

be noticed as the value of β was increased a small non-plastic zone was noticed below the footing

base; a non-plastic wedge around the footing base is clearly noticed for β = 180o.

7. Remarks

7.1 The effect of extension elements on Nγ 

In order to ensure that the obtained lower bound solution nowhere violates the yield condition

within the domain the boundaries of which are extended even up to infinity, additional inequality

constraints arising from the yield condition are imposed on the elements, named extension elements,

lying on the chosen boundary of the problem domain. Typical chosen meshes with the inclusion of

3-noded extension elements for φ = 30º with three different values of β, namely, 30o, 90o and 150o,

are illustrated in Fig. 10; the term Eext in these figures refer to the number of extension elements

used in the chosen mesh. In this figure, for a chosen extension element (shown with grey shade),

the directions of boundary extensions towards infinity are also indicated; the edges 5-6 and 11-12 in

Fig. 10c point towards the directions of extension. To extend the stress field up to infinity, following

additional inequality constraints were imposed on extension nodes (5, 6 and 11, 12),

Fig. 9 Plastic zones obtained from the analysis for φ = 30º with (a) β = 150º and (b) β = 180º
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Fk6 − Fk5 ≤ 0 k = 1, 2, 3, …………., p (10)

Fk11 − Fk12 ≤ 0  k = 1, 2, 3, …………, p (11)

where, Fki = Akσri + Bkσzi + Ckτrzi − D; k = 1, 2, …, p, the terms Ak, Bk, Ck and D are already defined

earlier by Eq. (3). The reference of Ukritchon (1996) can be refereed for the derivations of the

above constraints imposed on the extension elements. The subscript i in the above equation

corresponds to the extension node number. All the other equality and inequality constraints

including those on the hoop stress (σθ), remain unchanged on the extension elements. Typical

numerical results with and without the inclusion of extension elements for φ = 30o and with β = 30o-

180o are given in Table 3. It can be seen that the Nγ values obtained with and without the usage of

extension elements remain very much close to each other. This observation is on account of fact

that the chosen size of domain is adequately large and all the yielded elements are contained quite

well within the periphery of the chosen domain. With the incorporation of additional constraints on

Fig. 10 The chosen meshes with extension elements for φ = 30º with (a) β = 30º, (b) β = 90º and (c) β = 150º
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extension elements a very slight reduction in the magnitude of collapse load is noted. The

comparison of Nγ values with and without the use of extension elements suggests that the results

presented earlier will not be significantly different from the values of Nγ values even with the usage

of extension elements. 

8. Conclusions

By using a lower bound limit analysis in combination with finite elements and linear programming,

the bearing capacity factor Nγ is computed for a conical footing with a rough base. It is noticed that

the magnitude of Nγ increases generally with a decrease in the apex (interior) angle of the cone.

This implies that for a given diameter of the footing, with respect to the shear failure consideration,

it will be generally advantageous to employ a conical footing with an acute apex angle rather than

simply using a flat circular footing. The obtained results in all the cases were found to be generally

very close to those available in literature by using the method of stress characteristics. 
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