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Abstract. The paper deals with the applications of spectral finite element method to the dynamic
analysis of framed foundations supporting high speed machines. Comparative performance of approximate
dynamic stiffness methods formulated using static stiffness and lumped or consistent or average mass
matrices with the exact spectral finite element for a three dimensional Euler-Bernoulli beam element is
presented. The convergence of response computed using mode superposition method with the appropriate
dynamic stiffness method as the number of modes increase is illustrated. Frequency proportional discreti-
sation level required for mode superposition and approximate dynamic stiffness methods is outlined. It is
reiterated that the results of exact dynamic stiffness method are invariant with reference to the
discretisation level. The Eigen-frequencies of the system are evaluated using William-Wittrick algorithm
and Sturm number generation in the LDLT decomposition of the real part of the dynamic stiffness matrix,
as they cannot be explicitly evaluated. Major’s method for dynamic analysis of machine supporting
structures is modified and the plane frames are replaced with springs of exact dynamic stiffness and
dynamically flexible longitudinal frames. Results of the analysis are compared with exact values. The
possible simplifications that could be introduced for a typical machine induced excitation on a framed
structure are illustrated and the developed program is modified to account for dynamic constraint
equations with a master slave degree of freedom (DOF) option. 

Keywords: machine foundations; dynamic stiffness method; spectral finite element; wittrick-william’s
algorithm; sturm number; major’s method; dynamic constraint problem.

1. Introduction

The handbook on machine foundations (Srinivasulu and Vaidyanathan 1985) is a popular design

guide for machine foundation in the Indian sub-continent. Dynamic stiffness approach to response

of machine foundations is however not covered by them. Initial works on dynamic stiffness matrix

are due to Kolusek (1973), Richard and Leung (1977) and Howson et al. (1983). The exact dynamic

stiffness matrix for Timoshenko beam element, linearly tapering Euler-Bernoulli element and two

dimensional beam-column joints are given by Gopalakrishnan et al. (1992) and Gopalakrishnan and

Doyle (1994). A dynamic stiffness for the analysis of non-uniform Timoshenko beams in the
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presence of axial loads for various boundary conditions is proposed by Leung and Zhou (1995). The

symbolic computing package REDUCE has been used to generate an analytical expression for each

of the dynamic stiffness terms of an axially loaded uniform Timoshenko beam element (Banerjee

and Williams 1994). A new solution approach termed as the spectral transfer matrix method (STMM)

is introduced and a beam with periodic supports and a plane lattice structure with several beam-like

periodic lattice substructures are analyzed (Lee 2000). Experimentally computed frequency response

function and dynamic stiffness is used to compute the damages in an RC structure (Maeck et al.

2000, Lee and Shin 2002).

Recently, Zhu and Leung (2009) have presented a formulation based on hierarchical finite element

to solve a geometrically non-linear free and forced vibration problem for a non-uniform beam on

elastic foundation. Arc-length based iteration method is used to solve the geometrically non-linear

problem. Another interesting recent paper is due to Leung (2008), wherein the author derives for the

first time, an exact dynamic stiffness formulation for solving axial-torsional buckling of framed

members.

2. Mode superposition and dynamic stiffness methods

Dynamic response of an elastic structure is a linear combination of its eigenmodes. The advantage

of the modal superposition method is that response of a multi-degree of freedom structure in the

Cartesian domain is synthesized from a few fundamental uncoupled degrees of freedom in the

modal domain. Mode superposition method, comprising of either modal displacement method or

modal acceleration method is time consuming only up to extraction of modes.

It is worthwhile to examine the expression for the steady state dynamic displacement profile of a

structure, when subjected to the operating frequency (ω),

 or (1)

 (2)

and 

(3)

Two major drawbacks of the mode superposition method are the uncertainty associated with the

computation of Eigen pairs using inadequate discretisation and the inability to judge a priori, the

number of modes that may participate in the response. A guideline for the band of modes

participating in response of a framed structure subjected to high frequency of excitation is given by

Lakshmanan et al. (2004). Recently, Lakshmanan and Gopalakrishnan (2007) have proposed a new

design approach for framed foundations with un-certainties in machine speed and material

properties. There are situations where only the steady state component of response corresponding to

each frequency of excitation is required and this is accomplished by solving the dynamic equili-

brium equation directly. The property of a linear structure is such that, the structure also responds in

the harmonic excitation frequency. Using this property, the equation involving spatial and temporal
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variables are simplified to a system having only spatial variables, with solution to be sought at each

frequency. Evaluation of linear dynamic response under steady state harmonic loading conditions and

random dynamic loadings and transient loads using dynamic stiffness approach are viable alternative

to mode superposition method. The dynamic stiffness method is independent of the number of modes

participating in the response is not a matter of concern for as the response predicted by the mode

superposition method converges to the response predicted by dynamic stiffness method (considering

that both the methods use the same mass formulation and same equivalent damping) as the number

of modes increase. However, the uncertainty due to discretisation remains and can only be solved

by the exact dynamic stiffness formulation. In dynamic stiffness method, the dynamic equilibrium

equation, for a multi-degree of freedom system, under steady state conditions is solved as a static

problem, replacing static stiffness with the dynamic stiffness matrix. Frequency domain solution of

the dynamic equilibrium problem using dynamic stiffness formulation has many advantages, which

include circumventing eigenvalue analysis, ease in incorporation of frequency dependent soil spring

stiffness, incorporation of visco-elastic material properties, implementation of frequency dependent

fluid film stiffness in the case of a rotor and so on. It may be noted that exact dynamic stiffness can

be derived for only a few structural elements like Euler-Bernoulli and Timoshenko beams, thin walled

beams and rectangular plates. The shape functions for the exact dynamic stiffness formulation are

derived by solving the appropriate fourth order differential equation, reduced to spatial co-ordinates

after eliminating the temporal variation with Fourier frequency components. The exact dynamic stiffness

formulation is also termed as spectral finite element or a continuum element. For other types of

finite elements, where an exact dynamic stiffness is not possible, the approximate dynamic stiffness

could be formulated using static stiffness and lumped or consistent or average mass. The performance

of approximate dynamic stiffness methods are adequate under low frequencies of excitation but shall

result in unacceptable levels of errors under high frequencies. The applications of high frequency of

excitation include machine induced excitation where the super harmonic components of the basic

operating frequency can be 100 Hz-150 Hz. The other applications of high excitation frequencies

are transient dynamic loads such as impact and blast loads and sonic excitation of structures. High

frequency response of a structure is dependent on the fineness of the discretisation and hence the result

of an approximate dynamic stiffness formulation is not equally valid at higher frequency ranges. 

3. Approximate dynamic stiffness formulations

3.1 Lumped mass model

 (4)

Lumped mass matrix is due to the lumping of mass from structural members (L1) and also due to

non-structural members such as machinery (L2). The latter component, L2, is always present in all

the formulations, irrespective of whether a lumped or a consistent or an average mass formulation is

adopted. Imaginary part of the dynamic stiffness comprises of contribution from physical dampers

present in the system and due to the structural damping factor. The term due to the structural

damping should always be present to prevent instability at resonances for structures, where physical

dampers are not used.
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3.2 Consistent mass model:

 (5)

3.3 Average mass model

 (6)

This model uses an average of the consistent and lumped mass matrices. Lumped mass matrix

formulation generally under-estimates the frequencies, whereas a consistent mass formulation over-

estimates the frequencies. Hence in average mass matrix, it is assumed that the under-estimation of

frequencies by the lumped mass model is neutralized by the over-estimation using consistent mass,

to a large extent.

4. Exact dynamic stiffness formulation

Flexural vibration of a thin beam follows the governing equation as,

(7)

 

The equation of motion has the solution of the form,

 (8)
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Shape Functions can be derived as (Leung 1993) 
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    (11)

and the stiffness matrix is,

(12)

where (13)

Similar expressions for axial force - deformation and torque-twist relationships can be derived. In

the global domain, equilibrium equation is stated as,

 (14)

5. Description of a typical high speed machine foundation

A structure supporting a high speed machine like turbo-generator has a series of vertically

symmetric transverse frames interconnected by two stiff longitudinal beams. The transverse frames

support typical turbine units such as, high pressure (HPT), intermediate (IPT) and low pressure

turbines (LPT), turbo-generator and an excitation unit for the field coil. Each of these machines span

between a pair of plane frames and the contact point for the rotating element is a bearing of a

typical fluid film type. The bearings are located on the top mid span of the transverse frames.

A rotor cannot be balanced to zero eccentricity and depending on the balancing grade of the rotor

a residual unbalance is left over. Typical excitation forces are due to the imbalance, which cause

a rotating vector with a magnitude of meω2. This results in sinusoidal forces in both the vertical

and transverse horizontal directions each having a phase difference of π /2 radians. The rotor can

be misaligned which may result in dynamic longitudinal force and clamping moment on the

bearing. This machine runs at a speed of 50 Hz and due to imperfections and friction in the

bearings, the sinusoidal disturbing force is distorted. The distorted force is periodic but generates

super harmonic components like 2N, 3N etc, where ‘N’ is the primary RPM of the machine. This

gives rise to high frequency components which can be of the order of about 150 Hz. The other

cause of a high frequency excitation is the short-circuiting force of the exciter, whose primary

frequency is 100 Hz. 
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6. TGDYN program

The “Turbo-Generator Dynamic Analysis” (TGDYN) is a program developed by the authors for

the linear dynamic analysis of machine foundation. The typical modules are for computation of

steady state response due to normal and abnormal eccentricity of rotor. Amplitude and strength

checks are carried out for the normal and abnormal imbalances respectively. The steady state

response computation can be processed either following mode superposition route or dynamic

stiffness route. Mode superposition has lumped and consistent mass options for generating the Eigen

pairs, using sub-space iteration. The dynamic stiffness has approximate formulations involving

lumped, consistent and average mass. The exact dynamic stiffness option is also implemented for an

Euler-Bernoulli beam element and is being extended to Timoshenko beam element. Soil-structure,

single pile-structure, group pile - structure interaction effects can be handled through any of the

frequency domain approaches. Frequency dependent stiffness of the pile tip is generated through

another module based on Lakshmanan and Minai’s Model (1981). The frequency information for

the dynamic stiffness approach, in the absence of an eigen value analysis is obtained through the

Sturm number generation employing Wittrick-William algorithm (Gopalakrishnan et al. 2001).

There are other modules which cater to dynamic load cases using seismic response spectrum

analysis and time history analysis approaches for impulsive short-circuiting forces. Critical static

load cases include thermal loads, which may involve uniform elongation of members or bowing of

members subjected to heat on one face only. The program, though developed for machine

foundations, is general and can be used for other structures as well. The element library consists of

three dimensional beams, truss, generalized six-DOF springs and truss type dampers. The storage of

stiffness and mass matrices are in the form of a vector sky-line form. The ‘COLSOL’ routine is

suitably converted and modified to account for the complex number arithmetic. The program

validation is done through NISA and ANSYS 5.6 software.

7. Convergence of the mode superposition solution to appropriate dynamic stiff-

ness method

As the number of participating modes increase, steady state response due to mode superposition,

using a particular mass formulation, asymptotically reaches the response predicted using the

dynamic stiffness method of the same mass formulation. Towards proving this statement, a one bay

and one storied frame (Fig. 1) is analyzed for steady state dynamic displacements both under

vertical as well as horizontal harmonic loads. The frequencies of excitation considered are 25, 50,

75 and 100 Hz. For each frequency, mode superposition and dynamic stiffness analysis is carried

out. Eigen frequencies and vectors are extracted with lumped mass formulation using sub-space

iteration technique. Response is also predicted using the dynamic stiffness method using a

combination of lumped mass and static stiffness. Mode superposition uses a percentage of critical

damping as viscous damping (ξ), whereas the dynamic stiffness method uses structural damping

factor (2ζ). The structural damping factor is similar to the loss factor of a visco-elastic material and

the product of the structural damping and the stiffness is assumed to be the imaginary portion of the

complex dynamic stiffness matrix. The equivalence of damping in both the cases is arrived at by

equating the maximum values of steady state displacements at resonance. 
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 (15)

,  at resonance (16)

,  therefore (17)

In the mode superposition method, number of modes participating in the response is cumulatively

increased and displacement values are plotted. The results of dynamic stiffness method are also

shown on the same graph. Figs. 2 and 3 (with lumped mass and static stiffness formulation) show

the variation of steady-state dynamic displacements predicted by both the methods in the horizontal

and vertical directions respectively. The curve is invariant of the modes in the dynamic stiffness

method whereas the response due to mode superposition cumulatively increases and converges to a

constant value as given by the dynamic stiffness method. Those modes, which do not have a

participation in the total response, do not give rise to a change in displacement and the response
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Fig. 1 Typical three dimensional machine foundation used in modal convergence study and for comparison of
various dynamic stiffness formulations

Fig. 2 Convergence of mode superposition results to
lumped mass based approximate dynamic stiff-
ness method  (transverse excitation)

Fig. 3 Convergence of mode superposition results to
lumped mass based approximate dynamic stiff-
ness method  (vertical excitation)
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gets major contributions only from a few selective modes and the curve shows major changes only

in these modes. It is also seen that number of modes, which participate in the response, are

relatively less for lower frequency of excitation and beyond certain modes, the contribution due to

additional modes are negligible. Convergence of response under higher frequencies of excitation is

relatively slower and requires more number of modes to participate in the response. In the proximity

of a global resonance, the response is dictated by the nearby mode and is least influenced by other

modes.

8. Performance of various dynamic stiffness formulations

Results of three approximate dynamic stiffness methods, formulated using lumped mass, consistent

Fig. 4 Horizontal displacement versus excitation fre-
quency for various dynamic stiffness formu-
lations (two sub-elements, horizontal excita-
tion)

Fig. 5 Horizontal displacement versus excitation fre-
quency for various dynamic stiffness formu-
lations (three sub-elements, horizontal excita-
tion)

Fig. 6 Column-shear versus excitation frequency for
various dynamic stiffness formulations (two
sub-elements, horizontal excitation)

Fig. 7 Column-shear versus excitation frequency for
various dynamic stiffness formulations (three
sub-elements, horizontal excitation)
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mass and average mass are presented. Comparison of performance of the various models is carried

out through steady state dynamic analysis of a one bay and one storied frame (Fig. 1) subjected to

both vertical and transverse-horizontal harmonic loads. The dynamic forces are applied at bearing

locations, at the centre of transverse beam. The forces are assumed to be in-phase. The sub-element

discretisation is progressively increased and the displacement and stress resultants are studied. Figs.

4 and 5 show the variation of driving point displacement under transverse excitation for two and

three sub-element discretisation. Same first lateral frequency and response is predicted by all

methods. Second resonant frequency and the corresponding displacement, predicted by consistent

mass is closer to the exact dynamic stiffness results whereas lumped mass results are the farthest.

Results of average mass formulation are between the results predicted by lumped and consistent

mass. As discretisation level is increased, each of the approximate formulation converges to a

constant value. Results of exact dynamic stiffness method are invariant of the discretisation level.

Fig. 8 Convergence of horizontal displacement for
various discretisations in lumped mass formu-
lation (horizontal excitation)

Fig. 9 Convergence of horizontal displacement for
various discretisations in consistent mass formu-
lation (horizontal excitation)

Fig. 10 Convergence of horizontal displacement for
various discretisations in average mass formu-
lation (horizontal excitation)

Fig. 11 Horizontal displacement for various discreti-
sations in exact dynamic stiffness formulation
(horizontal excitation)
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Figs. 6 and 7 show the variation of column shear under transverse excitation for two and three sub-

element discretisation. Shear force is a third derivative of displacement and will need more elements

to converge. Figs. 8 to 11 show the performance of each of the mass formulation as the fineness

increases. In this study, it is seen that lumped mass method requires at least four sub-elements to

converge to actual results whereas consistent mass needs only three sub-elements to converge. Figs.

12 to 13 show the variation of driving point displacement under vertical excitation for two and three

sub-element discretisation. Same first vertical frequency and response is predicted by all methods.

Difference between the approximate and exact dynamic stiffness method is more at weakly excited

modes and less at strongly excited modes. Strongly excited modes are those which have a large

amplitude at resonance and weakly excited modes have comparatively less amplitude at resonance.

Second pre-dominant resonant frequency, predicted by consistent mass is closer to the exact

Fig. 12 Vertical displacement versus excitation fre-
quency for various dynamic stiffness formu-
lations (two sub-elements, vertical excitation)

Fig. 13 Vertical displacement versus excitation fre-
quency for various dynamic stiffness formu-
lations (three sub-elements, vertical excitation)

Fig. 14 Convergence of vertical displacement for vari-
ous discretisations in lumped mass formu-
lation (vertical excitation)

Fig. 15 Convergence of vertical displacement for vari-
ous discretisations in consistent mass formu-
lation (vertical excitation)
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dynamic stiffness results, whereas results obtained by lumped mass approach are the farthest.

Results of exact dynamic stiffness method are invariant of the discretisation level. Figs. 14 to 17

show the performance of each of the mass formulation, under vertical excitation, as the fineness

increases. In this study, at least five sub-elements are required to converge to actual results in the

case of lumped mass approach, whereas consistent mass approach requires four sub-elements to

converge. Out of all the approximate methods, response predicted by consistent mass formulation is

closer to the exact one. Though, generally, lumped mass method under-estimates and consistent

mass over-estimates the natural frequencies, results of consistent mass formulation are closer to the

exact values and the results of average mass formulation do not improve the results substantially.

9. Sturm’s theorem and wittrick-william algorithm 

Generally, for a small dynamic problem involving only three or four unknowns,  is

expanded into a polynomial form and the roots are extracted. The matrices [K] and [M] are

invariant with the frequency of excitation. The polynomial coefficients are of alternate signs and

differ in magnitude of an order or two between successive terms. Hence the equation is susceptible

to large errors due to ill-conditioning. To improve its efficiency and reliability, the determinant

search method of eigen value solution can be modified, to use the Sturm sequence property of the

eigen value solution. The congruence transformation of a symmetric matrix involves writing a

typical matrix in the form, (Leung 1993):

 (18)

where [S] is a non-singular matrix. The congruent transformation is different from a similarity

transformation like . In a similarity transformation, similar matrices have the

same determinant and eigen pairs. However, the Sylvester’s law of inertia states that for a pair of

congruent matrices, the total number of positive, negative and zero eigen values are same.

The generalized equation of an eigenvalue problem can be stated as,

det K ω
2
M–[ ]

A[ ] = S[ ] B[ ] S[ ]T

A[ ] = P[ ] 1–
B[ ] P[ ]

Fig. 16 Convergence of vertical displacement for vari-
ous discretisations in average mass formu-
lation (vertical excitation)

Fig. 17 Vertical displacement for various discretisa-
tions in exact dynamic stiffness formulation
(vertical excitation)
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 (19)

Assuming [Φ] as a matrix, whose columns are represented by ortho-normalised eigenmodes of the

above problem and by pre and post multiplying by [Φ], the following expression is obtained,

 (20)

As [K] and [M] are symmetric and positive definite matrices, they can be decomposed in the

form,

 (21)

As stated earlier, the matrices in the previous two expressions are thus obtained using congruence

transformation of the  matrix and therefore should have the same number of positive,

negative and zero eigen values. The eigen values of the diagonal matrix  are its diagonal

entries (Dii). Also for the matrix, , the eigen values are , where ω is the

frequency up to which the Eigen values are sought. This proves the Sturm’s theorem which states

that the number of eigen values less than a particular frequency value of ω is the simple count of

negative diagonal entries in the LDLT decomposition of the  matrix. 

The Sturm’s theorem for discrete finite element system is extended to continuum models of

dynamic stiffness method using William - Wittrick algorithm. This states that the number of

frequencies less than a particular trial frequency ω is stated as 

 (22)

where ΣJm is the number of fixed-fixed frequencies less than ω, summed up for all elements and

 is the Sturm’s count of the frequency dependent dynamic stiffness matrix.

K[ ]s x{ } = ω
2

M[ ] x{ }

K[ ]s−ω
2

M[ ]( ) x{ } = 0{ }

Φ[ ]T K[ ]s−ω
2

M[ ]( ) Φ[ ] = Φ[ ]T K[ ]s Φ[ ]−ω2 Φ[ ]T M[ ] Φ[ ] = Λ[ ]−ω2
I[ ]

K[ ]s−ω
2

M[ ]( ) = L
ω

[ ] D
ω

[ ] L
ω

[ ]T

D
ω

[ ] = L
ω

[ ] 1–
K[ ]s−ω

2
M[ ]( ) L

ω
[ ] T–

Ks ω
2
M–[ ]

D
ω

[ ]
Λ[ ] ω

2
I[ ]– ω i

2
ω

2
–

Ks ω
2
M–[ ]

ΣJm + s D ω( ){ }

s D ω( ){ } = s Re KDE( )( )

s D ω( ){ }

Fig. 18 Sturm number versus excitation frequency for
various dynamic stiffness formulations (two
sub-elements)

Fig. 19 Sturm number versus excitation frequency for
various dynamic stiffness formulations (three
sub-elements)
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The program TGDYN has facility to extract the Sturm number at each frequency of excitation and

hence eigen values are in directly obtained. The accuracy of eigen values depend on the frequency

resolution with which Sturm sequence check is performed. Figs. 18 and 19 show the Sturm number

for two and three sub-elements. The performance is similar to the transverse and vertical responses,

but the plots reveal information on all frequencies and not necessarily on those pre-dominantly

excited ones. Fig. 20 shows the zoomed up view for a two sub-element level, indicating over-

estimation of eigen frequencies by consistent mass, under estimation by lumped mass. However, the

deviation is more for the lumped mass while average mass under estimates the frequencies, in this

study. Few of the commercial software successfully use average mass owing to the fact that static

stiffness formulation for an element other than beams are generally stiff and the combination of

static stiffness and average mass may balance the errors induced.

10. Minimum discretisation for mode superposition and approximate dynamic stiff-

ness methods

A reasonable guideline should be available to estimate the minimum number of sub elements to

which a main element has to be sub-divided in order to estimate the deformation and the stress

resultants of the element to a sufficient accuracy. The simplest guideline for calculating the number

of nodes or elements within a main structural element spanning between two beam-column joint is

based on the anticipated deformed shape of the element. The upper bound mode number at which

an element vibrates for the particular operating frequency can be estimated using the frequency

expressions for the simply supported or cantilever beam elements. Assuming a structural element to

be simply supported between the two beam column joints, if it had been found to be vibrating

between the (n-1) and nth modes for that operating frequency, then the minimum number of nodes

to be provided across the element is suggested as, 2n-1. (Excluding the intersection nodes). One can

similarly find the number of nodes, if the element is assumed to be a cantilever between the beam-

column joints. This logic is based on the assumption that the maximum mode that influences the

dynamic behavior of a structure at its element level could be the nth mode.

Fig. 20 Sturm number versus excitation frequency for various dynamic stiffness formulations (two sub-
elements)
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The natural frequency of a simply supported beam is given by the expression,

 (23)

With ‘ωop’ being known, the value of ‘n’ is derived as 

 (24)

For non-resonant conditions, ‘n’ is a fraction. Similarly, for a cantilever structure, the expression

for frequency can be approximated as,

For n = 1,

 (25)

and for n > 1,

 (26)

Hence the value of ‘n’ is derived as,

 (27)

For an axially loaded, simply supported member, ‘n’ is derived as

 (28)

Based on the above expressions and depending on the cross sections and the mass density, the

upper-bound frequency of excitation is computed for each of the member. The actual convergence

under lateral excitation for excitation frequency less than 100 Hz is reached for 4 sub-elements

when using lumped mass approach and 3 sub-elements using consistent mass approach. Similarly,

under vertical excitation for excitation frequency less than 100 Hz, convergence is reached with 5

sub-elements when lumped mass approach is used and 4 sub-elements using consistent mass

approach. 

The table suggests that at least four elements are required for frequencies less than 80 Hz and 5
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Table 1 Upper bound frequency (Hz) of excitation for each discretisation, predicted by different expressions

Expression Used
Structural Element

Beam1 Beam2 Column1

2 sub 
Elements

4 Sub 
Elements

6 Sub 
Elements

2 sub 
Elements

4 Sub 
Elements

6 Sub 
Elements

2 sub 
Elements

4 Sub 
Elements

6 Sub 
Elements

Simply supported 
Beam

78.5 314.0 706.5 34.9 139.6 314.1 58.9 235.6 530.1

Cantilever Beam 28.0 176.7 490.7 12.4 78.5 218.1 21.0 132.5 368.2

Axial Rod 216.5 650.0 1082.0 144.4 433.2 721.8 216.5 650.0 1082.0
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elements may be required for frequencies less than 100 Hz. Any beam element spanning between

two beam-column joint is neither simply supported nor a cantilever. The arbitrary rotational spring

stiffness provided by the joint, however shall give rise to higher values of element-level natural

frequencies only. However to take care of these uncertainties, and as a measure of caution, the

values predicted by the expression could be enhanced by 25% for consistent mass and 50% for

lumped mass.

11. Exact dynamic stiffness for a symmetrical plane frame

The first step in the implementation of the exact dynamic stiffness method for a three dimensional

case is to develop simplified expressions for a plane frame. This is done for a symmetrical plane

frame, typical of a transverse frame of a turbo-generator supporting structure with a loading at the

mid-span of the cross beam. There are nine DOF, including the load application point. By a

dynamically consistent load lumping procedure, the load at the centre of the beam could be

transferred to its ends. This is similar to the transfer of element loads to nodal loads but the shape

functions are the exact ones. 

The nodal load is given as, for a distributed load,  and for a concentrated

load, . This reduces the total degrees of freedom to six. Due to known positions of

loads and symmetry of the structure, further simplifications can be made.

For a transverse loading case, ; ; (29)

For a vertical loading case, ; ;  (30)

Further, vertical and transverse loading cases are applied successively such that when transverse

load is applied there are no vertical loads. Using these conditions, for a case of a plane frame (Fig.

21), dynamic stiffnesses are developed for vertical and transverse load cases. Figs. 22 and 23 show

the variation of steady state amplitudes when the transverse and vertical loads are applied on the top

of the column, as given by the expression and also through TGDYN. The results show an

interesting feature. For the vertically loaded frame, with the load application point on the top of the

column, there are no lateral displacement and rotations for low frequencies. But these values

become substantial at high frequencies, reinforcing the fact that the same simplifications and

P1 =  ∫ p x( )N1 x( ).dx

P1 = P0N1 x0( )

δ2x = δ1x δ2y = δ1y– θ2z = θ1z

δ2x = δ1x– δ2y = δ1y θ2z = θ– 1z

Fig. 21 Structure for validation of expressions derived using exact dynamic stiffness method for plane frames
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approximations as adopted for static and low frequency cases cannot be carried forward at high

frequencies. The other fact is that the total response at the bearings is a vectorial summation of

three components, namely, (a) response of the top of the columns under dynamically equivalent

nodal loads, (b) response at the centre of the beam, due to a uniform base excitation of amplitude as

computed in the first stage and (c) the response of the mid-span point of a fixed-fixed beam with a

dynamic load. This observation is also different from a static and low frequency case, wherein the

response of the column top is also the response of the centre of the transverse beam.

12. Modification of Major’s method with dynamic spring stiffness

The preliminary design of a machine foundation is done by the method suggested by Major

(1980). Each of the transverse frames is converted to an equivalent spring having the same lateral

stiffness as that of the frame (Fig. 24). Longitudinal beams are assumed to be rigid in the horizontal

plane. This result in a coupled translation and rotation and both the translational and rotational

spring stiffnesses are provided by the transverse frames. The resulting two DOF system is solved

Fig. 24 Major’s approximations in typical machine supporting structure

Fig. 22 Comparison of response obtained using
developed expressions for  a plane frame
(transverse excitation)

Fig. 23 Comparison of response obtained using
developed expressions for a plane frame
(vertical excitation)
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and the amplitude at resonance is computed assuming a large damping in the system. In the vertical

direction, Major’s method assumes that frames are generally unconnected and the contribution from

the longitudinal beams is assumed to be absent. The lacuna in the procedure is that, using

fundamental frequencies and mode shapes, it may not be able to determine the amplitudes at 50 or

100 Hz and to compensate for this, resonance amplitude at the fundamental lateral frequency is

computed, with a slightly larger damping. Hence an attempt is made to replace the static spring

stiffness of the lateral frames with the exact dynamic spring stiffness. The longitudinal members are

also assumed to be dynamically flexible with two DOF at each of the frame connecting point

(translation, parallel to the transverse frames and the associated rotation). The two longitudinal

beams are combined as a single beam with additive area and moments of inertia about the vertical

axis. The above system is analyzed for horizontal harmonic forces applied on the frames. The

Fig. 25 Typical machine foundation for comparison of modified major’s method and dynamic constraint
problem

Fig. 26 Performance of modified major’s approximation with reference to exact response (transverse
excitation)
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steady state translational amplitudes are compared with the results of the original three dimensional

frame (Fig. 25). The results are plotted in Fig. 26. The figure shows that beyond 14 Hz, the

deviation between the amplitudes predicted by the modified Major’s procedure and the exact

dynamic stiffness method is beyond acceptable level. When subjected to horizontal transverse

forces, each frame moves at an equal extent along the same direction on the top of the columns, but

to accommodate the rotation of the longitudinal beams about the vertical axis, these frames have to

move longitudinally at equal and opposite magnitudes. Neglecting the longitudinal movement of the

frame, even though the applied force is only along the transverse direction, is not a justifiable

approximation, particularly at high frequencies. The compatible rotation of the frames about the

vertical axis is also not ensured. This could be the cause of deviation from the modified Major’s

procedure to the exact dynamic stiffness method.

13. Introduction of dynamic constraint equations in the TGDYN program

As in the case of a static analysis, neglecting a particular DOF as close to zero has to be done

with care. The response shows a totally different pattern at high frequencies as different from a low

frequency excitation. Typical illustration is the vertical excitation of the plane frame with identical

loads on the top of the column. The best possible simplification could be the proper identification of

constraint equations, suitable at higher frequencies of excitation and their proper implementation in

the program. Introduction of constraint equation for the steady state dynamic response computation

is equivalent to a static analysis problem and all the simplifications that could be carried out in a

Table 2 List of constraints for a machine foundation subjected to vertical and horizontal loads (similar
constraints exist for node pairs 3-4 and 5-6 etc in Fig. 25)

DOF Transverse Loading Vertical Loading

X/Y/Z Translation ; ; ; ; 

X/Y/Z Rotation ; ; ; ; 

δ2x = δ1x δ2y = δ1y– δ2z = δ– 1z δ2x = δ1x– δ2y = δ1y δ2z = δ1z

θ2x = θ– 1x θ2y = θ1y θ2z = θ1z θ2x = θ1x θ2y = θ1y– θ2z = θ– 1z

Fig. 27 Response computed with dynamic constraints as against the normal method (transverse excitation)
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static problem could be introduced in the dynamic problem also. If two unknown DOFs are

connected together by a simple relation, like one displacement is equal or negative or a factor of the

other displacement, suitable modifications can be made in the stiffness matrix assembly and also in

the applied load vector. The simplification is possible strictly under certain conditions like symmetry

of geometry, loading, material and cross section properties. Another version of the dynamic analysis

program is introduced with facility to define constraint equations and this has also been verified

with the analysis results such that no constraints are explicitly stated. The available constraints are

to be identified and after that these can be explicitly stated in the input. Table 2 states the

constraints that are normally available for a machine supporting framed structure for both the

vertical and transverse loadings.

After introduction of the facility of constraint dynamic equation in the program, a dynamic

analysis is carried out both under transverse and vertical loads for the frame shown in Fig. 25. The

results are identical and are shown in Figs. 27 and 28 for the transverse and vertical directions

respectively. The constraint facility is not problem specific and any other possible constraint,

available to a particular class of problem can also be introduced in the program input.

14. Conclusions 

Computation of steady state dynamic response by mode superposition method can be erroneous at

higher frequencies due to the non-exact nature of the higher eigenvalues, arising from coarse

discretisation and the poor judgment of the range of frequencies participating in a dynamic response.

Frequency domain methods using direct dynamic stiffness solve the problems involved in the

missing of modes but still have approximations due to poor sub-element discretisation. The flaws of

the mode superposition method and the various approximate dynamic stiffness methods show up

only at high frequencies of excitation, a typical example being a high speed machine foundation.

Local and semi global modes manifest at higher frequencies and a finer discretisation has to be

ensured to prevent filtering out of any of the higher modes. The paper outlines the relative

performance of the various dynamic stiffness formulations, obtained through lumped, consistent and

average mass schemes with reference to the exact dynamic stiffness method. All the above

Fig. 28 Response computed with dynamic constraints as against the normal  method (vertical excitation)
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formulations, in addition to mode superposition route are implemented in the TGDYN program. The

convergence of response obtained through mode superposition method, as the number of modes

increase with the same formulation of the dynamic stiffness method is established. The sub-element

discretisation is progressively increased and the displacement and stress resultants are studied. As

discretisation level is increased, each of the approximate formulation converges. Results of exact

dynamic stiffness method are invariant of the discretisation level. Out of all the approximate

methods, response predicted by consistent mass formulation is closer to the exact one. Generally,

lumped mass method underestimates the frequencies and consistent mass over-estimates them.

However, results of consistent mass formulation are closer to the exact values and results of average

mass formulation does not substantially improve the over all performance. Simplified expressions

are developed for the stiffness of symmetrical plane frame subjected to machine-bearing-type

excitation in both the vertical and transverse directions and are compared with the results of the

program. The Sturm number generation on the real part of the complex dynamic stiffness matrix is

also implemented such that natural frequency information is made available even when the response

is computed through direct frequency domain approaches. In cases, where commercial software is to

be used, a simplified guideline is developed such that, depending on the frequency of excitation, a

minimum sub-element discretisation can be ensured. Simplifications, similar to those suggested by

Major are attempted on a typical machine foundation, in which the transverse frames are replaced

by equivalent springs. Unlike Major’s method, dynamic spring stiffness is used and the longitudinal

beams are also made dynamically flexible. However, such a model also does not yield good results

beyond 14 Hz and the absence of the longitudinal DOF of the frame brings in erroneous results.

The best possible simplification procedure is through implementation of dynamic constraint equations

in the program and this is also implemented. For a typical framed machine supporting structure,

suitable constraint equations are identified and the results of the modified program are compared

and found to be the same as the one in which the constraint equations are over-looked.
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Notations

N : No of degrees of freedom
M : No of modes extracted
[φ] : Mode shape matrix of size N × M 
cfi : A complex scalar of contribution factor for ith mode, 
{z} : A vector of cfi, of size, M × 1
[M]L1 : Lumped mass matrix approximated from distributed mass
[M]L2 : Lumped mass matrix from non-structural members
[C] : Damping matrix due to physical dampers
[K]S : Static stiffness matrix of the system
[K]DD : Distributed exact real part of dynamic stiffness matrix
[K]DL : Approximate complex dynamic stiffness matrix due to mass lumping
[K]DC : Approximate complex dynamic stiffness matrix due to consistent mass 
[K]DA : Approximate complex dynamic stiffness matrix due to average of lumped and consistent mass
[K]DE : Exact. complex dynamic stiffness matrix
{F} : Complex force vector due to harmonic motion
{d} : Complex displacement vector due to harmonic motion
ω or ωop : Forcing frequency in radians/sec
ωni : Natural frequency of nth mode in radians/sec
ζ : Structural damping factor
EI : Flexural rigidity of the beam section
ρA : Mass per unit length of beam
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ξ : Viscous damping percentage
[A],[S],[B],[P] : Example matrices to illustrate congruent and similarity transformations
[Lω],[Dω],[Lω]T : Lower triangular, diagonal and upper triangular matrices of the decomposed [K]−ω2[M]

matrix at every ω 
Σ Jm : is the number of fixed-fixed frequencies less than ω summed up for all elements
s{D(ω)}: Sturm count of dynamic stiffness matrix
i : 1–




