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Shape factor sγ for shallow footings

Viktor Puzakov
†

Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A.

 Andrew Drescher
‡

Department of Civil Engineering, University of Minnesota, 500 Pillsbury, Minneapolis, MN 55455, U.S.A.

Radoslaw L. Michalowski
‡†

Department of Civil and Environmental Engineering, University of Michigan, MI 48109, U.S.A.

(Received December 18, 2008, Accepted April 23, 2009)

Abstract. The results of FLAC3D-based numerical evaluation of the bearing capacity shape factor sγ
are presented for square and rectangular footings on granular soils. The results confirm a peculiar effect
found earlier by Zhu and Michalowski (2005), where for large values of internal friction angle, sγ exhibits
a peak at some aspect ratio of the footing, and then decreases towards unity at large aspect ratios. The
Zhu and Michalowski’s results were derived using the finite element program ABAQUS, and the results
presented in this note corroborate their earlier findings.
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1. Introduction

There is a considerable body of literature regarding experimental and theoretical studies dedicated

to the bearing capacities of square, rectangular, and circular shallow footings (Golder 1941,

Meyerhof 1963, Hansen 1970, De Beer 1970, Bolton and Lau 1993, Michalowski 2001, Michalowski and

Dawson 2002a, 2002b, Erickson and Drescher 2002, Lyamin et al. 2007). The results of these

studies have been traditionally presented as shape factors (shape modifiers), denoted as sc, sq, and

sγ , used to modify strip footing bearing capacity factors, Nc, Nq and Nγ , in the formula for bearing

capacity

(1)p cscNc qsqNq 0.5γBs
γ

N
γ

+ +=

† Graduate Research Assistant
‡ Professor, E-mail: dresc001@umn.edu
‡† Professor, Corresponding author, E-mail: rlmich@umich.edu

DOI: http://dx.doi.org/10.12989/gae.2009.1.2.113



114 Viktor Puzakov, Andrew Drescher and Radoslaw L. Michalowski

where c is the cohesion of the soil, q is the surcharge, γ is the unit weight of the soil underneath the

footing, and B is the width of the footing. Alternatively, formula (1) can be written as 

(2)

where , and  are referred to as the modified bearing capacity factors. The shape factors

can then be defined as 

(3)

Therefore, to determine shape factors sc, sq, and sγ , for rectangular footings, the bearing capacity

for such footings needs to be evaluated and compared with that of a strip footing.

In a recent paper by Zhu and Michalowski (2005), theoretical estimates of the shape factors for

square and rectangular footings were obtained using numerical code ABAQUS, and the results were

reported in tables and graphs. Using three-dimensional (brick) elements, footings with length/width

aspect ratios, L/B, from 1 to 5 resting on weightless soil, or soil with weight, were considered for a

range of friction angles φ from 0o to 40o. It was found that the dependence of shape factor sγ on the

internal friction angle and footing aspect ratio is rather complex. In particular, for friction angles

less than 30o, sγ increases monotonically with the increase in L/B. On the other hand, for larger

friction angle values, sγ initially increases and then decreases with the increase in L/B; the latter

implies the presence of a peak value of sγ for some aspect ratio L/B. Zhu and Michalowski (2005)

attributed this dependence to the effect of volumetric strain in plastically deforming material around

the footing. Indeed, as the computations were performed assuming an elastic-perfectly plastic

material model with the dilatancy angle equal to the friction angle, the larger the friction angle the

more the material dilates, and the deforming zones along the footing width and length spread and

interact in a complex fashion. 

The focus of this study is factor sγ , and not the remaining factors in Eq. (3). In particular, a

peculiar effect will be investigated found earlier by Zhu and Michalowski (2005), where for large

values of internal friction angle, sγ exhibits a peak at some aspect ratio of the footing. We

emphasize that the focus of this study is the unexpected shape of sγ function, and not the

numerical values of sγ . The objective is to indicate whether the peculiarity (a peak) found in

function sγ might be an artifact of the method used, or is it an effect originating from the

mechanics of the problem.

This note provides data on shape factor sγ for square and rectangular footings obtained by means

of FLAC3D (1997). A comparison of results obtained using different codes is of interest as there are

conceptual and algorithmic differences between various codes. ABAQUS (standard) is an implicit

code, whereas FLAC3D is an explicit (dynamic) code; also, the soil in FLAC3D is governed by the

associative flow rule, whereas the plastic potential function in ABAQUS does not follow precisely

the Mohr-Coulomb yield condition; rather, a smoothed approximation of the Mohr-Coulomb

pyramid (albeit a very close one) is used to avoid numerical convergence problems. The reader will

find the details of this model in Zhu and Michalowski (2005).
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2. Simulations with FLAC3D

Numerical simulations of the bearing capacity were conducted for one-quarter of the footing and

surrounding soil volume. Specifically, the soil volume (20B × 20B × 10B, B being the footing

width) was discretized into 13,500 brick-type elements. This mesh is different from the one in Zhu

and Michalowski (2005), who used the meshes from several hundred to 2,144 elements. However,

the numbers of the elements used in the two analyses are not comparable directly, because the

elements used by FLAC3D were 8-noded brick elements, whereas the elements generated by

ABAQUS were 20-node elements. 

The footing area in FLAC3D calculations was modeled with 100 equal size elements, and the

outside volume was divided into elements gradually increasing in size, Fig. 1(a). Discretized models

with several aspect ratios ranging from 1 to 4 were generated; additionally, a strip footing was

modeled, where plane-strain conditions were enforced by the footing length extending to the side

wall of the model. For comparison, simulations were performed using a bi-uniform mesh, in which

constant size elements were used, Fig. 1(b). These resulted in higher bearing capacity estimates and

they are not presented here. Kinematic boundary conditions allowing only vertical displacements

were applied at the volume walls, and no-displacement boundary condition was enforced at the

volume bottom.

The soil was modeled as elastic-perfectly plastic, obeying the flow rule associated with the Mohr-

Coulomb yield condition. It is well established that limit loads calculated with non-associated flow

rule cannot exceed those for associative rule (Radenkovic 1962). The use of the normality rule is

made here to allow direct comparison of the results to other solutions available in the literature. The

range of the friction angle used in these simulations spanned 15o to 40o. The Young’s modulus (E =

2 × 108 Pa) and Poisson’s ratio (ν = 0.44) selected for calculations assured that plastic yielding did

not occur in simulations of the geostatic state of stress, which may happen when using a

cohesionless yield condition. The bearing capacity of footings in simulations with elastic-perfectly

plastic soil model is independent of the elastic modulus; indeed, a ten-fold reduction in the Young’s

Fig. 1 (a) Distorted graded mesh for L/B = 2 and φ = 30o (displacement Magnification Factor = 3), and (b) bi-
uniform mesh 
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modulus did not affect the bearing capacity calculated. 

Two examples of a distorted mesh are illustrated in Fig. 1. One quarter of the footing indentation

is presented on this figure for an aspect ratio of 2 and the internal friction angle of φ = 30o. To make

the visualization clear, the displacements are magnified threefold. 

Upon inducing geostatic stresses, uniform vertical downward velocities (displacement rates) were

applied to the grid points within the footing plan (121 points); horizontal velocities were set to zero

to model rough interface between the footing and the soil. The velocities were applied in several

steps decreasing by the factor of 10. This procedure saved computational time while not affecting

the final results, and it is recommended in running FLAC3D simulations (Michalowski and Dawson

2002a, 2002b, Erickson and Drescher 2002).

The bearing capacity was calculated as the ratio of the sum of vertical components of all forces

acting on the footing to the footing area at the ultimate (steady-state) yielding. Analogous to Zhu

and Michalowski’s study, the footing area was extended to the mid-points of elements outside the

footing plan. Once the modified bearing capacity factors  were determined, the corresponding

shape factors sγ were calculated from Eq. (3), using  obtained for the footing in the plane strain

mode calculated by FLAC3D. These coefficients are presented in Table 1; for comparison, the slip-

line solutions after Martin (2005), and the upper bound values after Michalowski (1997) are also

presented in Table 1.

Nγ

*

N
γ

Table 1 Factor Nγ for strip footings

Nγ

Internal friction angle φ

15° 20° 25° 30° 35° 40°

FLAC3D 1.88 3.98 8.48 18.62 42.96 106.84

Slip-line Method (Martin 2005) 1.18 2.83 6.49 14.75 34.48 85.57

Upper Bound (Michalowski 1997) 1.93 4.46 9.76 21.39 48.68 118.82

Table 2 Shape factor sγ from FLAC3D analysis

L/B
Internal friction angle φ

15° 20° 25° 30° 35° 40°

1 0.79 0.81 0.84 0.90 0.99 1.14

1.05 0.81 0.82 0.85 0.91 1.01 1.16

1.1 0.82 0.83 0.86 0.93 1.02 1.18

1.3 0.85 0.86 0.90 0.95 1.05 1.19

1.5 0.87 0.88 0.92 0.97 1.06 1.19

1.75 0.89 0.90 0.93 0.98 1.06 1.19

2 0.91 0.92 0.95 0.99 1.07 1.18

2.5 0.93 0.94 0.97 1.00 1.07 1.17

3.0 0.95 0.95 0.98 1.01 1.06 1.16

3.5 0.96 0.96 0.98 1.01 1.06 1.14

4 0.97 0.97 0.99 1.02 1.06 1.13
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3. Computational results 

Table 2 presents the computed shape factor sγ as a function of internal friction angle φ and aspect

ratio of the footing. For comparison, the results reported by Zhu and Michalowski (2005) are shown

in Table 3. For smaller friction angle values, there is a very small difference between the results

obtained from FLAC3D and from ABAQUS. The difference is small also for φ > 30º and small

aspect ratios (up to 2), but increases with an increase in the aspect ratio. This can be seen in Fig. 2

where the results are compared graphically. However, all differences are relatively small (note that

sγ - scale in Fig. 2 does not start at zero). These small differences can be attributed to algorithmic

differences in the two codes, and the mesh size and element type used. Noticeably, FLAC3D

simulations reproduce the existence of the peak in sγ for higher φ values, albeit the peak becomes

more pronounced for φ = 40o rather than for φ = 35o as reported by Zhu and Michalowski (2005). In

general, the plausible argument of dilatancy playing an essential role put forward by Zhu and

Table 3 Shape factor sγ after Zhu and Michalowski (2005)

L/B
Internal friction angle φ

15° 20° 25° 30° 35° 40°

1 0.80 0.81 0.85 0.93 1.02 1.17

1.5 0.87 0.88 0.91 0.99 1.06 1.17

2 0.90 0.91 0.94 1.00 1.05 1.16

3 0.93 0.95 0.97 1.01 1.03 1.10

5 0.95 0.97 0.98 1.00 1.01 1.07

Fig. 2 Shape factor versus footing aspect ratio from the present solution and after Zhu and Michalowski
(2005)
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Michalowski appears warranted. 

It is interesting to notice that a similar effect is present in the results reported by Lyamin et al.

(2007), who presented average lower/upper estimates of shape factors sγ graphically, as function of

B/L rather than L/B. They suggested a linear dependence of sγ on B/L. A closer look at that

dependence for φ = 35o reveals a presence of a peak in sγ. This peak is even more prominent in

their upper estimates of sγ shown in Table 4; clearly, a peak is present between L/B = 1 and L/B = 2

for every internal friction angle reported. 

Zhu and Michalowski (2005) suggested the following analytic formulae to approximate the

observed numerical trends in sγ

(4)

A rather minor modification for the results using FLAC3D, to fit the numerical outcome more

accurately for case , can be made as follows

(5)

It is emphasized that the studies using ABAQUS and FLAC3D were independent. While the

computational methodologies (algorithms) in the two codes are different, the results are nearly the

same. This study confirmed the peculiarity found in sγ, and it lends credibility to earlier results of

Zhu and Michalowski (2005). While the differences between the two solutions are relatively small

(up to about 2% for φ ≤ 25o, and up to about twice that for φ > 25o), the solution of Zhu and
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Table 4 Lower and upper estimates of shape factor sγ after Lyamin et al. (2007)

L/B
Internal friction angle φ

25° 30° 35° 40° 45°

1 0.79*

1.39**

0.86
1.48

0.96
1.71

1.06
2.16

1.18
2.92

1.2 0.73
2.10

0.78
2.05

0.83
2.29

0.84
3.14

0.83
4.33

2 0.79
1.92

0.82
1.87

0.84
2.08

0.83
2.73

0.81
3.71

3 0.80
1.81

0.82
1.77

0.82
1.99

0.79
2.51

0.75
3.36

4 0.79
1.74

0.81
1.71

0.80
1.96

0.76
2.38

0.70
3.16

*Lower estimate
**Upper estimate
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Michalowski (2005) appears to yield slightly lower coefficients sγ, and they might be preferred in

design as they are more conservative.

4. Conclusions

The numerical values of the shape factor sγ for square and rectangular footings obtained from

FLAC3D simulations corroborate those obtained from ABAQUS simulations by Zhu and Michalowski

(2005). For φ values of 35o and higher, FLAC3D confirms the existence of a peak in the sγ function

at some low aspect ratio L/B. Notwithstanding the inherent differences in the FLAC3D and ABAQUS

codes and soil models used, the minor differences in sγ demonstrate the overall equivalence of the

results, and therefore the computational methods employed in the two codes. 
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