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Abstract.  The paper proposes a hybrid approach of artificial bee colony (ABC) and grey wolf optimizer 

(GWO) algorithm for multi-objective and multidimensional engine optimization of a converted plug-in 

hybrid electric vehicle. The proposed strategy is used to optimize all emissions along with brake specific fuel 

consumption (FC) for converted parallel operated diesel plug-in hybrid electric vehicle (PHEV). All 

emissions particulate matter (PM), nitrogen oxide (NOx), carbon monoxide (CO) and hydrocarbon (HC) are 

considered as optimization parameters with weighted factors. 70 hp engine data of NOx, PM, HC, CO and 

FC obtained from Oak Ridge National Laboratory is used for the study. The algorithm is initialized with 

feasible solutions followed by the employee bee phase of artificial bee colony algorithm to provide 

exploitation. Onlooker and scout bee phase is replaced by GWO algorithm to provide exploration. 

MATLAB program is used for simulation. Hybrid ABC-GWO algorithm developed is tested extensively for 

various values of speeds and torque. The optimization performance and its environmental impact are 

discussed in detail. The optimization results obtained are verified by real data engine maps. It is also 

compared with modified ABC and GWO algorithm for checking the effectiveness of proposed algorithm. 

Hybrid ABC-GWO offers combine benefits of ABC and GWO by reducing computational load and 

complexity with less computation time providing a balance of exploitation and exploration and passes 

repeatability towards use for real-time optimization. 
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1. Introduction 
 

The economic growth of a country extensively depends on transportation via road, rail, sea and 

air. Foremost among them is road transport. In India almost, all vehicles rely on fossil fuel-based 

transportation i.e., most on Petrol (Spark plug ignition IC engines) and Diesel (Compression 

ignition IC engine). These pollutes atmosphere by the emission of greenhouse gasses & causes 

global warming. 27 Indian cities are in the top 100 cities with the worst air pollution in the world 
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as per world health organization (WHO). In 2012 ambient (outdoor air pollution) in both cities and 

rural areas was estimated to cause 3 million premature deaths worldwide (Fact sheet. 2016). India 

stands third in the CO2 emission (The Carbon Brief 2019). Hence crucial steps are required to be 

taken to reduce emissions of present vehicles running on the road. Considering the available 

options hybridization of the conventional vehicle (CV) to electric can be one of the promising and 

necessary steps need to be taken. This will reduce the environmental impacts of automobile use 

without losing comforts, performance, storage room and extended driving range. However, there is 

less attention in terms of research on conversion of CV into PHEV and its energy management 

strategies as few papers are observed in literature related to the conversion of CV into 

HEV/PHEV, conversion of HEV to PHEV and converted HEV/PHEV (Ghorbani et al. 2010, 

Zulkifli, et al. 2012, Gupte 2014, AI-Atabil and Tala1 2002, Jenkins and Ferdowsi 2008, McIntyre 

et al. 2012, Zulkifli et al. 2012, Fuengwarodsakul 2009, Rizzo et al. 2011, Jenkinsand Ferdowsi 

2014, Tara et al. 2010, Ghorbani et al. 2013, Zeman and Lewis 2013, Wirasingha et al. 2008, 

Kaleg et al. 2015, Zhang et al. 2015, Gujarathi et al. 2015, Tavares et al. 2018, Gujarathi et al. 

2017a, b, Gujarathi et al. 2018, 2019). Some of them are related to energy management strategies, 

however complete vehicle simulation has done for power split in order to obtain fuel economy 

(Ghorbani et al. 2010, Zulkifli et al. 2012 and Guptea 2014) and emissions (Al-Atabi and Yusaf 

2002, Gujarathi et al. 2018, 2019). Fuzzy logic controller is proposed by Ghorbani et al.  (2010) to 

decide power sharing during Toyota Prius HEV to PHEV conversion. Testing has carried out for 

various driving cycles with different modes and improvement in fuel economy is observed mostly 

during the low state of charge (SOC) of the battery. Zulkifli et al. (2012) has shown saving of 25 

% of fuel consumption by development of split axle parallel HEV with in-wheel-motor using rule-

based energy management strategy. Experimental analysis and feasibility study has been carried 

out by Gupte (2014) for 1400 cc diesel engine car converted into the HEV by using BLDC hub 

motors. Significant improvement in fuel consumption has been observed with a simple on-off 

strategy. Al-Atabi and Yusaf (2002) has done experimental investigation in a single cylinder diesel 

engine for its use as a hybrid power unit (HPU) for a series hybrid electric vehicle. The results 

identified the minimum emission range of engine operation and shows the great potential in use of 

diesel engines as HPU for series HEV. Gujarathi et al. (2017) has shown substantial reduction in 

specific fuel consumption and emission using fuzzy logic based energy management strategy for 

converted parallel plug-in hybrid electric vehicle. Complete vehicle is simulated by Gujarathi et al. 

(2018). The emissions are observed to comply with BSIII norms for converted PHEV compared to 

conventional diesel vehicle for sample Indian urban driving cycle using fuzzy logic. Recently 

study on fuel economy and emissions for converted plug-in parallel hybrid electric vehicle versus 

conventional diesel vehicle on standard driving cycles has been carried out by Gujarathi et al. 

(2019). The results confirm the converted PHEV has less fuel consumption and emissions (NOx 

and PM) than a conventional vehicle.    

It is observed that there is a lot of research took place on the use of energy management 

strategies of PHEV mostly on power split to improve fuel economy by a variety of system 

parameters and few on reduction in emissions. However, after power split, if the engine needs to 

be operated then in-depth optimization of all emissions of the engine are not considered. Also, as 

per comprehensive analysis of energy management strategies carried out by Zhang et al. (2015), 

the existing approaches reduce computation load at the expense of optimization performance. 

Hence there is a need for optimization of both fuel economy and emissions of the engine, reducing 

computational complexity without compromise of optimization performance. However, fuel 

economy and emissions minimization are conflicting objectives and hence multiobjective 
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multidimensional problem becomes very complex.  

Recently swarm intelligence has proven its importance for the solution of those problems that 

cannot be easily dealt with classical mathematical techniques. The performance of artificial bee 

colony (ABC) algorithm is seen to be superior over other evolutionary algorithms (Karaboga and 

Basturk 2007, 2008). In 2009, Karaboga and Akay used ABC algorithm for multi-dimensional 

numeric engineering problems (high data with surface and counter plots) and results showed that 

ABC algorithm performs better than the differential evolution (DE), particle swarm optimization 

(PSO) and evolutionary algorithm (EA). However, the requirement of more time and poor 

exploration makes it unable for real-time. In contrast, Grey wolf optimizer proposed by Mirjalili et 

al. (2014) is comparatively simple, fast and gives comparable results. However, need further 

improvement in consistency of results for repeatable input of similar values (Gujarathi et al. 2018). 

Hence investigations are done by combining both to get required benefit towards real-time 

implementation. In continuation of work carried by Gujarathi et al. (2018) towards real-time 

implementable strategy, in this paper hybrid artificial bee colony-grey wolf algorithm is proposed 

for real world multi-objective engine optimization of converted plug-in hybrid electric vehicle. 

The papers contribute to first, reduction of emissions and fuel consumption together by using 

hybrid multi-objective ABC-GWO approach for converted PHEV to avail combine benefits of 

ABC and GWO. Second, investigate in a reduction in computational complexity and 

computational time without compromise of optimization performance. The proposed algorithm is 

simple, has less computational load and time, provide optimized results with strong capability 

towards practical real-time implementation. The rest of the paper is organized as follow: 

Section 2 provide details about proposed hybrid ABC-GWO algorithm applied for engine 

optimization of converted PHEV. Results are analyzed and discussed in section 3 followed by a 

conclusion. Details of engine maps generated are provided in the appendix for reference. 
 

 

2. Hybrid ABC-GWO optimization algorithm for converted PHEV 
 

2.1 Background 
 

For a converted PHEV, as per requirement of speed and torque of the engine, torque value is 

generated greater than required torque for optimized values of fuel consumption and emissions 

using ABC-GWO algorithm. Extra torque is used to charge the battery of PHEV. The overview of 

the algorithm can be seen from Fig. 1.   

The main goal of optimization is to determine the best operating point of the engine with 

minimized PM, NOx, CO, HC and FC. Since reduction of all emissions and brake specific fuel 

consumption together are not possible due to conflicting objective, a best-compromised solution is 

a required solution. In this work, the following objective function is considered: 

 

(1) 

where PMi, NOxi, HCi COi, and FCi are PM, NOx, CO, HC, and FC at index i, PMreq, NOxreq 

HCreq, COreq and FCreq are required value of PM, NOx, HC, CO and FC respectively. The 

weightage factors given to each variable are w1 = 0.25, w2=0.15, w3=0.15, w4=0.3 and w5=0.15. 
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Fig. 1 Hybrid ABC-GWO approach (images: Sustainablog. 2014 and Mirjalili et al. 2014) 
  

 

The required emission values considered for heavy diesel engine as per BSII norms applicable 

(ARAI 2011). PMreq = 0.15 g/kWh, NOxreq = 7 g/kWh, COreq = 4 g/kWh HCreq = 1.1 g/kWh 

and FCreq = 400 g/kWh. The optimized value of torque should be greater than or equal to required 

torque and less than or equal to maximum torque.   

 (2) 

The optimized solution should be such that the specific fuel consumption and emissions should 

be within limits.  

 
(3) 

 

2.2 Hybrid ABC-GWO optimization algorithm 
 

The first step of ABC Algorithm is the initialization of solution matrix which is done by 

generating random values within upper and lower limits. The solution matrix generated is with 

feasible and infeasible solutions. Because in ABC algorithm initialization with feasible solutions is 

a very time-consuming process and, in some cases, it is impossible to produce a feasible solution 

randomly (Karaboga and Basturk 2007). In this algorithm, the first step in ABC algorithm is 

followed but the initialization of solution matrix is done with feasible solutions. 

Emission and brake specific fuel consumption data are located in the form of a matrix 

generated from data obtained from Oak Ridge National Laboratory (Advance Vehicle Simulation 

Software). All these variables are a function of speed and torque. The torque range is divided from 

minimum value to maximum value into 27 parts in steps of 5 N-m i.e., from 0 to 135 Nm. Hence 

here swarm number SN=28 is considered as possible solutions for six optimization variables T, 

FC, CO, HC, NOx and PM i.e., D=6. The speed range of engine is 700 to 5000 rpm and is divided 

into 30 parts. For all mention value of speed and torque, the values of all emissions and brake 

specific fuel consumption are stored in the form of a matrix of dimension 31 x 28 as shown in Fig. 

2. Any other value required can be calculated by an interpolation method. Hence the first step is to 

read offline data stored, then check for any required speed and torque. If there is a requirement,  
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Fig. 2 Hybrid ABC-GWO optimization algorithm 
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values are extracted as seen in Fig. 2 to get initial 28 solutions vector i.e., 28 x 6. A number of 

cycles (MNC) are set to 2. The value of the objective function (f(Xi)) is calculated to get the 

fitness vector by using the Eqs. (1) and (4). 

 

(4) 

In order to produce a new solution, the following expression (5) is used in the employee bee 

phase: 

 
(5) 

where k ∈ {1, 2... SN} and j ∈ {1, 2... D} are randomly chosen indexes and are same for all j. 

Although k is determined randomly, it has to be different from i. φi,j is a random number between 

[-1, 1].  

If a parameter value produced by this operation exceeds its predetermined limit, the parameter 

can be set to its limit value. After each candidate source position Vi,j is produced and then 

evaluated by Eqs. (1) and (4), its performance is compared with that of its old one. If the new 

solution has better fitness value than the old one, new solution is stored at old place. Otherwise, 

the old one is retained in the memory. Now fitness values of updated solutions are calculated by 

Eq. (4). After this phase best three fitness values are selected to start GWO phase and considered 

this as search agent Xα, Xβ and Xδ.  
The values of A and C are calculated with random values of r1 and r2 between 0 to 1 using Eqs. 

(6) and (7). Whereas ‘a’ is linearly decreased from 2 to 0 over the iterations.  

A = 2 a r1 - a (6) 

C = 2 r2  (7) 

Using values of a, A and C, for each search agent the search position are updated by Eqs. (8) to 

(10).  

Dα =C1 Xα – X , Dβ =C2 Xβ – X, Dδ =C3 Xδ – X (8) 

X1= Xα – A1 Dα, X2 = Xβ – A2 Dβ, X3=Xδ – A3 Dδ (9) 

X (t+1) = (X1+ X2 + X3)/3 (10) 

The value of the objective function and fitness value is calculated. Now values of A and C is 

calculated by using Eqs. (6) and (7) to update search agents using Eqs. (8), (9) and (10). The 

fitness value is computed and compared with previous one and procedure is repeated up to a 

maximum number of iteration (t=10) to get the best solution. The entire procedure of employee 

bee phase and GWO is repeated for set maximum number of cycles (MNI=2) to get a best final 

solution as shown in Fig. 2.  
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3. Results and discussion 
 

A hybrid ABC-GWO algorithm coding is developed in MATLAB and tested extensively for 

various values of speed and torque. The maximum number cycles considered are 2 and number of 

iterations in GWO phase are 10. The results are given in Tables 1 and 2. Results are compared 

with work done by Gujarathi, Shah and Lokhande (2018) for grey wolf optimizer (GWO) 

algorithm run for 2 cycles and for modified artificial bee colony algorithm (MABC) run for 10 

iterations along with available engine maps. A repeatability test, fitness value comparison and 

number of iterations for maximum fitness along with environmental impact are shown in Figs. 3-

10. 

 

 
Table 1 Results for PM, NOx, CO, HC and FC optimization 

Engine 

Speed 

required 

in rpm 

Engine 

Torque 

required/ 

Optimized 

in Nm 

Method 

FC 

(required 

400 

g/kWh) 

CO 

(required 

4 g/kWh) 

HC 

(required 

1.1 

g/kWh) 

NOx 

(required 

7 g/kWh) 

PM 

(required 

0.15 

g/kWh) 

Fitness 

Value 

4999 31.93 Normal 432.62 9.4975 1.6659 9.0873 0.4461 0.2797 

 
134.89 MABC 219.96 1.3483 0.4107 4.8404 0.5276 0.4143 

  
Engine Mapping 219.97 1.3483 0.4106 4.8405 0.6039 0.3955 

 
54.16 GWO 347.75 1.7169 0.5021 8.6379 0.4568 0.3754 

  
Engine Mapping 347.75 1.7169 0.5021 8.6378 0.4568 0.3754 

 
132.99 ABC-GWO 223.05 1.3672 0.4164 4.9085 0.5069 0.4181 

  
Engine Mapping 223.18 1.3680 0.4167 4.9113 0.6127 0.3921 

4802 78.73 Normal 314.81 1.5114 0.5434 7.8161 0.4881 0.3796 

 
133.75 MABC 224.96 1.2570 0.3722 5.0000 0.4881 0.4253 

  
Engine Mapping 224.96 1.2569 0.3721 5.0000 0.4978 0.4226 

 
128.41 GWO 234.33 1.3093 0.3877 5.2083 0.5186 0.4127 

  
Engine Mapping 234.33 1.3093 0.3877 5.2082 0.5185 0.4127 

 
107.82 ABC-GWO 279.48 1.5622 0.4640 6.2165 0.6197 0.3704 

  
Engine Mapping 279.13 1.5596 0.4618 6.2041 0.6176 0.3710 

4550 108.18 Normal 282.99 1.4801 0.4482 5.9254 0.6448 0.3687 

 
132.66 MABC 230.74 1.2068 0.3654 4.8312 0.5257 0.4173 

  
Engine Mapping 230.73 1.2068 0.3654 4.8310 0.5257 0.4173 

 
108.34 GWO 282.55 1.4778 0.4475 5.9161 0.6437 0.3690 

  
Engine Mapping 282.56 1.4779 0.4475 5.9162 0.6438 0.3690 

 
126.02 ABC-GWO 242.87 1.2703 0.3846 5.0852 0.5533 0.4049 

  
Engine Mapping 242.87 1.2702 0.3846 5.0851 0.5534 0.4049 

4333 114.58 Normal 272.59 1.3575 0.4225 5.3108 0.6469 0.3763 

 
133.67 MABC 233.70 1.1638 0.3622 4.5530 0.5546 0.4131 

  
Engine Mapping 233.70 1.1638 0.3622 4.5531 0.5546 0.4131 
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Table 1 Continued 

Engine 

Speed 

required 

in rpm 

Engine 

Torque 

required/ 

Optimized 

in Nm 

Method 

FC 

(required 

400 

g/kWh) 

CO 

(required 

4 g/kWh) 

HC 

(required 

1.1 

g/kWh) 

NOx 

(required 

7 g/kWh) 

PM 

(required 

0.15 

g/kWh) 

Fitness 

Value 

4333 128.81 GWO 242.52 1.2077 0.3759 4.7248 0.5756 0.4041 

  
Engine Mapping 242.52 1.2077 0.3759 4.7249 0.5755 0.4041 

 
130.82 ABC-GWO 238.52 1.1230 0.3488 4.5035 0.5079 0.4265 

  
Engine Mapping 238.61 1.1235 0.3489 4.5052 0.5081 0.4264 

4182 117.73 Normal 270.77 1.2749 0.3960 5.1125 0.5766 0.3958 

 
133.80 MABC 238.21 1.1216 0.3484 4.4977 0.5073 0.4268 

  
Engine Mapping 238.21 1.1216 0.3484 4.4977 0.5073 0.4268 

 
118.35 GWO 269.36 1.2682 0.3939 5.0858 0.5736 0.3971 

  
Engine Mapping 269.35 1.2682 0.3939 5.0856 0.5736 0.3971 

 
123.87 ABC-GWO 257.70 1.2134 0.3769 4.8657 0.5488 0.4077 

  
Engine Mapping 257.31 1.2115 0.3763 4.8583 0.5479 0.4081 

3850 123.71 Normal 292.64 2.3338 0.3844 5.6819 0.6228 0.3676 

 
134.89 MABC 270.68 2.1746 0.3551 5.2840 0.5775 0.3852 

  
Engine Mapping 270.69 2.1745 0.3551 5.2842 0.5774 0.3852 

 
124.06 GWO 292.45 2.3376 0.3840 5.6859 0.6229 0.3675 

  
Engine Mapping 292.45 2.3376 0.3840 5.6859 0.6229 0.3675 

 
131.51 ABC-GWO 277.72 2.2311 0.3643 5.4213 0.5925 0.3791 

  
Engine Mapping 277.72 2.2310 0.3643 5.4214 0.5924 0.3791 

3700 126.02 Normal 292.17 2.1719 0.3684 5.6845 0.5322 0.3893 

 
133.92 MABC 280.37 2.0003 0.3533 5.5353 0.4956 0.4031 

  
Engine Mapping 280.37 2.0002 0.3533 5.5352 0.4955 0.4031 

 
127.44 GWO 290.86 2.1327 0.3666 5.6872 0.5245 0.3917 

  
Engine Mapping 290.86 2.1326 0.3666 5.6872 0.5245 0.3917 

 
134.70 ABC-GWO 278.74 1.9879 0.3512 5.5037 0.4925 0.4045 

  
Engine Mapping 279.15 1.9909 0.3517 5.5117 0.4933 0.4042 

3500 128.67 Normal 292.26 1.9208 0.3372 5.7941 0.4255 0.4185 

 
134.89 MABC 287.00 1.7637 0.3252 5.7859 0.3996 0.4288 

  
Engine Mapping 287.00 1.7636 0.3252 5.7860 0.3996 0.4288 

 
129.15 GWO 292.13 1.9053 0.3364 5.8035 0.4231 0.4193 

  
Engine Mapping 292.13 1.9052 0.3364 5.8036 0.4231 0.4193 

 
128.81 ABC-GWO 292.22 1.9162 0.3370 5.7968 0.4248 0.4188 

  
Engine Mapping 292.22 1.9162 0.3369 5.7969 0.4248 0.4188 

3150 132.18 Normal 291.32 1.6524 0.2710 6.3274 0.3109 0.4518 

 
134.95 MABC 290.70 1.5736 0.2665 6.3541 0.3003 0.4562 

  
Engine Mapping 290.70 1.5736 0.2665 6.3543 0.3003 0.4562 

42



 

 

 

 

 

 

Hybrid artificial bee colony-grey wolf algorithm for multi-objective engine optimization… 

 

Table 1 Continued 

Engine 

Speed 

required 

in rpm 

Engine 

Torque 

required/ 

Optimized 

in Nm 

Method 

FC 

(required 

400 

g/kWh) 

CO 

(required 

4 g/kWh) 

HC 

(required 

1.1 

g/kWh) 

NOx 

(required 

7 g/kWh) 

PM 

(required 

0.15 

g/kWh) 

Fitness 

Value 

3150 134.47 GWO 290.81 1.5873 0.2673 6.3495 0.3022 0.4554 

  
Engine Mapping 290.81 1.5873 0.2673 6.3496 0.3021 0.4554 

 
134.49 ABC-GWO 290.80 1.5866 0.2672 6.3497 0.3021 0.4555 

  
Engine Mapping 290.80 1.5866 0.2672 6.3499 0.3020 0.4555 

2456 134.57 Normal 299.29 1.3227 0.2498 7.6195 0.1471 0.4948 

 
134.98 MABC 299.20 1.3143 0.2492 7.6344 0.1462 0.4952 

  
Engine Mapping 299.20 1.3143 0.2491 7.6345 0.1462 0.4952 

 
134.64 GWO 299.27 1.3213 0.2497 7.6220 0.1469 0.4949 

  
Engine Mapping 299.28 1.3213 0.2497 7.6221 0.1469 0.4949 

 
134.98 ABC-GWO 299.20 1.3142 0.2491 7.6345 0.1462 0.4952 

  
Engine Mapping 299.20 1.3142 0.2491 7.6346 0.1462 0.4952 

2160 126.43 Normal 308.37 1.2701 0.2789 8.4600 0.1290 0.4872 

 
134.85 MABC 307.21 1.1333 0.2743 8.8787 0.1123 0.4901 

  
Engine Mapping 307.21 1.1332 0.2743 8.8792 0.1123 0.4901 

 
133.41 GWO 307.40 1.1560 0.2752 8.8098 0.1150 0.4896 

  
Engine Mapping 307.41 1.1560 0.2752 8.8100 0.1150 0.4896 

 
126.43 ABC-GWO 307.87 1.1790 0.2759 8.5995 0.1179 0.4911 

  
Engine Mapping 308.37 1.2700 0.2789 8.4604 0.1290 0.4872 

2000 116.73 Normal 314.86 1.3005 0.2561 8.5217 0.1348 0.4840 

 
133.79 MABC 312.76 1.0416 0.2436 9.4562 0.1046 0.4870 

  
Engine Mapping 312.77 1.0416 0.2435 9.4565 0.1046 0.4870 

 
120.57 GWO 307.40 1.1560 0.2752 8.8098 0.1150 0.4896 

  
Engine Mapping 313.70 1.2457 0.2497 8.7350 0.1292 0.4845 

 
132.20 ABC-GWO 312.76 1.0240 0.2432 8.8764 0.1024 0.4966 

  
Engine Mapping 312.77 1.0663 0.2440 9.3726 0.1077 0.4867 

1888 106.84 Normal 323.41 1.3218 0.2544 8.4607 0.1353 0.4832 

 
115.97 MABC 320.80 1.1419 0.2311 8.9967 0.1150 0.4876 

  
Engine Mapping 320.87 1.1580 0.2337 9.0051 0.1174 0.4862 

 
111.63 GWO 322.01 1.2178 0.2403 8.7337 0.1232 0.4864 

  
Engine Mapping 322.01 1.2177 0.2403 8.7341 0.1231 0.4864 

 
107.25 ABC-GWO 323.18 1.1323 0.2269 8.4607 0.1090 0.4976 

  
Engine Mapping 323.29 1.3111 0.2528 8.4833 0.1339 0.4836 

1700 84.47 Normal 344.41 1.8458 0.3288 7.8159 0.2344 0.4447 

 
125.27 MABC 332.81 1.1405 0.2045 9.3046 0.1106 0.4844 

  
Engine Mapping 332.92 1.1219 0.2043 9.3977 0.1111 0.4833 
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Table 1 Continued 

Engine 

Speed 

required 

in rpm 

Engine 

Torque 

required/ 

Optimized 

in Nm 

Method 

FC 

(required 

400 

g/kWh) 

CO 

(required 

4 g/kWh) 

HC 

(required 

1.1 

g/kWh) 

NOx 

(required 

7 g/kWh) 

PM 

(required 

0.15 

g/kWh) 

Fitness 

Value 

1700 84.68 GWO 344.28 1.8356 0.3271 7.8283 0.2333 0.4451 

  
Engine Mapping 357.15 3.2547 0.5925 6.9231 0.3105 0.4027 

 
118.53 ABC-GWO 333.05 1.0252 0.1946 9.1506 0.1013 0.4925 

  
Engine Mapping 333.51 1.1427 0.2092 9.2617 0.1194 0.4816 

1500 51.00 Normal 392.97 4.1249 0.7691 6.6170 0.3232 0.3829 

 
133.48 MABC 354.05 1.3612 0.1857 9.6070 0.1254 0.4695 

  
Engine Mapping 353.49 1.2162 0.1857 9.9159 0.1318 0.4658 

 
68.75 GWO 373.25 2.4900 0.4403 8.1240 0.2861 0.4104 

  
Engine Mapping 373.26 2.4899 0.4403 8.1244 0.2861 0.4104 

 
103.39 ABC-GWO 354.80 1.1033 0.2102 10.1934 0.1596 0.4539 

  
Engine Mapping 354.81 1.1033 0.2102 10.1939 0.1596 0.4539 

1350 45.90 Normal 420.59 4.6916 1.0189 6.6750 0.3224 0.3663 

 
134.20 MABC 372.08 0.9745 0.1826 11.3120 0.1301 0.4503 

  
Engine Mapping 372.30 1.4546 0.1826 10.2135 0.1887 0.4388 

 
101.07 GWO 373.97 1.0641 0.2163 11.1960 0.1427 0.4447 

  
Engine Mapping 373.98 1.0641 0.2163 11.1968 0.1427 0.4447 

 
85.95 ABC-GWO 378.63 1.2462 0.1854 10.4011 0.1288 0.4567 

  
Engine Mapping 378.86 1.4171 0.2641 10.5585 0.1935 0.4298 

1234 41.96 Normal 445.74 5.3683 1.2652 6.5215 0.3577 0.3452 

 
119.27 MABC 381.99 1.0909 0.1843 11.7730 0.1431 0.4379 

  
Engine Mapping 378.75 1.2519 0.1898 11.2212 0.1685 0.4348 

 
49.12 GWO 429.73 4.0972 0.9050 7.8798 0.3191 0.3659 

  
Engine Mapping 429.74 4.0971 0.9049 7.8802 0.3191 0.3659 

 
63.11 ABC-GWO 408.77 2.0120 0.1838 9.5821 0.1430 0.4469 

  
Engine Mapping 409.69 2.5502 0.5178 10.0253 0.2398 0.3959 

1111 37.77 Normal 480.9200 6.1965 1.4983 6.1590 0.0209 0.4906 

 
128.15 MABC 364.54 1.4630 0.1757 10.0840 0.1978 0.4387 

  
Engine Mapping 364.70 1.5206 0.1757 10.6899 0.2048 0.4291 

 
54.11 GWO 442.68 3.5586 0.7329 10.0930 0.3666 0.3490 

  
Engine Mapping 442.70 3.5587 0.7329 10.0940 0.3667 0.3489 

 
130.09 ABC-GWO 364.85 1.5649 0.1746 10.5813 0.2117 0.4278 

  
Engine Mapping 364.85 1.5650 0.1746 10.5814 0.2117 0.4278 

845 28.73 Normal 596.75 9.2749 2.4330 6.3403 0.7663 0.2409 

 
132.03 MABC 355.56 1.7281 0.1850 11.6660 0.2773 0.3984 

  
Engine Mapping 361.61 1.7574 0.1882 12.1295 0.2821 0.3919 
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Table 1 Continued 

Engine 

Speed 

required 

in rpm 

Engine 

Torque 

required/ 

Optimized 

in Nm 

Method 

FC 

(required 

400 

g/kWh) 

CO 

(required 

4 g/kWh) 

HC 

(required 

1.1 

g/kWh) 

NOx 

(required 

7 g/kWh) 

PM 

(required 

0.15 

g/kWh) 

Fitness 

Value 

845 95.84 GWO 489.49 2.3083 0.2592 16.6250 0.3792 0.3221 

  
Engine Mapping 489.51 2.3085 0.2592 16.6267 0.3792 0.3221 

 
64.90 ABC-GWO 496.29 2.5170 0.4843 17.8956 0.4091 0.3034 

  
Engine Mapping 496.31 2.5172 0.4844 17.8976 0.4092 0.3033 

800 27.20 Normal 626.85 10.2320 2.7355 6.7161 0.8108 0.2273 

 
128.30 MABC 374.51 1.8047 0.2036 10.4090 0.3113 0.3989 

  
Engine Mapping 374.50 1.8047 0.2036 13.1997 0.3113 0.3739 

 
84.15 GWO 510.19 2.0560 0.3174 19.5020 0.4060 0.3008 

  
Engine Mapping 510.22 2.0562 0.3174 19.5037 0.4060 0.3008 

 
38.32 ABC-GWO 567.92 7.2598 1.6649 9.9227 0.7887 0.2465 

  
Engine Mapping 567.94 7.2602 1.6650 9.9240 0.7888 0.2465 

700 3.40 Normal 1794.20 50.9860 20.0700 17.9420 0.8109 0.0781 

 
124.13 MABC 392.56 1.8559 0.2335 11.8520 0.3704 0.3698 

  
Engine Mapping 392.57 1.8560 0.2335 15.3070 0.3704 0.3434 

 
29.10 GWO 658.74 10.4840 2.7420 8.9444 0.8399 0.2166 

  
Engine Mapping 658.74 10.4843 2.7421 8.9442 0.8399 0.2166 

 
53.64 ABC-GWO 571.81 4.6165 0.9032 18.7493 0.8103 0.2353 

  
Engine Mapping 571.81 4.6165 0.9032 18.7493 0.8103 0.2353 

 

 

It can be seen that almost all constrained are within limit except NOx and PM (deviation of 

NOx is more at lower values of speeds whereas PM at higher values). It is critical and not feasible 

to keep all the emissions within limit at all speeds of the engine. The optimization results show 

that if we are operating the engine at higher torque value irrespective of speed requirement, the 

fuel consumption and emissions can be lower. It is also observed that at lower values of speed, the 

specific fuel consumption of engine is higher e.g., at speed of 1100 rpm, the specific fuel 

consumption is 364.85.22 g/kWh, whereas as speed value increases it reduces e.g., at speed of 

3700 rpm, the specific fuel consumption is 278.74 g/kWh. If the required speed of the engine is 

lower, specific fuel consumption can be improved by operating engine at a higher torque.  

It is observed that hybrid ABC-GWO algorithm shows better fitness value for a wider range of 

speed i.e., from 1350 rpm to 3700 rpm followed by MABC and then GWO with few exceptions.  

Moreover, the MABC is better at lower and very higher values of speed. It can also be seen that 

the results obtained by optimization algorithm are matching with actual engine maps. The plotting 

of same is shown in Fig. 3. It can be seen that almost all values of optimization parameters 

obtained by ABC-GWO are nearly same as compared to actual engine mapping with some 

exceptions as shown in Fig. 3 below.  
The environmental impact of hybrid ABC-GWO and comparison with MABC and GWO is 

shown in Figs. 4-7. The entire range of speed is divided into two parts: Range of speed from idle  
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(a) Comparison of CO obtained by ABC-GWO 

with engine map 

(b) Comparison of HC obtained by ABC-GWO 

with engine map 

  

(c) Comparison of NOx obtained by ABC-GWO 

with engine map 

(d) Comparison of PM obtained by ABC-GWO 

with engine map 

 
(e) Comparison of FC obtained by ABC-GWO with engine map 

Fig. 3 Comparison of values of optimization parameters obtained by ABC-GWO with Engine Map 

 
 

speed 700 rpm to 2000 rpm and 2001 to 5000 rpm for better interpretation of results. 
It is observed from Figs. 4 and 5 that there is a substantial reduction in CO and HC above 4182 

rpm and at lower values below 1700 rpm of engine speed compared to normal. Moreover, there is 
a slight reduction in all other values. Also, MABC gives lowest values mostly followed by ABC-
GWO and then GWO. 
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Fig. 4 Comparison of optimized CO obtained by ABC-GWO with MABC, GWO and normal 

 

  

Fig. 5 Comparison of optimized HC obtained by ABC-GWO with MABC, GWO and normal 

 

  

Fig. 6 Comparison of optimized NOx obtained by ABC-GWO with MABC, GWO and normal 

 

 

It can be seen from Fig. 6 that NOx can be optimized at higher values of speed (i.e., above 

4182 rpm from Fig. 6(a) and it is increased for a speed less than 1700 rpm at the compromise of 

reduction in other optimization parameters. Also, MABC gives lowest values for higher speed 

followed by ABC-GWO and GWO gives lowest values at lower speed with exceptions mostly 

followed by ABC-GWO. 
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Fig. 7 Comparison of optimized PM obtained by ABC-GWO with MABC, GWO and normal 

 

 

Fig. 8 Fitness value for optimized algorithms 

 

 

Fig. 9 Repeatability test for optimized torque 

 

 

It can be seen from Fig. 7 that PM can be optimized at almost all of values of speed with few 

exceptions as shown in Fig. 7(a). ABC-GWO gives lowest values for lower speed and MABC 

gives lowest values at higher speed with exceptions. 

The fitness function comparison of ABC-GWO with MABC and GWO algorithm at different 
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engine speeds are shown in Fig. 8. 

It is observed that average fitness value of hybrid ABC-GWO is better than GWO, however, 

less than MABC. It is observed that ABC-GWO performs better in the mid and high range of 

speeds whereas MABC performs better in the lower range of speeds. 

For the engine speed requirement of 4000 rpm, hybrid ABC-GWO algorithm has been run for  

 

 

 

Fig. 10 Repeatability test for optimized specific fuel consumption 

 

 

Fig. 11 Repeatability test for optimized CO 

 

 

Fig. 12 Repeatability test for optimized HC 
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Fig. 13 Repeatability test for optimized NOx 

 

 

Fig. 14 Repeatability test for optimized PM 
 

 

10 times to check the consistency of results obtained. It is observed that ABC-GWO algorithm 
gives deviated results. Figs. 9-13 show the deviations in optimized value with reference to values 
obtained during the first run.  

There are slight deviations in results if same input is applied repeatedly. The deviation in the 
result for optimized torque is +1.8 Nm and -11.56 Nm w.r.t. first reference value obtains i.e., 
133.16 Nm. The deviation in the result for fuel consumption is more i.e., +24.4 g/kWh and -3.49 
g/kWh i.e., w.r.t. first reference value obtains i.e., 256.46 g/kWh. However, deviations in CO and 
HC are observed to be less i.e., +0.1041 g/kWh and -0.0222 g/kWh for CO and +0.0226 and -
0.048 g/kWh for HC as seen in Figs. 11 and 12. The NOx and PM variations are observed to be 
+0.4664, -0.0668 and +0.0513, -0.0073 respectively. It can be seen that ABC-GWO likely to give 
results on slightly higher values compared to a first reference value. 

 

 

4. Conclusions 
 

Hybrid ABC-GWO algorithm has proposed and simulated for minimization of specific fuel 
consumption and emissions for the engine of converted PHEV. Results show that a trade-off is 
required between emissions and specific fuel consumption to get properly optimized value. The 
confirmation of results obtained with mapping of the engine and other optimization algorithms like 
MABC and GWO validates the effectiveness of proposed strategy. The observations are: first, 
MABC is better in fitness function at lower values of speed with the requirement of more time, 
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GWO is fastest with lowest average fitness value and hybrid ABC-GWO offers comparable fitness 
function with less time compared to MABC and better fitness function and comparable time with 
referenced GWO. Second, there is balance in exploitation and exploration. Exploitation is better in 
a number of cycles whereas exploration is observed over the number of iterations. Third, the 
deviation in results are observed on the higher side for repeatability of same input and fourth, 
computation time is around 3 sec to run the complete algorithm for 2 cycles/10 iterations with 
acceptable results for core i5 processor with 4 GB RAM compared to 4 sec of MABC and 2 sec of 
GWO. Hence hybrid ABC-GWO can be examined for practicability.  

For future work, we are going to use this algorithm for performance analysis of converted 
PHEV with different driving cycles. 
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