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Abstract.  In this paper, an analytical method is proposed to study the effect of crack and axial load on 

vibration behavior and stability of the cracked columns. Using the local flexibility model, the crack has been 

simulated by a torsional spring with connecting two segments of column in crack location. By solving 

governing eigenvalue equation, the effects of crack parameters and axial load on the natural frequencies and 

buckling load as well as buckling load are investigated. The results show that the presents of crack cause to 

reduction in natural frequencies and buckling load whereas this reduction is affected by the location and 

depth of the crack. Furthermore, the tensile and compressive axial load increase and decrease the natural 

frequencies, respectively. In addition, as the compression load approaches to certain value, the fundamental 

natural frequency reaches zero and instability occurs. The accuracy of the model is validated through the 

experimental data reported in the literature. 
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1. Introduction 
 

Structures undergo different changes such as formation and expansion of cracks, exhaustion, 

corrosion, and other probable damages. The effects of these parameters on the structure load 

capacity and safety should be considered in its design. Existence of cracks in structures may 

impact their mechanical and dynamic behavior, and considerably reduce the load capacity and 

strength of them. Column under axial load are structures that the existence of cracks impacts their 

behavior. Any defect in these structures causes changes in their behavior and stability, and if not 

detected may lead to destruction and disastrous damages. 

Crack in columns may be formed because of impurity, impact, cyclic loads, vibration, 

aerodynamic loads and etc. it is obvious that cracks ruins the continuity of the column, weakens it, 

and decreases its load capacity. Many studies have investigated the stability, buckling critical load 

(Anifantis and Dimaragonas 1981, Nikpour 1990, Gurel and Kisa 2005, Jiki and Karim 2011, 

Krauberger et al. 2011, Jiki 2012, Vadillo et al. 2012) and dynamic response of the cracked  

                                                           
Corresponding author, Associate Professor, E-mail: ghaffar@tabrizu.ac.ir 



 

 

 

 

 

 

Masoud Ghaderi, Hosein Ghaffarzadeh and Vahid A. Maleki 

 

columns (Kim and Cho 2006, Jiki 2007, Rahai and Kazemi 2008, Butcher 2010, Deliang et al. 

2011, Gürkan et al. 2012, Guirong et al. 2013), Kisa (2011) studied the vibration behavior and 

stability of cracked beams under axial loads by using the finite element method. He modeled the 

crack using the torsion spring, and performed the stability analysis to calculate the buckling 

critical load. Caddemi et al. (2012) investigated the vibration behavior of cracked Euler-Bernoulli 

beam under axial load. In their study crack was assumed to be open edge and its effect was applied 

using Dirac delta function in equation of motion. Jena et al. (2012) studied the effect of crack on 

vibration behavior of cracked beams. Yazdchi et al. (2008) calculated the buckling load of cracked 

columns with different sections. Their results show that increasing the crack depth reduces the 

buckling critical load of the columns. Ranjbaran et al. (2008) investigated the buckling and free 

vibration of the beam with varying and cracked sections. Using the calculus of variations, they 

modeled the problem as an optimization problem, and studied the effect of the crack on vibration 

behavior of the cracked beams. Toygar et al. (2012) investigated the impact of crack on buckling 

critical load of composite beams using the experimental tests and the finite element method. Binici 

(2005) studied the lateral vibrations of cracked Euler-Bernoulli under axial load. Results showed 

that compressive loads up to 30% of the buckling loads can change the first natural frequency up 

to 15%. This effect is lower for other frequencies. Okamura (1969) performed studies on narrow 

columns with one crack to define the load capacity and fracture load of the column. 

In many studies accomplished in this field, the effect of crack parameters on vibration behavior 

and stability of cracked beams and columns under axial loads (Yazdchi and Gowhari 2008, Kisa 

2011, Caddemi and Caliò 2012, Jena et al. 2012) and in absence of axial loads (Kim and Cho 

2006, Butcher 2010, Deliang et al. 2011, Gürkan et al. 2012, Guirong et al. 2013) was 

investigated. Most of the studies were based on numerical methods such as transfer matrix (Gurel 

and Kisa 2005) and the finite element method (Jiki and Karim 2011, Jiki 2012) which cause many 

errors in calculations. By using these methods, detecting the cracks and investigation of different 

parameters effects cannot be easily accomplished. 

In the present study, a new analytical method is presented to investigate the vibration behavior 

and buckling critical load of cracked columns under axial loads. The crack is modeled using 

torsion spring that connects the two intact part of the column at the crack location. Applying the 

fracture mechanics theory, equivalent stiffness of the torsion spring is derived as a function of 

crack depth. The governing differential equation of the column lateral vibration under the axial 

load is derived from Hamilton principle. After applying the boundary and compatibility conditions 

at the crack location, the corresponding eigenvalue value problem is obtained. Then, effect of 

crack parameters on vibration behavior and critical load of the cracked column for different 

boundary conditions is investigated. Comparing the results of the presented model and 

experimental results from the literature review, shows that the new model despite the simplicity, 

predicts the vibration behavior and stability of the cracked columns under axial loads for a vast 

range of crack parameters and axial load, accurately.  

 

 

2. Local flexibility in column caused by crack 
 

Fig. 1 shows the section of a column having an open edge crack with constant length. The 

traditional method to apply the crack effect on column behavior is the local flexibility model in 

which crack is modeled using mass-less torsion spring, and the spring equivalent stiffness is 

derived from the fracture mechanics theory. The additional strain energy caused by crack is 
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expressed by local flexibility coefficient, which is a function of stress intensity coefficient. Local 

flexibility coefficient for a crack with the width b and depth ac is derived using Castigliano 

theorem as 
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Pi is the external load component along the corresponding displacement ui, and J() is the 

function of strain energy density which is 
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where E and v is Young’s modulus and Poisson’s coefficient, respectively. KI() is stress intensity 

factor for first mode of fracture in correspondence with bending moment M, which for rectangular 

section is (Tada et al. 2004) 
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where h, Io are height and inertia moment of column section. For rectangular section, the function 

F(ac/h) is expressed as 
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The equivalent stiffness of the rotational spring Kt using the fundamentals of fracture 

mechanics presented the corresponding compliance equation in the following form 

1
tK

C
                                (5) 

where C is local flexibility coefficient for the first mode of loading in correspondence with 

bending moment, and equal to 

 
2 2 2

2 2 2

2 0 0

(1 )
(1 ) ( )

c ca a

Ι

o

b ν bh
C K α dα π ν αF α dα

E M EΙ

 
  

           (6) 

 

 

3. Free vibration of cracked column under axial load 
 

Cracked Euler-Bernoulli column under constant axial load and applied mathematical model are 

shown in Fig. 1. The crack is located at xc, and its effect is modeled by using a torsion spring 

which connects the two intact parts at the crack location. 

Using Hamilton principle and assumptions of Euler-Bernoulli beam theory, the governing 

equation of lateral vibration behavior related to each of the intact parts is derived as 

1183



 

 

 

 

 

 

Masoud Ghaderi, Hosein Ghaffarzadeh and Vahid A. Maleki 

 

P

P

(d)

Kt

b

h

α c

x c

L

(a)

P

(b) (c)

P

(e)  
Fig. 1 Schematic view of the cracked column (a) Simply supported, (b) Simply-Clamped, (c) Clamped-

Clamped, (d) clamped-Free and (e) mathematical model of the crack 
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where EI, P, A are bending rigidity of the column, compressive axial load and mass per unit 

volume of the column. For using the torsion spring model, first it is necessary to find the analytical 

solution of the above equation. Harmonic solution of Eq. (7) is shown as y(x,t)=Y(x)e
iωt

. 

Substituting this solution in Eq. (7) leads to 

4 2
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where  is natural frequency of intact column under axial load. The above equation is linear 

differential equation of second order with constant coefficients. To solve the Eq. (8), the solution 

can be assumed as 
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where coefficients Ai(i=1→4) are unknown constants obtained from boundary and ompatibility 

conditions at the crack location.  ,  are dimensionless parameters defined as follows 
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3.1 Solving the governing differential equation of cracked column vibration 
 

To derive the frequency equation of the cracked column lateral vibration under axial load, the 

mathematical model of the cracked column shown in Fig. 1 is applied. Using Eq. (9), the solution 

of Eq. (8) for the two intact parts of the column at the crack sides can be derived as 

1 2 3 4

ζ ζ η η
( ) sin( ) cos( ) sinh( ) cosh( )L

x x x x
Y x B B B B

L L L L
= + + +          (13) 
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The system vibration modes (Eqs. (13) and (14)) include 8 unknowns Bi(i=1→8) which are 

obtained from boundary and compatibility conditions at the crack location. The compatibility 

conditions at x=xc are found from continuity condition of deflection, moment and shear load, and 

slope difference at the crack sides that are respectively as follows 

       

       

     

, ,

2 2
,

E

L c R c L c R c

L c L c R c R c

t L c t R c R c

Y x Y x Y x Y x

Y x Y x Y x Y x
L L

K Y x K Y x Y x

 

  

     

    
 

              (15) 

The presented analytical model can be applied for different boundary conditions. Therefore, in 

the present study the standard boundary conditions (simple, cantilever, end-supported cantilever 

and fixed) are investigated.  

 

3.2 Buckling of cracked column under axial load 
 

The governing equation of cracked column deflection under axial load is expressed as 

4 2

4 2
0
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dx dx
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Solution of the Eq. (16) can be written as follows 
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Considering the above equation, solution for the two intact parts of the column at the crack 

sides are as 
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Eqs. (18) and (19) include 8 unknowns Di, i=1, 2,…, 8 which are obtained from boundary and 

compatibility conditions at the crack location. 
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The eigenvalue problem in correspondence with lateral vibration and buckling of the cracked 

column is obtained from substituting the equations found for the two intact parts of the cracked 

column in continuity conditions of Eq. (15), Applying the boundary conditions, 8 algebraic 

equation for the unknown coefficients B={Bi} or D={Di}(i=1→8) as follows 

[ ]{ }Δ 0B =                                (20) 

[ ]{ }Δ 0D =                                 (21) 

In the Eq. (21), elements of the coefficient matrix [] depend on geometric and mechanical 

characteristics, boundary conditions, crack parameters and axial load. To have non-trivial solution, 

the determinant of coefficient matrix should be equal to zero. So, the eigenvalue problem for the 

cracked column under axial load is obtained as 

( )det[Δ , , ,ω ] 0t cK x P =                           (22) 

Solving the last equation natural frequencies of the cracked column is obtained. Also, 

considering the statically case (Eq. (21)), the buckling critical load of the cracked column is found. 

 

 

4. Analytical results 
 

For validating the presented model, experimental tests results of (Vakil et al. 2012) are used. In 

the mentioned reference the tests were accomplished on cracked cantilever beam with length 

L=820 mm, width b=20 mm, height h=10 mm, elasticity module E=70 GPa, mass per unit volume 

=2700 Kg/m
3
, and in absence of axial load. Table 1 demonstrates natural frequencies of cracked 

cantilever beam in absence of axial load. In this table, a comparison between the results from 

experimental tests of (Vakil et al. 2012) and the results of the current study model is performed for 

different parameters of crack. Results show that maximum error of the model in calculating first, 

second and third natural frequencies are 0.95, 0.9 and 0.74, respectively. It can be seen that the 

presented model predicts the vibration behavior of the cracked column with proper accuracy. The 

dimensionless crack parameters are αc=αc/h and β=xc/L, where αc and β are dimensionless crack 

depth and location, respectively. 

Diagram of the first and second frequency ratio changes with relative location of the crack is 

demonstrated in Figs. 2 and 3. Results show that in the second vibration mode, the lowest decrease 

of the second frequency is for the crack located at relative location β=0.2. The mentioned location 

is the point of inflection of the second vibration mode function. At this location the second 

derivative of deflection function is zero. It means that bending moment at that point during the 

column vibration at the second mode is zero. Since the major factor of decrease in natural 

frequencies due to crack is bending moment therefore, at the second vibration mode effect of the 

crack located at β=0.2 on ratio of the second natural frequency decrease is negligible. Fig. 4 shows 

diagram of frequency ratio at the first vibration mode with crack relative depth for different crack 

relative locations. As seen the crack causes natural frequency reduction, and this reduction has a 

direct relation with the crack depth. Increasing the crack depth and consequently increasing local 

flexibility of the column at the section where the crack exists, more decrease is seen in natural 

frequencies. Also, results show that for crack closer to the fixed end, effect of the crack on 

frequency reduction is more. 
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Table 1 Natural frequencies of clamped-free cracked column and Comparisons of the results with 

experimental data of (Vakil et al. 2012)  

Crack parameters, 

mm 
Natural Frequencies, Hz 

Crack 

location 

Crack 

depth 

f1 f2 f3 

Exp. [a] 
Presented 

method 
Error% Exp. [a] 

Presented 

method 
Error% Exp. [a] 

Presented 

method 
Error% 

30 1 11.49 11.58 0.73 72.11 72.60 0.69 201.99 203.37 0.68 

30 2 11.47 11.50 0.23 72.04 72.23 0.27 201.92 202.61 0.34 

600 1 11.51 11.60 0.83 72.11 72.69 0.81 201.98 203.47 0.74 

600 2 11.49 11.60 0.95 71.93 72.57 0.90 201.73 203.01 0.63 

a (Vakil et al. 2012) 

 

 
Fig. 2 First frequency ratio of the clamped-free cracked column for different crack depth 

 

 
Fig. 3 Second frequency ratio of the clamped-free cracked column for different crack depth 
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It is obvious from the Eq. (22) that natural frequencies of cracked column also depend on axial 

load. Diagram of first frequency ratio of the cracked column under axial load with the axial load 

magnitude for both compressive and tensile loadings is shown in Fig. 5. Results show that tensile 

load increases natural frequencies. Also, compressive load reduces natural frequencies. At 

buckling load the first natural frequency becomes zero, and the system becomes unstable. 

From other advantages of the presented model is the possibility of calculating the buckling load 

of the cracked columns. For intact column, buckling load is calculated from Euler formula as 

follows (Surya and Dale 2004) 

2

2

π

( )
e

EI
P

KL
=                                (23) 

where K is column effective length factor. For cantilever, simple, end-supported cantilever and 

fixed columns, K is 2, 1, 0.7 and 0.5, respectively (Surya and Dale 2004), Using Eq. (21), 

 

 

 
Fig. 4 First frequency ratios for different crack location 

 

 
Fig. 5 First frequency ratio of clamped-free cracked column for different axial loads 
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buckling load of cracked columns can be calculated. Dimensionless buckling load changes of 

cantilever cracked column with crack relative location for different relative depth of the crack is 

demonstrated in Fig. 6. Pcr and Pe is buckling load of cracked and intact columns, respectively. 

Results show that crack decreases buckling load and load capacity of the column. For instance, 

buckling load for studied intact cantilever from Euler formula is Pe=3.67EI, and for the cracked 

column with relative depth 0.6 and at relative location 0.001 is Pcr=3.35EI. Therefore, the crack 

decreases the buckling load of the cracked column 9.67% in comparison with intact column. It is 

seen that at a given crack location, increasing the crack depth reduces the column buckling load. 

Effect of crack location on column buckling load is different based on boundary conditions. 

Figs. (7)-(8) show buckling load changes of the cracked columns having end-supported cantilever 

 

 

 
Fig. 6 Buckling load of the clamped-free cracked column vs. the crack location for various crack depth 

 

 
Fig. 7 Buckling load of the clamped-simply supported cracked column vs. the crack location 
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Fig. 8 Buckling load of the simply support cracked column vs. the crack location for various crack depth 

 

 

and fixed boundary conditions for different crack relative depth. It is seen that crack decreases the 

buckling load of the column. According to fracture theory, it is obvious that strain energy stored in 

elastic materials under bending moment is a function of applied bending moment. Therefore, for 

crack with a given depth, crack at location in correspondence with the maximum bending moment, 

has the maximum effect on reduction of buckling load and load capacity. In addition, crack located 

at points of inflection where bending moment is zero, has no effect on buckling load of the cracked 

column. For cantilever column as the crack, location is closer to the fixed end, the crack effect on 

buckling load increases. 

 

 

5. Conclusions 
 

In the present study, a new analytical method is presented to investigate stability and vibration 

behavior of cracked columns under axial load. The presented model for the crack uses the torsion 

spring with equivalent stiffness calculate from fracture mechanics theory. After deriving the 

governing differential equation of lateral vibration behavior of the column under axial load, by 

applying boundary and compatibility conditions the corresponding eigenvalue problem is derived 

to investigate the effect of axial load and crack parameters on vibration behavior and buckling load 

of cracked columns. Results show that tensile axial load increases the natural frequencies. On the 

other hand, compressive axial load decreases the natural frequencies, and at the buckling load the 

first natural frequency becomes zero, and the system becomes unstable. Also, results show that 

crack reduces local stiffness of the column, and at a given crack location, increasing the crack 

depth raises the effect on vibration behavior and buckling load of the column. For a given crack 

depth, the crack location changes the natural frequencies reduction. Since the major factor of 

reduction of natural frequencies and buckling load caused by crack is bending moment, at 

locations where bending moment becomes zero the effect of crack on natural frequencies and 
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buckling load decreases. Comparison between results from the presented analytical solution and 

experimental tests shows the very good accordance of the two methods for a vast range of crack 

parameters.  
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