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Abstract.  The recent re-assessment of the seismic hazard in Europe led for many regions of low to 

moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced 

masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid 

diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or 

replacing URM walls with RC walls. Of late, also several new construction projects have been conceived 

directly as buildings with both RC and URM walls. Despite the widespread use of such construction 

technique, very little is known about the seismic behaviour of mixed RC-URM wall structures and codes do 

not provide adequate support to designers. The aim of the paper is therefore to propose a displacement-based 

design methodology for the design of mixed RC-URM edifices and the retrofit of URM buildings by 

replacing or adding selected URM walls with RC ones. The article describes also two tools developed for 

estimating important quantities relevant for the displacement-based design of structures with both RC and 

URM walls. The tools are (i) a mechanical model based on the shear-flexure interaction between URM and 

RC walls and (ii) an elastic model for estimating the contribution of the RC slabs to the overturning moment 

capacity of the system. In the last part of the article the proposed design method is verified through non-

linear dynamic analyses of several case studies. These results show that the proposed design approach has 

the ability of controlling the displacement profile of the designed structures, avoiding concentration of 

deformations in one single storey, a typical feature of URM wall structures. 
 

Keywords:  displacement-based design; modern mixed reinforced concrete-unreinforced masonry wall 

structures; seismic design; pushover analyses; inelastic time history analyses 

 

 

1. Introduction 
 

In recent years, many modern unreinforced masonry (URM) buildings, which have been 

constructed with reinforced concrete (RC) slabs, have been retrofitted by adding RC walls to the 

existing structure or by replacing selected URM walls with RC ones (Magenes 2006, Cattari and 

Lagomarsino 2013). If the RC members are designed to withstand larger displacement demands 

than URM walls, experimental and numerical studies have shown that this retrofit technique can 
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substantially increase the displacement capacity of the system (Paparo and Beyer 2014, 2015). Of 

late, also new buildings have been designed directly as mixed RC-URM wall structures since 

structures with URM walls only would not pass the classical force-based design check.  

Mixed RC-URM construction varies significantly from region to region (Magenes 2006, Cattari 

and Lagomarsino 2013) and this paper is limited to modern mixed RC-URM systems that are 

representative of residential buildings for countries of low to moderate seismicity in central 

Europe. These systems are characterised by the following features: 

- The RC-URM buildings are modern edifices of three to five storeys and the masses are evenly 

distributed over the height. 

- The RC and URM walls are continuous over the height and connected at each floor by 20 to 

30 cm thick RC slabs that provide an efficient rigid diaphragm action. 

- The length of the RC walls varies between 2 and 5 m and their aspect ratios is within 1.5 and 

3. The RC walls are 20 to 30 cm thick and designed according to modern codes to develop a 

flexural behaviour with displacement capacities larger than those of URM walls. The mean 

concrete cylinder compressive strength at 28 days is between 20 and 50 MPa and the 

reinforcement bars have mean yield strengths between 500 and 600 MPa. The total longitudinal 

reinforcement ratio of the RC walls varies between 0.2% and 4.0% (EN 1992-1 2004). In the RC 

slabs the longitudinal reinforcement ratio varies between 0.13% and 4.0% (EN 1992-1 2004). 

- The URM walls have lengths up to 7 m and aspect ratio in the range of 0.5 and 3. The URM 

walls always outnumber the RC ones and are built with hollow clay 20 to 30 cm thick bricks in 

combination with standard cement mortar. URM walls are characterised by mean masonry 

compressive strengths (fcM) between 4 and 8 MPa and axial stress ratios (ζ0/fcM) between 0.05 and 

0.25.  

Despite the popularity of these constructions, research efforts have been directed only recently 

towards developing seismic design methodologies for mixed RC-URM wall buildings. As a 

consequence, codes do not provide guidelines for such mixed structures (Magenes 2006) and 

design engineers have generally designed them using oversimplified assumptions. Noting the 

importance of such buildings and, at same time, the lack of guidelines, the principal objective of 

this investigation is to develop a displacement-based design (DBD) methodology for the design of 

mixed RC-URM wall structures and the retrofit of URM buildings by replacing or adding selected 

URM walls by RC ones. The methodology follows the direct DBD (DDBD) approach by Priestley 

et al. (2007) and consists of three main phases: 

(i) A preliminary DDBD check of the plain URM building. 

(ii) If the structure does not satisfy the seismic design requirements and shows a dominant 

shear behaviour, a mixed structural system with improved behaviour is devised by replacing the 

critical URM wall or walls with RC ones. If the URM walls show a dominant rocking behaviour, 

adding RC walls will increase the strength but not the displacement capacity.  

(iii) The DDBD design of the mixed RC-URM wall structure is carried out. Several aspects 

concerning the interaction between RC and URM walls are evaluated by using a mechanical model 

which represents the URM walls with an equivalent shear beam and the RC walls with an 

equivalent flexural cantilever. At the end of the procedure, guidelines for the design of the RC 

members and the out-of-plane check of the URM walls are briefly outlined. 

As the mechanical model represents these mixed buildings close to failure (see Section 3), the 

proposed DDBD approach can be used for the design of systems which are expected to attain, 

according to EN 1998-3 (2005), the significant damage (SD) limit state. Furthermore, as the article 

focuses on the in-plane interaction between RC and URM walls, the possible formation of out-of-
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plane mechanisms is not examined. Investigations on the out-of-plane behaviour of systems with 

RC and URM walls have been carried out by Tondelli and Beyer (2014). In addition, to simplify 

matters, possible sources of uncertainty are neglected (for instance, uncertainty in the deformation 

capacity of the URM walls is not accounted for).  

Section 2 introduces features of this typology of mixed systems relevant for DDBD and 

outlines how the displacement capacity of such structures has been evaluated. The section is then 

followed by a description of the mechanical model that represents the effects of the interaction 

between RC and URM walls. Sections 4 to 6 introduce the concepts of the DDBD approach and 

develop its application for mixed RC-URM wall structures. The algorithm is then applied to a set 

of case studies and validated against results from inelastic time-history analyses (Section 7). The 

article closes with a summary of the main findings and an appendix with a design example.  

 

 

2. Features of mixed RC-URM walls structures 
 

In this section, features of mixed RC-URM walls structures relevant for DDBD are introduced 

with the following objectives: 

(i) To define the design displacement profile that will be adopted in DDBD; 

(ii) To define for which cases the interaction between URM and RC walls may improve the 

structural behaviour; 

(iii) To set the design drift limits that will be adopted. 

Under lateral loading, shear dominated URM wall buildings display concave displacement 

shapes as illustrated in Fig. 1(a). On the other hand, the displacement profiles of slender RC wall 

are convex when struck by an earthquake, Fig. 1(b). Consequently, as represented in Fig. 1(c), it 

seems reasonable to assume a global linear design displacement profile when RC and URM walls 

are coupled together. Indeed, Section 3 will show that such an assumption can be controlled during 

the DDBD process by varying the strength and stiffness of the RC walls. 

The same behaviour was described by Paulay and Priestley (1992) for dual frame-wall 

buildings. Slender wall elements, which show mainly flexural deformations, are coupled to frames, 

whose global behaviour can be approximated by that of a shear beam. As a result, and similarly to 

 

 

URM  wal l  structure:
concave profi le

RC wal l structure:
convex profi le

M ixed RC-URM  wall  structure:
linear profi le

(a) (b) (c)

 
Fig. 1 URM (a), RC (b) and mixed RC-URM wall (c) structures: deflected shapes and displacement profiles 
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mixed RC-URM wall buildings, the deformed shape of dual frame-wall buildings tends to be 

linear over the height of the building. 

If the masonry walls have a dominant rocking response, they will exhibit a linear or slightly 

convex deformation profile and less benefit is gained by coupling RC walls with URM walls. 

However, due to the significant out-of-plane stiffness and strength of the RC slabs (Lang 2002) 

and the resulting moment restraint at each floor level, a shear critical behaviour of the URM walls 

is very common in such mixed systems. 

For this typology of modern mixed structures, the RC members are designed to exhibit larger 

displacement capacities than those relative to URM walls. As a consequence, the SD limit state is 

always controlled by the URM walls since they attain the limit state before the RC members 

(Paparo and Beyer 2014, 2015). In the following, the SD limit state is considered attained when 

the first URM wall reaches its inter-storey drift capacity (Paparo and Beyer 2015) that is set equal 

to 0.4% for walls with dominant shear behaviour and 0.8% HCF/L for walls with dominant rocking 

behaviour (EN1998-3 2005). HCF and L are the height of contra-flexure point and the length of the 

wall, respectively. The inter-storey drift δ is calculated as the relative horizontal displacement 

between the beams underneath and above the selected storey (Δi and Δj) divided by the storey 

height h 

h

ji 


 
(1) 

 

 

3. Shear-flexure cantilever model 
 

The interaction between shear and flexural dominated systems has been studied over the last 50 

years and several methods for analysing dual frame-wall systems have been proposed. One of 

these is the so-called “shear-flexure cantilever”, which treats walls and frames as flexural and 

shear cantilevers respectively (e.g., Chiarugi 1970, Rosman 1974, Pozzati 1980, Smith and Coull 

1991). Given the similarities of mixed RC-URM wall buildings to dual frame-wall structures, the 

shear-flexure cantilever model is extended for analysing such structures. The objective is to 

develop a simple tool able (i) to check the displacement profile of mixed RC-URM wall structures 

and (ii) to evaluate the height of the contra-flexure point of the RC walls (HCF,RC). Both parameters 

will be used in the DDBD process presented in Section 6. 

After the description of the mechanical model (Section 3.1) and the comparison of several 

results against numerical simulations (Section 3.2), charts which can be directly used during the 

DDBD procedure are presented (Section 3.3). 

 

3.1 Differential equations of the shear-flexure cantilever model 
 

The interaction between RC and URM walls can be described with a simple mechanical model 

which consists of a pure bending cantilever, representing the RC walls, and a pure shear cantilever, 

which describes the URM walls. The two beams are continuously connected over the height by 

axially rigid links with zero moment capacity, Fig. 2. 

The differential equations for a shear-flexure cantilever have been first set up and solved by 

Rosman (1967) and the following work is based on the textbook by Pozzati (1980). At any cross 

section at height x, the drift θ(x) can be calculated as the ratio between the shear carried by the 
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shear cantilever, V1(x), divided by its shear stiffness GA 

GA

xV

dx

xdv
x

)()(
)( 1

 
(2) 

where v(x) is the horizontal displacement of the system. The shear V1(x) is the derivative of the 

moment carried by the shear cantilever M1(x) with respect to x. Its derivative can be written as 

2

1
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At any height, the ratio 
2

1

2
)(1

dx

xMd

GA
of the shear cantilever has to be equal to the curvature of 

the flexural beam. Given OTM(x) the overturning moment introduced by the external forces and 

M2(x) the moment carried by the flexural beam, it therefore follows 
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The general solution of Eq. (4) is 

Shear beam: )(sinhcosh)(1 xM
H

x
B

H

x
AxM tp

















   (5a) 

Flexure beam: )()()( 12 xMxOTMxM   (5b) 

where α is the stiffness ratio of the shear and flexural beam and is obtained as 

EI

GA
H

 
(6) 

where EI is the sum of the flexural stiffnesses of the concrete walls and GA is the sum of the shear 

stiffnesses of the masonry walls. In Eq. (5a) Mtp(x) is the particular solution which, for constant 

horizontal load q, takes the following form 

2

)()( 











H
qxOTMxM tp

 

(7) 

In Section 3.3 the limitations related to the adoption of the constant load pattern will be 

discussed. The two constants A and B of Eq. (5a) are found by assigning two boundary conditions. 

In literature the shear-flexure cantilever was used to solve the elastic behaviour of dual structures. 

Hence, the equations were solved for boundary conditions where (i) the moment at the top of the 

shear cantilever is zero and that (ii) the rotation at the base of the flexure cantilever is zero, which 

implies that the flexure cantilever is fixed at the bottom. For the mixed RC-URM wall structure at 

SD limit state the equations need to be solved for different boundary conditions, which will be 

discussed in the following.  

Since the model aims to represent the structure attaining SD limit state, it is expected that the 

RC walls yield. In order to account for the formation of the plastic hinge at their base, the flexural 

cantilever is modelled with a pinned base condition. A base moment, corresponding to the total  
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URM RC

x

v

RC OTM (x=0)

M 2

V 2

M 1

V 1

q

x

(a) (b)

 
Fig. 2 Mechanical model: identification of shear (URM) and flexural (RC) walls (a); definition of the 

reference system and of the internal forces (b) 

 

 

flexural capacity of the RC walls, is then applied as external moment to the hinge in addition to the 

externally applied horizontal load q. The parameter βRC describes the ratio between the base 

moment M2(x=0) provided by the flexural (RC) wall and OTM(x=0) 

)0(

)0(2






xOTM

xM
RC

 
(8) 

The second constant can be derived by setting the moment at the top of the shear beam equal to 

zero: M1(x=H)=0. The shears V1(x) and V2(x) are found as the derivate of M1(x) and M2(x) with 

respect to x. By analytically integrating the drift θ(x) between the base (x=0) and the height of the 

floor (x=hi), the horizontal displacement νi of each storey is calculated 


hi

i dxx
0

)(
 

(9) 

 

3.2 Comparison of the results of the shear-flexure cantilever model against numerical 
simulations 
 

For several configurations of mixed RC-URM wall structures, the inter-storey drift predicted 

by the shear-flexure cantilever model is compared to the one obtained by pushover analyses. The 

objective is to check the influence of four parameters on the displacement profile and on the height 

of the contra-flexure point of the RC wall. The parameters are: (i) number of storeys, (ii) number 

of URM walls, (iii) length of URM walls and (iv) longitudinal reinforcement ratio of the RC slabs. 

Table 1 shows the combination of the four variables. 

Fig. 3 represents the elevation of the 4-storey layout configurations. The thickness of the walls 

is always 0.20 m and the clear storey height of the walls is always 2.8 m. The length of the RC 

walls is fixed to 3.30 m. The moment capacities at the base of the RC walls, M2 (x=0), are  

1600 kNm, 1700 kNm and 1800 kNm for the 3, 4 and 5 storey configurations, resulting in values  
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6.60 6.603.30
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1
2.

20

RCWRCW RCW

3.30 3.30 3.30 3.30 3.30 3.30 3.30 3.30

20.70 12.00 18.60  
Fig. 3 Layouts1, 2 and 3 (4-storey configurations). All dimensions in m 

 
Table 1 Parameters investigated to compare the shear-flexure cantilever model against numerical 

simulations 

 
Number of storeys 

[-] 

Number of URM 

walls 

[-] 

Length of URM 

walls 

[m] 

Longitudinal reinforcing 

bars of RC beams 

[mm
2
] 

Layout 1 3, 4, 5 4 3.30 500 - 750 

Layout 2 3, 4, 5 2 3.30 500 - 750 

Layout 3 3, 4, 5 2 6.60 500 - 750 

 

 

of βRC between 16% and 34%. The transverse reinforcements of the RC members are designed to 

prevent shear failure. As two-dimensional analyses are carried out, the slabs are represented by RC 

beams with a cross section of 0.25×0.60 m. The effective width of 0.60 m corresponds to three 

times the wall width (Priestley et al. 2007). The free span of the RC beams is equal to 1.05 m and 

the area of their longitudinal reinforcement is varied between 500 and 750 mm
2
 (ρCB=0.38%-

0.57%). The two reinforcement ratios correspond, approximately, to longitudinal reinforcing bars 

D10 every 110 mm (ρCB=0.38%) and D12 every 90 mm (ρCB=0.57%). Finally, the masses, which 

are constant per storey, are proportional to the length of the walls. It results that the storey masses 

are equal to 35.7 t for layout 1 and 3 and 21.4 t for layout 2. Sections 3.2.1 and 3.2.2 describe the 

mechanical and geometrical properties adopted for the shear-flexure cantilever model and the 

pushover analyses and Section 3.2.3 compares the results obtained from the two different 

approaches. 

 

3.2.1 Mechanical and geometrical properties for the shear-flexure cantilever model 
The mechanical model aims to represent the interaction between URM and RC walls by means 

of an ideal shear and an ideal flexure cantilever which have constant stiffnesses GA and EI along 

their height (Section 3.1). In this section, analogies and differences between the seismic behaviour 

of mixed RC-URM structures obtained from experimental campaigns (Paparo and Beyer 2014, 

Beyer et al. 2015) and the hypotheses of the mechanical model are discussed. Based on this 

comparison, recommendations for setting up the shear-flexure cantilever model are formulated.  

(i) In the experimental campaigns it was observed that in the URM walls the shear cracks are 

distributed over the height of the building. Hence, the stiffness of the shear beam can be based on 

the cracked stiffness GA of the masonry walls. According to EN 1998-3 (2005), GA is assumed as 

half of the uncracked stiffness of the masonry walls. 
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Table 2 Mechanical and geometrical properties adopted for the shear-flexure cantilever model 

 Shear beam (URM walls) Flexural beam (RC walls) 

 
A 

[m
2
] 

G 

[GPa] 

I 

[m
4
] 

E 

[GPa] 

Layout 1 2.20 0.265 0.599 36.0 

Layout 2 1.10 0.265 0.599 36.0 

Layout 3 2.20 0.265 0.599 36.0 

A: sum of the shear areas of the masonry walls 

G: cracked shear stiffness of the masonry walls from Paparo and Beyer (2015) 

I: sum of the moment of inertia of the uncracked RC walls 

E: elastic modulus of the concrete 

 

 

(ii) The experimental tests have shown that the cracks in the RC walls are concentrated in the 

first storey, resulting in a stiffness of the first storey which is lower than the stiffness of the upper 

storeys. In order to find closed form solutions for the mechanical model, the flexure beam has to 

be assigned a constant stiffness EI over the height of the building. To account for the reduced 

stiffness of the first storey, the flexure beam is pinned at the base and a moment equal to the yield 

moment of the wall is applied. 

(iii) From the dynamic test (Beyer et al. 2015) it was observed that in the top storeys the URM 

walls feature significant rocking deformations. As the URM walls are only represented by a shear 

beam, this rocking deformation is not accounted for and the mechanical model overestimates for 

the top storeys the influence of the shear cantilever on the displacement profile (see also Section 

3.2.3). To compensate this effect, the stiffness of the flexural beam EI is based on gross sectional 

properties, without considering a reduction factor to account for the small construction-joint cracks 

which develop between RC walls and slabs in the top storeys. Table 2 summarises the mechanical 

and geometrical properties adopted for the shear-flexure cantilever models. 

 

3.2.2 Mechanical and geometrical properties for the numerical simulations 
To validate the results from the shear-flexure cantilever model, numerical simulations are 

carried out using the software TREMURI (Largomarsino et al. 2013). The structure is modelled as 

a 2D equivalent frame where the elements representing URM and RC walls are connected at the 

storey heights by RC beam elements representing the RC slabs. The macro-element developed by 

Penna et al. (2013) is used for the masonry walls. Such an element is representative of a storey-

high masonry panel and allows, by means of a relation between average stresses and average 

strains, to represent the two main in-plane failure mechanisms (i.e., shear and bending-rocking). 

Timoshenko beams with plastic hinges at their extremities, whose hysteretic behaviour is 

characterised by the Takeda model, represent RC members. For further details of the software, the 

reader is referred to Penna et al. (2013), Lagomarsino et al. (2013). 

Concerning the adopted material properties and the construction of the equivalent frame, the 

indications proposed by Paparo and Beyer (2015) are followed. Table 3 resumes the assumed 

mechanical properties: ceq and μeq are the equivalent friction and cohesion parameters of the 

macro-element (Penna et al. 2013) resulting from the homogenization technique. They are 

calculated by assigning half of the shear strength Vsh to the friction component Vμ and half of the 

shear strength to the cohesion component Vc (Paparo and Beyer 2015). 
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According to Penna et al. (2013), Vsh can be estimated on the basis of the strength criterion 

which is representative of the expected failure. In this case, the strength of the masonry walls is 

calculated according to Mann and Müller (1982). If the material properties of the URM walls are 

not known, an alternative for calculating the shear strength Vsh of a masonry wall is proposed by 

Priestley et al. (2007). Given N the axial force on section, Vsh can be predicted as 

effmmsh AcNV  
 (10a) 

NVsh 46.0  (10b) 

In Eq. (10a) the parameters μm and cm have the meaning of global strength parameters and Aeff is 

the effective un-cracked section. Eq. (10b) is an approximation of Eq. (10a) and results from the 

assumption of μm=0.4 (global friction) and cm/fcM=0.05 (global cohesion over compressive strength 

of the masonry wall). Aeff is calculated taking into account the wall cracking due to flexure 

(Priestley et al. 2007). 

 

 
Table 3 Mechanical properties adopted for the numerical simulations 

Materials Material properties Macro-model 

URM members 

μ* [-] 0.19 

 

c* [MPa] 

0.06 (three storeys) 

0.08 (four storeys) 

0.10 (five storeys) 

fm [MPa] 6.30 

Emx [GPa] 5.10 

Gm [GPa] 0.53 

Gct [-] 1.00 

β [-] 0.10 

RC members 

Ec [GPa] 
Ee (1

st
 storey walls & beams) 

18.00 (above storey walls) 

Gc [GPa] 
Ee/2.40 (1

st
 storey walls & beams) 

7.50 (above storey walls) 

fy [MPa] 550 

μ
*
 and c

*
: equivalent friction and cohesion coefficients 

fm: masonry compressive strength 

Emx: E-modulus of masonry panels subjected to compression orthogonal to bed-joints 

Gm=(0.25Emx)/(2·(1+νM)): masonry shear modulus  

νM: Poisson ratio of the masonry wall 

Gct: parameter for the non-linear plastic deformation in the pre-peak response (shear-damage behaviour of 

the URM walls) 

β: parameter for the non-linear plastic deformation in the post-peak response (shear-damage behaviour of the 

URM walls) 

Ec and Gc: RC member’s Young’s and shear modulus 

fy: reinforcing bar yield strength adopted in RC members 

Differently from the mechanical model, TREMURI can account explicitly for the stiffness 
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variation over the height of the RC walls by assigning different stiffnesses from one storey of the 

RC walls to another. The first storeys of the RC walls are assigned the effective stiffness EIe and 

the storeys above the first one are assigned one half of the gross sectional uncracked stiffness. The 

50% of reduction of the gross sectional uncracked stiffness is to account for the small 

construction-joint cracks that develop between RC walls and slabs (Paparo and Beyer 2015) and is 

considered applicable if the minimum mean longitudinal reinforcement ratio of the RC walls is 

larger than 0.2% (0.2% is the minimum longitudinal reinforcement ratio for RC walls according to 

EN 1992-1 (2004)). Additionally, also the RC beams are assigned the effective stiffness EIe. 

The effective stiffness EIe corresponds to the nominal moment MN divided by the yield 

curvature φy [Priestley et al. 2007]. MN is calculated considering the axial force acting at the base 

of the wall under gravity loads only, and φy is the nominal yield curvature, which is equal to Cεy/lw. 

C is a constant that depends on the geometrical properties of the section; for rectangular RC walls 

Priestley et al. (2007) recommends C=2.00. εy is the yield strain of the longitudinal reinforcing 

bars and lw is the wall length. 
 

3.2.3 Validation of the shear-flexure cantilever model 
In order to gauge the ability of the shear-flexure cantilever model to predict the displacement 

profile of a mixed RC-URM wall structure, the inter-storey drift profiles calculated by the shear-

flexure cantilever model (“cantilever model”) are compared with drift profiles obtained from the 

TREMURI pushover analyses (“TREMURI”, Fig. 4). The mechanical model aims at representing 

the structure with its properties at the SD limit state (see Sections 3.1 and 3.2.1). Hence, the drift 

profiles computed with the mechanical model are benchmarked against the TREMURI profiles for 

which an inter-storey drift demand of 0.4% is first attained (SD limit state for URM walls failing 

in shear, see Section 2). For the comparison of the two approaches, the drift profiles are 

normalised to the maximum inter-storey drift attained over the height of the systems, as the 

mechanical model does not provide information on the magnitude of the inter-storey drifts but just 

on the shape of the profiles. 

Fig. 4 shows that the mechanical model estimates the inter-storey drift profile obtained from the 

TREMURI analyses rather well. For the two lowest storeys, the difference between the two 

predictions is generally small, while for the upper storeys the discrepancy increases. As outlined in 

Section 3.2.1, the mechanical model does not account for the rocking behaviour of the URM walls, 

which is likely to take place in the upper storeys because of the low axial force acting on the URM 

walls. As a result, the mechanical model overestimates the restraining action provided by the URM 

walls in the upper levels and therefore underestimates the drifts in the upper storeys. 

In addition, the mechanical model leads to a good estimation of the height of contra-flexure 

point of the RC walls HCF,RC (Fig. 4, horizontal lines). Using the mechanical model, HCF,RC can be 

calculated by setting in Eq. (5b) M2(x) equal to zero and solving for x. For the pushover analyses, 

HCF,RC is computed as the ratio between the base moment and the base shear carried by the RC 

wall. 

 

3.3 Application of the shear-flexure cantilever model 
 

This section presents charts (Fig. 5) that will be used in the DDBD process to check if the 

displacement profile of the mixed structure can be assumed as linear. The charts summarise the 

results of a parametric study, carried out with the shear-flexure cantilever model, in which three 

parameters are investigated: (i) the number of storeys n; (ii) the mechanical (E and G) and 
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geometrical (H, I and A) characteristics of the URM and RC walls, which are combined in the 

stiffness ratio α; (iii) the strength repartition between the different structural systems, which are 

expressed by the RC wall strength ratio βRC. 

The solid lines in Fig. 5 show, for different values of n, α and βRC, the ratio Rδ=δ1/δ2 that is 

obtained from the mechanical model, where δ1 and δ2 are the inter-storey drifts of the first and 

second storey. The inter-storey drifts of the upper storeys are not explicitly considered for the 

following reasons: (i) δ1 and δ2 are particularly well predicted by the mechanical model (Fig. 4); 

(ii) the pushover analyses carried out in Section 3.2.3 showed that the displacement profile is 

 

 

 
Fig. 4 Normalized inter-storey drifts and normalized height of contra-flexure points in the RC walls HCF,RC 
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Fig. 5 Influence of the parameters n, α and βRC on the inter-storey drift ratio Rδ. Proposed limits for 

considering a linear the displacement profile of the structure 

 

 

approximately linear over the entire height of the building if Rδ is close to one (Fig. 4). 

It is proposed that the assumption of a linear displacement profile can be considered valid, if 

the ratio Rδ of first to second storey drifts that is predicted by the mechanical model takes a value 

between 0.80 and 1.25 

 25.180.0
2

1 



R

 

(11) 

The charts in Fig. 5 are derived by assuming a horizontal load q constant over the height of the 

shear-flexure cantilever (Section 3.1). Provided that the masses are constant over the height of the 

building, the mechanical model therefore assumes that the structure is subjected to an acceleration 

profile that is also constant over the height. In order to check the actual acceleration profile, 

dynamic analyses are carried out with TREMURI. The results, plotted in Fig. 6, show that: 

(i) The most appropriate acceleration profile would be bi-linear (i.e., constant over the two 

bottom storeys and linearly increasing over the storeys above-see grey lines in Fig. 6).  

(ii) The constant and inverted triangular acceleration profiles, represented in Fig. 6 with solid 

and dashed black lines, are bounds of the actual acceleration profile. 

n = number of storeys; 
 

EI

GA
H ; 

 

βRC = M2(x = 0)/OTM(x = 0); 
 

Rδ = δ1/δ2; 
 

δ1 = Δ1 /h;  δ2 = (Δ2-Δ1)/h; 
 

Δ1, Δ2 = horizontal displacement of the first and 

second storey; 
 

h = storey height.  
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Fig. 6 Acceleration profiles for three mixed buildings (L1S3, L2S4 and L1S5, see Section 7 for the 

description of the three structures) and comparison with the constant (C) and inverted triangular (IT) 

acceleration profiles 

 

 
Fig. 7 Normalised displacement profiles for three case studies (3, 4 and 5 storeys): comparison between 

the displacement profiles obtained with the constant and inverted triangular load patterns 

 

 

As a consequence, there is a theoretical inconsistency between the adoption of the uniformly 

distributed load and the actual lateral forces obtained from dynamic analyses. In order to check if 

the inconsistency might strongly affect the results, pushover analyses of mixed buildings are 

carried out with TREMURI. The analyses are performed with an inverted triangular and a constant 

load distribution and the resulting displacement profiles are compared at an average drift of 0.4%. 

The results show that the displacement profile of mixed RC-URM buildings is not strongly 

affected by the assumed horizontal load pattern (Fig. 7). As a consequence, from an engineering 

point of view, the adoption of a constant load pattern for the evaluation of the displacement 

profiles at SD limit state is acceptable.  
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(a) (b) 

Fig. 8 Four-storey mixed RC-URM wall building (a). Normalised acceleration envelope for the last test 

(b), from Beyer et al. (2015) 

 

 

Using a simple constant load pattern rather than a more complicated bilinear pattern is 

supported further by the following two findings reported in the literature: 

(i) Shake table tests on a four-storey building composed of RC and URM walls (Beyer et al. 

2015) have shown that, when the structure is close to failure, the acceleration profile is rather 

constant over the height (Fig. 8).  

(ii) Mandirola (2014) simulated the test by Beyer et al. (2015) in TREMURI and compared the 

TREMURI acceleration profiles to those measured in the test. They observed that TREMURI 

tends to overestimate the acceleration amplification in the upper floors when the structure is close 

to failure. 

 

 

4. General direct displacement-based design procedure 
 

Direct displacement-based design is a procedure developed over the last 20 years (e.g., 

Priestley 1993, Priestley 1998, Priestley et al. 2007, Cardone et al. 2009, Pennucci et al. 2009, 

Pennucci et al. 2011, Sullivan et al. 2012) with the objective of mitigating weaknesses in the 

current force-based design approach. DDBD fundamentals are illustrated in Fig. 9: a multi-degree-

of-freedom (MDOF) structure is converted into a single-degree-of-freedom (SDOF) system, Fig. 

9(a). Given mi and Δi the floor masses and design displacements and Hi the storey height, the 

design displacement Δd, effective mass me and effective height he are calculated as 
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In addition to Δd, the bilinear envelope of the SDOF system is characterised by defining the 

yield displacement Δy from which the displacement ductility demand μΔ is found, Fig. 9(b). μΔ is 

then used to determine the equivalent viscous damping ratio ξe, representing the combined elastic 

damping and the hysteretic energy absorbed by the structure during inelastic deformations, Fig. 

9(c). Once the equivalent viscous damping ratio ξe is known, from the damping reduction factor ηξ 
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(15) 

the over-damped displacement spectrum is calculated and used to find the effective period of the 

structure, Te, which corresponds to the period associated with the design displacement Δd (Fig. 9d). 

From Te the effective stiffness of the structure and the design base shear force Vbase are derived 
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e
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m
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(16) 

debase KV 
 

(17) 

 

 

 
Fig. 9 Fundamentals of displacement-based design (Priestley 1998) 
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5. Evaluation of the equivalent viscous damping 
 

As presented in Section 4, DDBD requires the definition of an equivalent viscous damping ξe. 

Priestley et al. (2007) propose equations for calculating the equivalent viscous damping for 

different structural types and materials. For instance, for reinforced concrete walls the following 

equation is proposed 








 
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
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
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1
444.005.0e

 

(18) 

For URM walls, however, equations for the equivalent viscous damping ξe are still preliminary 

(Sullivan et al. 2012). In particular, values of ξe for the investigated URM walls (i.e., modern 

hollow clay brick masonry walls typically used in central Europe) were not found in literature. 

Therefore the objective of this section is to determine ξe for the analysed typology of URM walls 

with dominant shear behaviour (ξe for URM walls with dominant flexural behaviour is not 

evaluated as the analysed URM walls are expected to exhibit a dominant shear behaviour). In the 

following, Section 5.1 outlines remarks related to the use of the equivalent viscous damping in 

DDBD and Section 5.2 describes how the equivalent viscous damping values for the studied URM 

walls (ξURM) have been calculated.  

 

5.1 Remarks with regard to the use of the equivalent viscous damping approach in DDBD 
 

As previously discussed, in DDBD (Priestley et al. 2007) the over-damped displacement 

spectrum is derived by multiplying the spectrum for 5% damping with the damping reduction 

factor ηξ (Eq. (15)), which is a function of the equivalent viscous damping ξe. Recently, Pennucci 

et al. (2011) argued that expressions for the equivalent viscous damping ξe are sensitive to the 

characteristics of the accelerograms (in particular, the elastic response spectra sensitivity to 

damping) used to calibrate the expressions and subsequently proposed an alternative method based 

on the displacement reduction factor ηin, defined as the ratio of the maximum inelastic 

displacement to the elastic displacement at the effective period. This method does not require the 

definition of an equivalent viscous damping and is not significantly affected by ground motions 

characteristics. 

In addition, Pennucci et al. (2011) observed that the ξe is sensitive to the relative position of the 

spectral displacements at initial (Ti) and effective (Te) periods with respect to TC and TD. This 

effect, which might be particularly large for short period structures like mixed RC-URM buildings, 

might also explain the period dependency of the ξe for short period structures (Priestley et al. 

2007). To overcome this problem, Pennucci et al. (2011) suggest relating the inelastic demand to 

the demand slope factor ρ, which is a function of the relative position of initial and effective 

periods.  

However, the demand slope factor approach is not yet implemented in the DDBD procedure 

and Pennucci et al. (2011) note the need for further research before it can be readily incorporated. 

As a consequence, this research builds on the equivalent viscous damping approach for evaluating 

the effective period of the structure. In order to account for the period dependency of ξe, a 

correction factor (Priestley et al. 2007) is applied. Note that Graziotti (2013) propose displacement 

reduction factors ηin for solid clay brick masonry walls accounting for the likely failure 

mechanism. However, as the period dependency is not taken into account, these results are not 

used herein.  
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5.2 Evaluation of the equivalent viscous damping 
 

To evaluate the inelastic response of the URM walls studied herein, time history analyses on 

inelastic SDOF systems have been carried out. The ground motion set used in this study is 

composed of 12 non-stationary accelerograms (see also Michel et al. 2014) compatible with soil 

class C (TC=0.6 s). The displacement spectra of these records have corner periods TD of about 2 s 

and all records are scaled to peak ground accelerations (PGA) of 2.5 m/s
2
, (Fig. 10). 

The equivalent viscous damping ξURM for URM walls failing in shear is determined in two 

steps: first, the damping ξURM is evaluated for structures with an initial period Ti longer than 0.6 s 

and effective period Te shorter than 2 s. For these systems the damping ξURM is assumed to be 

independent of Te. Most URM and mixed URM-RC buildings will be, however, rather stiff and 

have initial periods shorter than 0.6 s. In this period range the displacement spectrum does not vary 

linearly with T but depends on T 
3
 or T 

2
. The influence of the spectral shape on the damping ξURM 

is accounted for in a second step, where URM walls with Ti >0.1 s and Te<2 s are investigated.  

As a first step, in order to avoid the influence of the spectral shape on the evaluation of ξURM 

and since the mean displacement spectrum is almost linear for TC=0.6 s<T<2 s=TD (Fig. 10), 

SDOF systems with the following properties are investigated: 

- The minimum considered initial period (Ti) is equal to 0.6 s; 

- The maximum considered effective period (Te) is equal to 2 s; 

- The inelastic SDOF systems are modelled with the macro-element developed by Penna et al. 

(2013) and the dynamic analyses are carried out with TREMURI (Lagomarsino et al. 2013).  

- Priestley et al. (2007) recommend performing the inelastic time-history analyses with 5% 

tangent stiffness proportional damping. As tangent stiffness proportional damping is not available 

in TREMURI, all analyses are carried out with initial stiffness proportional viscous damping. For 

this case Priestley et al. (2007) propose to adopt an artificially low damping coefficient ξ* 

)1(

)1)(1(1.01
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(19) 

where μ is the ductility of the system and r is the post yield stiffness ratio, herein assumed equal to 

zero. Since the analysed SDOF systems exhibited ductilities between 2 and 6 (Fig. 11a), the 

artificially low damping coefficient ξ* obtained from the mean of these two ductilies corresponds 

to around 2%, value which was used for all analyses. 

The following procedure is adopted to find the equivalent viscous damping ξURM that should be 

used for the DDBD of URM wall structures failing in shear: 

(i) An inelastic SDOF system representing a URM wall failing in shear is subjected to a 

selected ground motion.  

(ii) The maximum displacement, the base shear at maximum displacement and the maximum 

ductility of the SDOF system are recorded. The effective period Te is therefore calculated as 

eee KmT /2 . The effective stiffness Ke is computed from the maximum displacement and 

the base shear at maximum displacement recorded in step (i); the effective mass is the mass of the 

SDOF system. 

(iii) The equivalent viscous damping ξURM is calculated as the damping value that yields, for an 

elastic SDOF system with period Te, the same maximum displacement as the inelastic SDOF 

system. 
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Fig. 10 Acceleration and displacement response spectra (ξ = 5%) 

 

 
Fig. 11 (a): Displacement ductility versus ξURM for the inelastic SDOF systems with Ti>0.6 s and Teff<2 

s. Data, linear relation for 1<μ<3 and median value for μ>3. (b): Correction factor CF to account for the 

period dependency of the hysteretic component of ξe from Priestley et al. (2007) and data obtained from 

the second set of time history analyses 

 

 

Fig. 11(a) shows that the equivalent viscous damping ξURM increases with displacement 

ductility μ. In addition, for values of μ larger than 3, ξURM is rather constant and its median value is 

31%. Since in the buildings analysed in this article the URM walls displayed always a 

displacement ductility higher than 3 and exhibited a dominant shear behaviour, ξURM is assumed 

equal to 31%. For systems that remain elastic the damping is 5% and between μ=1 and μ=3 a 

linear increase in damping from 5% to 31% can be assumed (Fig. 11a).  

Since mixed RC-URM buildings are generally rather stiff structures, it is likely that their initial 

period is lower than 0.6 s. In order to check the period dependency of ξURM, a second set of 

analyses has been carried out. The new set comprised SDOF systems with initial periods (Ti) 

longer than 0.1 s, effective periods (Te) shorter than 2 s and displacement ductilities between 3 and 

6 (the minimum ductility is set equal to 3 to avoid the ductility dependency of ξURM).  

The results of the analyses are plotted in Fig. 11b, where the hysteretic component of ξURM is 

normalised to its mean value obtained for Te between 1 s and 2 s (for 1 s<Te<2 s ξURM is assumed 
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to be independent of Te) and plotted versus the effective period Te. The results show that ξURM is 

rather constant for Te between 1 s and 2 s and increases for Te smaller than 1 s (Fig. 11b, dashed 

line). In fact, for systems with Te<1 s and μ>3, the initial periods are smaller than 0.6 s. For T<0.6 

s, the displacement spectrum increases parabolically rather than linearly, which is reflected in 

higher values of ξURM.  

To account for the period dependence of ξURM, a period dependent correction factor CF is 

applied on the hysteretic component of the equivalent viscous damping (ξhys). The hysteretic model 

of the TREMURI macro-element failing in shear is the Takeda Thin (TT) rule and therefore the 

period dependency of the TT model proposed by Priestley et al. (2007) is adopted 
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(20) 

where a, b, c and d are equal to 0.215, 0.642, 0.824 and 6.444 (Priestley et al. 2007). The 

correction factor CF is calculated as the ratio between ξhys and ξhys estimated at Te=4 s (ξhys,4s) 

shys

hys
CF

4,




 

(21) 

CF is represented in Fig. 11(b) by the solid black line. Note that accounting for the effect of the 

spectral shape through a period dependent correction factor is rather crude and seems to 

underestimate the period dependency of ξURM for effective periods smaller than 0.8 s. Once more 

advanced approaches are available, they can be used instead. 

 

 

6. Proposed methodology for mixed RC-URM wall structures 
 

The various steps of the displacement-based design methodology developed for structures with 

both RC and URM walls are presented in this section. To calculate the yield displacement of the 

RC walls, the technique follows the DDBD approach for designing regular RC frame-wall 

buildings (Sullivan et al. 2005, Sullivan et al. 2006), as the structural behaviour of both mixed 

systems is similar (Section 2). For mixed RC-URM wall structures the conversion of the MDOF 

system to the SDOF (Eqs. (12) to (17)) assumes a linear displacement profile over the height of the 

structure. This hypothesis will be checked at the end of the design. In the following, the DDBD 

process is broken down into a step-by-step procedure and summarised in the flowchart of Fig. 14. 

Step 1 - Preliminary design check of the plain URM wall building according to the DDBD 

approach 

The procedure starts with the DDBD check of a plain URM wall edifice both for the design of 

new buildings and the retrofit of existing URM buildings. The objective is to verify that the 

masonry walls display a dominant shear behaviour and that the structure does not satisfy the 

seismic design check (Priestley et al. 2007). If it is the case, replacing one or more URM walls by 

RC ones is a promising strategy to develop a design or retrofit solution that can sustain the seismic 

demand. 

Step 2 - Replacement of URM walls by RC walls and estimation of the overturning demand 

(OTMdem) and the effective period (Te) 

The designer chooses the URM walls to be replaced by RC ones. Even if the choice is arbitrary, 
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it is suggested to (i) conceive the RC walls as external walls to avoid a significant variation of 

axial force in the URM walls due to the shear forces transmitted by the slabs and to (ii) select 

symmetric layouts to obtain the same response whether the structure is pushed towards one 

direction or another. 

From the SDOF simulation (Eqs. (12) to (17)) the effective period Te and the base shear Vb are 

calculated. Consequently, the overturning moment demand (OTMdem) can be estimated as, Figs. 

12(a) and 12(b) 

ebasedem hVOTM 
 

(22) 

The equivalent viscous damping of the mixed system is not known at this stage but is assumed 

as 20% (the design examples have shown that the equivalent viscous damping of these systems 

varies between 15 and 25%). In Step 9 it will be recalculated considering the effective energy 

dissipated by the RC and URM walls. 

Step 3 - Estimation of the moment capacity of the mixed structure (OTMcap) 

The overturning moment capacity of the structure (OTMcap) is the sum of the contributions 

from the RC and URM walls (MRC, MURM) and the RC slabs (MS) 

SURMRCcap MMMOTM 
 

(23) 

The three contributions are represented in Figs. 12(c) and 12(d). In steps 4 and 5, MURM and MS 

will be computed while MRC is yet unknown and is calculated as the required strength of the RC 

walls (MRC,req).  

Step 4 - Contribution to the overturning capacity of the URM walls (MURM) 

As the URM walls are expected to fail in shear, their moment capacity is estimated as a 

function of their shear strength (Vsh). For a single wall m, MURM,m results as 

mURMCFmshmURM HVM ,,,, 
 

(24) 

Vsh,m is the shear strength of the URM wall m and can be estimated, for instance, according to 

Mann and Müller (1982), if material tests are available. If not, Eq. (10b) can be used for estimating 

the shear strength of the wall. HCF,URM,m is the height of the contra-flexure point of the URM wall. 

Its lower bound value corresponds to half of the storey height (hst). Two empirical parameters are 

added for the calculation of HCF,URM. The first one, γ, accounts for the fact that HCF,URM increases 

with the number of storeys (n) 

10/1 n
 (25) 

The second parameter, ψ, takes into account the aspect ratio of the single URM wall. If 

hst>lURM, (lURM is the length of the URM wall), HCF,URM increases proportionally to ψ, otherwise it is 

equal to 1 

If URMlhst   URM/ lhst
 

(26a) 

If URMsth l  1
 (26b) 

The total contribution of the URM walls to the overturning capacity (MURM) is the sum of the 

base moments of the individual URM walls (MURM,m) 
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Step 5 -Contribution of the RC slabs to the overturning capacity (MS) 

The contribution of the RC slabs to the overturning capacity (MS) is estimated by following the 

procedure developed for irregular RC frames (Priestley et al. 2007), in which the contribution of 

each bay is accounted for separately. In the following, the technique for calculating MS is broken 

down into five sub-steps: 

Step 5a: The overturning moment resisted by the slabs is calculated by separating the 

contributions of the different bays (Mbay,j). Given j the number of bays, MS results as follows 


j

jbayS MM ,

 
(28) 

Step 5b: Each Mbay,j is calculated as the sum of the shear forces transmitted by the RC slabs 

(ΣVji) of the considered bay j, multiplied by its length (Lbay,j), Figs. 12(c) and 12(d). Given i the 

number of storeys Mbay,j results as 

jbay
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(29) 

Step 5c: Unlike capacity designed RC frames, in URM and mixed RC-URM buildings the 

connections between URM walls and RC slabs form in general a weak column-strong beam 

mechanism. This implies that the RC slabs remain largely elastic and the shear forces transmitted 

by the slabs cannot be estimated from their moment capacity.  

Back-analysis of tests has shown that in URM and mixed RC-URM buildings, in order to 

correctly estimate the shear forces transmitted by the slabs (ΣVji), the uplift of the RC slabs from 

the URM walls needs to be captured by the model. To calculate ΣVji, the RC slabs of each storey 

are then represented by “elastic continuous beams” which are mono dimensional elements 

characterised by their length only. The elastic continuous beams are sustained by vertical supports 

representing the URM walls. The supports work only in compression to take into account the 

possible uplift of the slabs from the masonry walls, Fig. 13(b). The connections between the elastic 

continuous beams and the RC walls are represented by pins through which the moment transmitted 

to the RC walls (Ms,w) is applied. The pins can, instead, also transmit tension forces. 

Step 5d: As input, the geometry of the walls is required. Since at the beginning of the design the 

dimensions of the RC walls are unknown, a trial length, which will be adjusted during the design 

procedure, has to be assumed. For the construction of the elastic continuous beam models, four 

additional aspects have to be examined: 

(i) Position and number of the supports (for each masonry wall): The supports represent the 

position of the resulting forces where the slabs transmit the forces to the URM walls below. For 

squat URM walls, i.e., when lURM/hst>1, two supports, as shown in Figs. 13(a) and 13(b), are 

introduced. For slender walls (lURM/hst<1), just one support is required, Figs. 13(a) and 13(b). 

(ii) Position of the tributary weight of the slabs (Ws): The tributary weight of the slabs Ws is 
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modelled as a concentrated force applied at the centreline of each URM wall, Fig. 13(b). 

(iii) Magnitude and position of the forces representing the weight transmitted by the walls 

above the considered storey (Wup): For each wall, the weights transmitted by the walls above the 

considered storey (Wup) are (i) calculated as the sum of the tributary reaction forces of the above 

slab (Fig. 13b, dotted lines) and (ii) applied as shown in Fig. 13(b). 

(iv) Bending moment applied to the pins connecting the slabs to the RC walls (Ms,w): Firstly, the 

yield rotation (θys) and the rotation demand (θs) of the slabs are calculated. The former can be 

computed according to Priestley et al. (2007) 
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Fig. 12 Seismic response of a RC-URM structure. SDOF simulation and estimation of the OTMdem (a, b); 

seismic contribution of the different structural systems and evaluation of the OTMcap (c, d) 
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Fig. 13 Mixed RC-URM wall structure (a). Construction of the elastic continuous beams (b). Walls and RC 

beams mechanisms for calculating the rotation demand θb1 and θb2 (c, d) 
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s

se
yys

h

L
 35.0

 
(30) 

The deformable part of the RC slabs (Lse) is the free span of the slab (Ls) increased by its 

section depth (hs) on either side where it frames into URM walls (Priestley et al. 2007, Paparo and 

Beyer 2015). From geometrical considerations, the rotation demand θs on the slab is related to the 

design drift δd. To simplify matters, the rotation demand is estimated assuming that URM and RC 

walls undergo only rigid body deformations. For the URM walls a rigid body rotation around the 

base corner in compression is assumed; for the RC walls a rigid body rotation around its 

centreline, Figs. 13(c) and 13(d). As rigid body rotations are assumed, the rotation of the walls (θw) 

is equal to the design average drift (δd). More advanced kinematic models are of course feasible 

but might not be necessary at this stage of the design. The flexural moment capacity of the slab 

(Mys,w) can be calculated by considering an effective slab width equal to three times the wall 

thickness [Priestley et al. 2007], allowing to compute the bending moment Ms,w as 

If θs>θys wysws MM ,, 
 (31a) 

If θs<θys wys

ys

s
ws MM ,,






 

(31b) 

Step 5e: The procedure to determine the shear transmitted by the RC slabs starts from the top 

storey and progresses downwards floor by floor. At the top floor the force Wup is equal to zero, Ws 

and Ms,w are known and the reaction forces of the supports can be calculated. By summing up the 

tributary reaction forces from the slabs above (Fig. 13b, dotted lines), the forces Wup applied to the 

walls of the storey below are determined. The procedure continues down to the first floor.  

Step 6 - Choice of the ductility of the RC walls (μΔRC) 

The designer chooses the level of ductility which the RC walls will undergo. The quasi-static 

and dynamic tests on mixed RC-URM wall structures (Paparo and Beyer 2014, Beyer et al. 2014, 

Tondelli et al. 2014) have shown that the RC walls experience very small inelastic deformations 

when the URM walls failed. Hence, regarding the design at the SD limit state, it is pertinent to 

choose that the RC walls will exhibit a displacement ductility μΔRC within the range of 1 and 2.  

Step 7 - Calculation of the height of the contra-flexure point of the RC walls (HCF,RC) 

From Eq. (5b) the height of the contra-flexure point of the RC walls HCF,RC is estimated by 

setting M2(x) equal to zero and solving for x. The parameter βRC is calculated as the ratio MRC over 

OTMdem. 

Step 8 - Calculation of the length of the RC walls (lRC) 

From Step 6 the target yield displacement of the RC walls at the effective height is known 

(ΔyRC=Δd/μΔRC). With Eqs. (32a) and (32b) the yield curvature of the RC walls (φyRC) can be 

estimated (Sullivan et al. 2005) 

For he<HCF,RC 

1

,
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The equations are based on a linear moment profile up to HCF,RC and zero moment between 

HCF,RC and the top of the wall. From the yield curvature, the required wall length lRC can be found 

yRC

y

RCl


2


 

(33) 

Step 9 - Calculation of the equivalent viscous damping ξsys and the damping reduction factor ηξ 

The equivalent viscous damping of the system ξsys is obtained from a weighted average 

proportional to the base shear carried by URM and RC walls 

base

RCRCURMURM
sys

V

VV 





 
(34) 

ξRC is the damping associated with the RC walls and can be calculated according to Eq. (35), as 

the displacement ductility of the RC walls is known 
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(35) 

As pointed out in Section 5, the damping associated with the URM walls, ξURM, can be assumed 

equal to 31%. This value can be used only if the URM walls fail in shear and if they feature 

displacement ductilities larger than 3. These requirements are generally fulfilled for the design of 

such structures for the SD limit state. The hysteretic components of the equivalent viscous 

damping ξsys is then corrected according to the correction factor CF (Eq. (21), Section 5.2) in order 

to account for their period dependency. The damping reduction factor ηξ, used to compute the 

spectrum for the desired ξsys, is then calculated according to Eq. (15). 

Step 10 - Re-evaluation of the overturning moment demand (OTMdem) and calculation of the 

required strength of the RC walls (MRCreq) 

The new effective period Te is found by entering the reduced displacement spectrum with the 

design displacement Δd. The effective stiffness Ke and the base shear Vbase are consequently 

determined according to Eqs. (16) to (17). The overturning moment demand OTMdem, 

approximated in step 2 by assuming an equivalent viscous damping of 20%, is now re-calculated 

by multiplying the base shear Vbase to the effective height he (Eq. (22)). The required moment 

capacity of the RC walls (MRCreq) is then obtained as 

URMSdemRCreq MMOTMM 
 

(36) 

Step 11 - Iterations to find a stable solution 

Steps 3 to 10 are iterated until a stable solution is found. The change in required strength of the 

RC walls (MRCreq) is used as convergence criterion. It is suggested that, if the strength varies less 

than 5% from one step to the other, the solution can be considered as stable. 

Step 12 - Ascertain the displacement profile of the structure 

The DDBD procedure assumes a linear displacement profile over the height of the structure. To 

check this hypothesis, Eq. (11) is used. It is postulated that the profile can be considered as linear 

if Rδ is between 0.80 and 1.25 (Section 3.3). If this requirement is not fulfilled, the designer has 

two options: (i) to choose a different number of URM walls to be replaced by RC ones and re-

check the procedure from Step 2 or (ii) to change the level of displacement ductility (μΔRC) of the 

RC walls (Step 6).  
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Fig. 9 Flowchart of the DBD methodology for RC-URM wall structures 

 

 

Step 13 - Design of RC members 

Due to the low displacement ductility that the RC members will be subjected to, spalling of the 

cover concrete is often unlikely and detailing requirements for the confinement reinforcement can 

be relaxed. The design procedure does not check the displacement capacity of the RC members as, 

in the herein examined typology of mixed buildings, the RC members are always designed to 

develop a flexure mechanism with displacement capacities exceeding those of URM walls. In fact, 

the RC walls need to reach only displacement ductilities of μΔRC=1 - 2, values which can be easily 

reached by RC walls (e.g., Hannewald 2013). Additionally, experimental evidence (Paparo and 

Beyer 2014, Beyer et al. 2014) has clearly shown that the URM walls are the critical elements in 

this typology of mixed structures. 

In the vicinity of the URM walls, the RC slabs do in general not yield because they uplift from 
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the URM walls. The slabs might yield where they frame into the RC walls. However, the rotation 

ductility demand generally does not exceeds 2.5, also for the slabs with short spans. Additionally, 

very short spans (say, less than 0.75 m) are rather unlikely in modern residential buildings. Also 

the dynamic analyses presented in the following section demonstrate that the RC members are not 

critical and there is no need for their displacement capacity check. 

Step 14 - out-of-plane check of the URM walls 

The out-of-plane check of URM walls can be carried out in accordance with EN 1998-1 (2004) 

where the thickness and the slenderness of the masonry walls have to fulfil the following criteria 

Low seismicity: 
tef  17 cm 

hef/tef  15 [-] 
(37a) 

High seismicity: 
tef  24 cm 

hef/tef  12 [-] 
(37b) 

tef and hef are the effective thickness and height of the URM wall calculated according to 

EN1998-1 (2004). 

 

 

7. Case studies 
 

In order to verify the accuracy of the displacement-based design procedure in terms of meeting 

the assumed performance level, several mixed RC-URM wall structures are designed according to 

the proposed method (Section 7.1). The buildings are conceived for the design level earthquake to 

reach the SD limits state. The limit state is controlled by the URM walls to which a drift capacity 

equal to 0.4% is assigned (EN1998-3 2005). Assuming further a constant inter-storey drift over the 

height of the structure, the SD limit state is therefore reached if the average drift corresponds to 

0.4%. 

Based on the DDBD outputs, two-dimensional non-linear models are set up and subjected to 

one set of ground motions which are compatible with the design spectrum (Section 7.2). The 

performances of the structures are then gauged comparing design quantities, such as displacement 

profiles and reaction forces at the base of the walls, to the results from the simulations (Section 

7.3). 

 

7.1 Description of the case studies 
 

Several configurations of 3, 4 and 5 storey modern RC-URM wall structures are designed using 

the new methodology. At the beginning of the procedure, the DDBD check of plain URM wall 

structures is carried out to check that the masonry walls display a dominant shear behaviour and 

that the structure does not satisfy the seismic design requirement. The objective is to ascertain that 

replacing one or more URM walls by RC ones will increase not only the strength but also the 

displacement capacity of the mixed system in comparison to the plain URM buildings. Fig. 15 

represents the elevation of the 4-storey buildings with the position of the RC walls replacing the 

masonry. The RC walls are drawn with dotted lines to stress that their length is not an input 

parameter.  
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Concerning the geometry of the structures, the thickness of all walls in these case studies is 

always 0.30 m. As two-dimensional simulations are carried out, RC beams with a cross section of 

0.25×0.90 m represent the slabs. Again, the width of the RC beams is set equal to three times that 

of the walls according to Priestley et al. (2007). The area of the longitudinal reinforcements of the 

RC beams is always equal to 1000 mm
2
 (ρCB=0.51%) and their free span is 1.00 m. The axial stress 

ratios ζ0/fm at the base of the URM walls are around 5.3%, 7.1% and 8.8% for the 3, 4 and 5 storey 

configurations. The transverse reinforcements of all RC members are designed to avoid shear 

failure and develop a stable flexural response with a larger deformation capacity than that of the 

URM walls. The structures are located in an area of moderate seismicity and the seismic demand is 

represented by an acceleration design spectrum of soil class C (TB=0.2 s; TC=0.6 s and TD=2 s (EN 

1998-1 2004)) with PGA equal to 0.25 g (Fig. 16). Table 4 summarises the main characteristics of 

the structures and the key DDBD outputs. Note that the increase of ξhys due to its period 

dependency (Priestley et al. 2007) ranged between 4% (5 storeys structures) and 12% (3 storeys 

structures). 

 

7.2 Modelling and analyses 
 

To assess the designs, the case studies are modelled and analysed through inelastic time history 

analyses (ITHA) using the TREMURI software (Penna et al. 2013, Largomarsino et al. 2013). The 

mechanical properties adopted are those presented in Section 3.2.2 (Table 3) except the equivalent 
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Fig. 15 Elevation of the 4 storey buildings. All dimensions in m 

 

 
Fig. 16 Acceleration and displacement design spectra 
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Table 4 Characteristics of the RC-URM wall structures and key design outputs from DBD approach 

 

Characteristics of the mixed 

structures 

DDBD, 

key outputs 

Name
*
 

H M μΔRC T1 Te MRC lRC ρmean 

[m] [t] [-] [s] [s] [kNm] [m] [%] 

Wall 

layout 

1 

L1S3 9 306 1.8 0.26 0.57 1720 2.81 0.20 

L1S4 12 408 1.6 0.34 0.69 2280 3.09 0.22 

L1S5 15 510 1.2 0.47 0.84 2250 2.66 0.28 

Wall 

layout 

2 

L2S3 9 428 1.8 0.27 0.56 1530 2.60 0.21 

L2S4 12 571 1.6 0.37 0.67 1930 2.70 0.24 

L2S5 15 714 1.2 0.50 0.82 1720 2.17 0.31 

Wall 

layout 

3 

L3S3 9 306 1.8 0.25 0.57 1360 2.44 0.21 

L3S4 12 408 1.6 0.35 0.70 1410 2.33 0.22 

L3S5 15 510 1.2 0.46 0.86 1400 2.15 0.24 

H: total height 

M: total mass 

μΔRC: design ductility of the RC wall(s) 

T1: first modal period  

Te: effective period 

MRC: design strength of the RC wall(s) 

lRC: length of the RC wall(s) 

ρmean: mean longitudinal reinforcement ratio of the RC wall(s) 

*The name stands for “Layout X Storeys X” 

 

 

cohesion ceq since the axial stress ratios at the base of the URM walls (ζ0/fm) are different to the 

previous case studies (Section 3.2). ceq results equal to 0.063, 0.084 and 0.106 MPa for the 3, 4 and 

5 storey configurations.  

The structures are subjected to the set of accelerograms outlined in Section 5.2. In the spectra 

the position of the corner period TD (equal to 2 s) does not influence the results since the structures 

do not exhibit periods larger than 2 s (see Table 4). The accelerograms are scaled to a PGA equal 

to 0.25 g to match the design displacement spectrum adopted in the design procedure (Fig. 16). 

Damping is modelled using initial stiffness proportional viscous damping ratio ξ*. The value of ξ* 

is the lowered damping coefficient computed according to Priestley et al. (2007) (Eq. (19)) as 

tangent stiffness proportional damping is replaced with initial stiffness proportional damping since 

only the latter is available in TREMURI. The ductility of the system μ is approximated as (Te/Ti)
2
, 

see Table 4. 

 

7.3 Results of time-history analyses 
 

To validate the design method, this section compares the design assumptions to the responses 

obtained form ITHA for the design level earthquake (PGA=0.25 g). Figs. 17 and 18 present the 

maximum displacement profiles, their median and the target design values associated with 0.4% 

average drift. Review of the results indicates that the procedure has performed well in limiting 

concentration of deformations in one single storey and in providing a linear displacement profile. 

817



 

 

 

 

 

 

Alessandro Paparo and Katrin Beyer 

On the other hand, for the three storey configurations, the maximum displacements obtained from 

ITHA are rather smaller than the corresponding design value. This difference is most likely caused 

by the approximate manner in which the period dependency of ξURM has been accounted for. In 

fact, it seems that the correction factor CF (Eq. (21), Section 5.2) underestimates the period 

dependency of ξURM for effective periods shorter than 0.8 s (Fig. 11b). For configurations with 

longer effective periods (i.e., the four and five storey structures), the difference between the 

maximum displacements obtained from ITHA and the design displacements decreases.  

 

 

   

 

          
Fig. 17 Time-history response for wall layout 1 structures. Displacement profiles (a). Hysteretic 

behaviour of the structures subjected to record 12 and comparison against design values. VRC, VURM, 

Vtot: design shear forces for RC and URM walls and total design shear force (b) 
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For Layouts 1 and 2 the design of the six storey structures has been carried out with the 

objective to check the performance of the design approach for structures in which ξURM is not 

affected by the period dependency (i.e., both initial and effective periods are in the linear branch of 

the displacement spectrum as 6.0iT  s and 0.1eT  s). Fig. 19 confirms that, for the six storey 

configurations, the maximum displacement is rather well estimated by the design approach.  
 

 

 
Fig. 18 Time-history response for wall layout 2 (a) and wall layout 3 structures (b). Displacement profiles 
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Fig. 19 Normalised top displacement recorded from ITHA with respect to the design top displacement 

ΔITHA/Δdesign. Influence of the number of storeys 

 

 

For wall layouts 1 (L1), the hysteretic behaviour obtained from one of the stationary 

accelerograms (record 12) is plotted, Fig. 17(b). The objective is to show the global hysteretic 

behaviour of the systems and the distribution of the base shear among RC and URM walls. The 

maximum base shear carried by the URM walls appears to be rather well estimated. At the same 

time, the design procedure overestimates the base shear carried by the RC walls up to 20%. The 

hysteretic response of the URM walls confirms that the URM walls develop a dominant shear 

behaviour and that the values of ξsys obtained from design approach (i.e., between 15% and 25%) 

are consistent with the results from the ITHA analyses. 

 

 

8. Conclusions 
 

Re-examinating the seismic hazard in Europe led, in particular for regions of low to moderate 

seismicity, to an increase in the seismic demand. As a result, in Switzerland many new residential 

buildings have been constructed using both RC and URM walls coupled together by RC slabs. Of 

late, also existing modern URM wall constructions with RC slabs, which no longer meet the 

requirements of the seismic design check, have been retrofitted by adding or replacing URM walls 

with concrete ones. Although this technique is rather common, codes do not provide guidelines for 

the design and assessment of such mixed structures.  

The aim of this paper was therefore to propose a displacement-based design methodology for 

the seismic design of buildings in which the lateral bracing system consists of both RC and URM 

walls. The methodology follows the direct displacement-based design by Priestley et al. (2007). 

The design consists of three main phases: (i) A preliminary DDBD check of the plain URM 

building. (ii) If the structure does not satisfy the seismic design check and has a dominant shear 

behaviour, retrofitting the structure by replacing some URM walls by RC ones is a viable solution. 

(iii) In the final phase, the DDBD design of the mixed RC-URM wall structure is carried out.  
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In the article, two tools for estimating important quantities relevant for the DDBD are 

proposed. (i) A simple mechanical model based on the shear-flexure wall interaction is 

implemented and validated. The objective is to provide a tool for estimating the deformed shape of 

the structure and the height of the contra-flexure point of the RC walls. Such a model was firstly 

developed to represent the shear-flexure interaction which arises in dual frame-wall buildings (e.g., 

Pozzati 1980). (ii) Furthermore, the contribution of the RC slabs to the overturning moment 

capacity is evaluated by elastic continuous beams. Connections between the slabs and the masonry 

walls are represented by vertical supports which work only in compression. The aim is to represent 

the limited capacity of the URM walls to equilibrate moments and shears transmitted by the RC 

slabs. Connections between slabs and RC walls are modelled instead by pins that can also transmit 

tension forces. 

The DDBD methodology has been checked by designing several case studies and comparing 

their structural performance through ITHA. The design method effectively controlled the 

horizontal deflection of the structure, being almost linear over its height. Furthermore, it was 

observed that, particularly for the three storey configurations, the maximum displacement obtained 

from ITHA was lower than the design value. This difference is explained by the short effective 

period of the three storey configurations and how the period dependency of ξURM has been 

accounted for. A possible solution would be to correlate the inelastic displacement demand to the 

demand slope factor, which is a function of the elastic spectral displacement demand variation 

between the initial and the effective periods (Pennucci et al. 2011). Also the predicted magnitude 

of the shear forces carried by RC and URM walls was rather similar to the actual values obtained 

from ITHA.  
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APPENDIX: Design example 
 

To illustrate the procedure, the DDBD of L1S5 (wall layout 1, 5 storeys) is presented. The 

methodology is iterative and stops when the variation of the required strength of the RC wall 

(MRCreq) between two steps is smaller than 5%. The structure is located in a moderate seismicity 

area and the seismic demand is represented by an acceleration design spectrum of soil class C 

(TB=0.2 s; TC=0.6 s and TD=2 s (EN 1998-1 2004)) with PGA equal to 0.25 g (Fig. 16). The design 

drift δd, associated with the SD limit state for URM walls failing in shear, is set equal to 0.4% (EN 

1998-3 2005). Assuming further a constant inter-storey drift over the height of the structure, the 

SD limit state is therefore reached if the average drift corresponds to 0.4%.   

The RC wall is designed to exhibit a displacement ductility μΔRC equal to 1.2. The axial force 

acting at the base of each wall is 500 kN and corresponds to an axial stress ratio at the base of the 

masonry walls (σ0/fm) of 8.8%. The mass whose weight is carried by walls in the direction of 

excitation (m||) is equally distributed between RC and URM walls, resulting in masses of 10.2 t 

applied at the top of the centrelines of each wall. An additional mass (m⊥) equal to m|| is added 

with a flexible frame and simulates the weight carried by the walls perpendicular to the 
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Fig. 20 TREMURI model used for ITHA 
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direction of excitation (Fig. 20). It results that the total inertial mass (mtot=m||+m⊥) is 510 t while 

the gravity load carried by the walls in the direction of excitation (m||) is 255 t. Additional 

information on the structure is provided in Section 7.1. 

A - Preliminary design check of the plain URM wall building 

The design starts by checking the plain URM wall structure with RC slabs. Firstly, it has to be 

verified that the displacement capacity of the URM building (Δcap) is smaller than the displacement 

demand (Δdem). This check is carried out by following the displacement-based assessment approach 

proposed by Priestley et al. (2007). The procedure requires the knowledge of the displacement 

capacity (Δcap) and the effective mass (me) of the structure. The displacement capacity (Δcap), which 

corresponds to the design displacement (Δd), and the effective mass (me) are calculated by 

assuming a design deformed shape that concentrates the deformations in the lowest storey (Table 5 

and Fig. 21a). From Eqs. (12) to (14) results as follows 

m
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The procedure is iterative and continues by guessing the displacement demand (Δdem), whose 

value is revised in the iterations. Furthermore, the knowledge of the equivalent viscous damping 

(here assumed equal to 0.31) and the shear strength capacity of the building (Vtot) are required. The 

latter is calculated according to Mann and Müller (1982) 

kNxxNV URMtot 950)5005(38.038.0 
 

At each iteration, the effective stiffness Ke and the effective period Te are calculated. From Te 

the new displacement demand is determined from the over-damped spectra. Table 6 summarises 

the main outputs of each iteration. The procedure is stopped when the displacement demand varies 

less than 5% from one step to the other. From the calculations the structure does not satisfy the 

design check as the displacement demand is higher than the displacement capacity: Δdem > Δcap. 
 

 

Table 5 Single degree of freedom simulation of the pain URM wall structure 

Storey Hi mi δd Δi=δd Hi Δi
2
 HiΔi miΔi mi Δi

2
 miΔiHi 

[-] [m] [t] [%] [m] [m
2
] [m

2
] [tm] [tm

2
] [tm

2
] 

1 3 102 0.40 0.012 0.00014 0.036 1.224 0.015 3.67 

2 6 102 0.00 0.012 0.00014 0.072 1.224 0.015 7.34 

3 9 102 0.00 0.012 0.00014 0.108 1.224 0.015 11.02 

4 12 102 0.00 0.012 0.00014 0.144 1.224 0.015 14.69 

5 15 102 0.00 0.012 0.00014 0.180 1.224 0.015 18.36 

Sum - 510  0.060 0.00072 0.540 6.120 0.073 55.08 

Hi=storey height 

mi=total storey mass 
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δd=design drift  

Δi=horizontal storey displacement 

 

d d

d
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h e
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h e
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URM  building
(a)

M ixed system
(b)  

Fig. 21 Assumed displacement profile and SDOF simulations for the URM building and the mixed system 

 

 

Additionally, it has to be verified that the URM walls are developing a shear rather than a 

flexural mechanism: MURM,sh<MURM,fl. To simplify matters, no variation of axial force at the base of 

the masonry walls due to coupling of the slabs is assumed. MURM,sh can be computed (Eqs. (24) to 

(26)) 
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N is the total axial force at the base of the considered URM wall. MURM,fl can be computed 

according to EN 1998-3 (2005) 
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With lURM and tURM the length and thickness of the wall and fm the masonry compressive 

strength. As MURM,sh>MURM,fl, the masonry building has a dominant shear rather than flexural 

behaviour. 
 

Table 6 Iterative displacement-based assessment procedure of the plain URM building 

Iteration Δdem Ke Te 

[-] [m] [kN/m] [s] 

0 0.018 53000 0.61 

1 0.027 35200 0.76 

2 0.033 28800 0.83 

3 0.036 26400 0.87 

4 0.038 25000 0.89 

5 0.039 - - 
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Δdem=displacement demand 

Ke=effective stiffness (Ke = Vtot/Δdem) 

Te=effective period ( eee KmT /2 ) 

The starting, guessed, value of the displacement demand is underlined 

 
Table 7 Single degree of freedom simulation of the mixed RC-URM wall structure 

Storey Hi mi δd Δi = δd Hi Δi
2
 HiΔi miΔi mi Δi

2
 miΔiHi 

[-] [m] [t] [%] [m] [m
2
] [m

2
] [tm] [tm

2
] [tm

2
] 

1 3 102 0.40 0.012 0.0001 0.036 1.224 0.015 3.67 

2 6 102 0.40 0.024 0.0006 0.144 2.448 0.059 14.69 

3 9 102 0.40 0.036 0.0013 0.324 3.672 0.132 33.05 

4 12 102 0.40 0.048 0.0023 0.576 4.896 0.235 58.75 

5 15 102 0.40 0.060 0.0036 0.900 6.120 0.367 91.80 

Sum - 510  0.180 0.0079 1.980 18.36 0.808 201.96 

Hi=storey height 

mi=total storey mass 

δd=design drift  

Δi=horizontal storey displacement 

 

 

As the structure (i) does not satisfy the design requirement (Δcap<Δdem) and (ii) has a dominant 

shear behaviour (MURM,sh<MURM,fl), replacing a URM wall by a RC wall is a viable retrofit solution. 

It is decided to replace the central masonry pier with one RC wall, Fig. 23(b).  

 

B - Design displacement and SDOF simulation of the mixed RC-URM wall structure 

For the SDOF simulation of the mixed RC-URM wall structure, the assumed design deformed 

shape is linear (Table 7 and Fig. 21b). From Eqs. (12) to (14) Δd, me and he are obtained 
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C - Contribution to the overturning moment provided by the URM walls (MURM) 

The strength capacity of the URM walls (Vsh) is calculated according to Mann and Müller 

(1982) and MURM is estimated from Eqs. (24) to (27) as follows: 
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kNxxNV URMsh 760)5004(38.038.0 
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D - Iterative procedure to find the required strength and the length of the RC wall 

Iteration 0 (starting values) 

Initially, to calculate the damping reduction factor ηξ (Eq. (15)) and the overturning moment 

demand (Eqs. (16), (17), (22)), the equivalent viscous damping is assumed equal to 20% 
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The yield rotation of the RC slabs flanking the RC walls, θys, is calculated according to Eq. 

(30). As the dimensions of the RC walls are unknown, a trial length of 3.0 m is assumed 

%48.035.025.125.000.10.3 
s

s
yysssseRC

h

L
mhLLl 

 

εy, the yield strain of the longitudinal bars of the RC wall, is calculated from the yield stress and 

the E-modulus of the reinforcing bars 

00275.0
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The rotation demand is found by assuming for the URM walls rigid body rotations around the 

base corner in compression and for the RC wall a rigid body rotation around its centreline (Fig. 22) 

mmrV 02 
 

827



 

 

 

 

 

 

Alessandro Paparo and Katrin Beyer 

mm
LRC

dVRCl 6
2

0.3
%4.0

2
 

 

mmVRCrVRCr 6
 

mmxLURMdlV 120.3%4.033  
 

%6.0
1000

602
2 







se

VRCrrV
s

L


 

%8.1
1000

1263
3 







se

lVVRCl
s

L


 

As the structure is symmetric, the mean rotation demand θs=(θs2+θs3)/2=1.2% is used for 

calculating the bending moment applied to the pins connecting the slabs to the RC walls (Ms,w). 

As θs>θys, Ms,w=Mys,w=110 kNm, Eq. (31a). The contribution to the overturning moment from 

the RC slabs, MS, is then calculated by using elastic continuous beams. According to Eq. (28), MS 

is the sum of the contributions of the different bays (Mbay,j) 

kNmMMMMM baybaybaybayS 79704321 
 

The reaction forces of supports and pins of the elastic continuous beams are represented in Fig. 

24. Note that the vertical supports between URM walls and slabs are all working in compression 

while some pins connecting RC walls and slabs transmit tension forces. 

It is then possible to calculate the required strength of the RC wall (Eq. (36)) 

kNmMMOTMM URMSdemRCreq 21401710797011820 
 

Iterations 1 to 4 

The iterations continue until the variation of the strength of the RC wall MRCreq between two 

steps is smaller than 5%. Table 8 summarises the main DDBD outputs of each iteration. 

 

 
Table 8 Iterative procedure 

Iteration lRC ξsys OTMdem MS MRCreq VRCreq βRC α 

[-] [m] [%] [kNm] [kNm] [kNm] [kN] [%] [-] 

0 3.00 20.0 11820 7970 2140 630 18 3.5 

1 2.53 21.0 11310 7180 2420 640 21 3.1 

2 2.75 20.8 11410 7530 2170 630 19 3.4 

3 2.60 21.1 11260 7285 2264 620 20 3.3 

4 2.66 - - - - - - - 

lRC=length of the RC wall 

ξsys=equivalent viscous damping of the system 
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OTMdem=overturning demand 

MS=contribution to the overturning moment from the slabs 

MRCreq=required moment of the RC wall 

VRCreq=required shear of the RC wall 

βRC=ratio of the contribution of the overturning moment from the RC wall 

α=(GA/EI)0.5 

Starting values are underlined 
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Fig. 22 Mechanism for calculating the rotation demands θb2 and θb3 
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Fig. 23 Verification of the displacement profile of the structure (a). Final configuration of the mixed 

RC-URM wall structure. All dimensions in cm (b) 

 

 

E - Ascertain the displacement profile of the structure 

Once length and strength of the RC wall are defined, the displacement profile of the structure is 

checked. With the design outputs n=5, βRC=20% and α=3.3, the drift ratio Rδ is equal to around 0.9, 

(a) (b) 
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Fig. 23(a). As the assumption of the linear displacement profile is satisfied, the RC elements are 

designed, the out-of-plane requirements checked and the procedure is completed. If Eq. (11) is not 

respected, the designer has two options: (i) to choose a different number of URM walls to be 

replaced by the RC ones or (ii) to change the level of ductility of the RC wall. Fig. 23(b) 

represents the final structural configuration. 
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Fig. 24 Elastic continuous beams used for calculating MS. All dimensions in m 
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